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Advanced Condensed Matter Theory — SS10

Exercise 2

1.1. Spectral Properties of Matsubara Green’s Functions (6 points)

In this exercise we study the spectral properties of the Matsubara’s Green’s Functions (MGF).

a) From the definition of the spectral function A(ω) from the lecture prove the following sum
rule ∫

dω′

2π
A(ω′) = 1 (1)

b) Using the result (1), show that

G(ω)→ 1

ω
(2)

in the high-frequency limit ω →∞

1.2. The Spectral Weight: A Physical Picture, Part I (15 points)

In the lecture Advanced Theoretical Condensed Matter Physics part 1 you learned that the Fermi
liquid theory relies on the assumption that the excitation created by adding a particle to the system
can be described by a free particle, a quasiparticle, with a long lifetime. The function that measures
precisely the density of states for adding particles is the retarded Green’s function GR. In other
words, if the retarded Green’s function of the interacting system turns out to be similar to that of
free particles, the quasiparticle picture will have a real physical meaning. We will explore this in
more detail in this exercise and one on the next problem sheet.

A useful way of deriving Green’s functions is to compute the equations of motion. We note that
in what follows we will work with zero temperatures; however the steps in the derivation follows
completely analogously for the T 6= 0 regime.

a) Derive the equation of motion for the retarded Green’s function for an arbitrary Hamiltonian
H.

b) From your results above write down the equation of motion for a system of free (noninteract-
ing) electrons with the Hamiltonian H0

H0 =
∑
kσ

(εk − µ)c†kσckσ (3)

Subsequently solve for GR0
kσ(ω) (the superscript 0 denotes the noninteracting Green’s function).



c) Now consider a system of mutually interacting electrons with the Hamiltonian

H = H0 + V (4)

where the interaction term V is given by

V =
1

2

∑
kpq
σσ′

vkp(q)c†k+qσc
†
p−qσ′cpσ′ckσ (5)

What do you obtain for the equation of motion? Is it possible to solve for the interacting
Green’s function as in the free case? Show that the equation of motion depends in this case
on the higher-order Green’s function

Γσσ
′

pkq = −iθ(τ − τ ′)
〈[(

c†p+qσ′c
†
k+qσcpσ′

)
(τ), c†kσ(τ ′)

]〉
(6)

d) In order to be able to complete the derivation of the interacting Green’s function, we need to
close our equation of motion. One ad hoc way to do this is to simply replace the higher order
Green’s function (6) with the following quantity

Γσσ
′

pkq(ω)→ Σσ(k, ω)Gkσ(ω) (7)

Substituting (7) into your equation of motion, solve for GR
kσ(ω). Show that you obtain a

Green’s function of the form

GR
kσ(ω) =

1

ω − (εk − µ) + Σσ(k, ω)
(8)

=
1

ω − ξk + Σσ(k, ω)
(9)

The quantity Σσ(k, ω) is called the self-energy. It is an important quantity that characterizes
the interaction between the particles in a particular system. It can be more rigorously derived
via Dyson’s equation, but here it suffices to make this simple substitution. We note also that
the self-energy is a complex function.

e) At low energies only the processes around the Fermi edge (ω = 0, k = kF ) are physically
relevant. Assume that the non-interacting states are free particles

εk =
k2

2m
(10)

and furthermore assume that one can expand the denominator in the vicinity of (ω = 0,
k = kF ). Perform the expansion of (8), and show that one can write the Green’s function as

GR(ω) ≈ Z

ω − ξ̃k + i
2τ̃k(ω)

(11)

Express the quantities Z, ξ̃k and τ̃k(ω) in terms of the real and imaginary of the self-energy
and it derivatives thereof. (Hint: keep the imaginary part of the self-energy undifferentiated,
and assume that ξkF

+ ReΣ(kF , 0) = 0, i.e., the real part of the energy vanishes.)

f) Assume that the imaginary part of the self-energy is small. Write down the spectral function
using the definition of the spectral function A(k, ω) = −2ImGR(k, ω) and the result (11)
above.


