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Advanced Condensed Matter Theory — SS10

Exercise 5

Please return your solutions during the lecture on June 9, 2010
to be discussed on June 10, 2010

1.1 The Relation between Anderson and Kondo Hamiltonian: (25 points)

In the following we consider the low energy limit of the Anderson Hamiltonian:

HA = Ed

∑

σ

ndσ + Und↑nd↓ +
∑

k,σ

ǫkc
†
kσckσ +

∑

k,σ

(

Vkdc
†
kσdσ + h.c.

)

, (1)

where dσ is the annihilation operator of the isolated atomic d state.

a) Restrict your considerations to the atomic part of the Hamiltonian (1), i. e.

Hatomic = Ed

∑

σ

ndσ + Und↑nd↓,

and give its eigenstates. Require Ed < 0 and Ed + U > 0 and show that the ground-state of
the system is a magnetic doublet.

If the ground-state configuration of the Anderson model (1) for Vkd is the singly occupied one, then
the other configurations are higher excited states. Next we want to derive an effective Hamiltonian
by taking into accound virtual excitations to these states within lowest order perturbation theory.

b) If we write the total wavefunction as

Ψ = Ψ0 + Ψ1 + Ψ2,

where Ψn is the component in which the d-state has the occupation number n, then the
Schödinger equation HAΨ = EΨ takes the form
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with Hnm = PnHAPm and Pn the projection operator on to the subspace with d occupation
n. Why are H20 and H02 equal to zero?

Show that the projection operators

P0 = (1 − nd↑)(1 − nd↓), P1 = nd↑(1 − nd↓) + nd↓(1 − nd↑), P2 = nd↑nd↓,

satisfy
∑

n Pn = 1 and PmPn = δnmPm.



c) Eliminate Ψ0 and Ψ2 from Eq. (2) to obtain

HeffΨ1 ≡

[

H11 + H12(E − H22)
−1H21 + H10(E − H00)

−1H01

]

Ψ1 = EΨ1. (3)

d) Derive the following equations:

H12(E − H22)
−1H21 = −

∑

q,k

∑

σ,τ

V ∗
qdVkd

U + Ed − ǫk

(

1 −

E − Ed − H0

U + Ed − ǫk

)−1

dσd
†
τc

†
kσcqτ

H10(E − H00)
−1H01 = −

∑

q,k

∑

σ,τ

V ∗
qdVkd

ǫk − Ed

(

1 −

E − Ed − H0

ǫk − Ed

)−1

d†
σckσc

†
qτdτ (4)

Hint: First show for the components, that H00 = H0P0, H11 = (H0 + Ed1)P1, H22 = (H0 +
2Ed1 + U1)P2, H10 =

∑

kσ V ∗
kdd

†
σckσP0, H21 =

∑

kσ V ∗
kdd

†
σckσP1, where H0 =

∑

kσ ǫkc
†
kσckσ.

e) From now on we restrict ourselves to the singly occupied subspace, i.e. lowest order in Vkd,
and therefore neglect the fractions of the form E−Ed−H0

Ed+...
in Eq. (4). Prove, that

∑

τ,σ

c
†
kσd

†
τcqτdσ = −2

(

Skq · Sd +
1

4

(

∑

σ

c
†
kσcqσ

) (

∑

τ

ndτ

))

,

where Si
kq = 1

2

∑

α,β c
†
kα (σi)αβ cqβ with σi the Pauli matrices. The second quatization repre-

sentation of Sd is the same, except that the d operators appear instead of the c’s.

Hint:
∑

i=x,y,z σi
αβσi

γδ = 2δαδδβγ − δαβδγδ

Finally derive

H12(E − H22)
−1H21 = 2

∑

q,k

V ∗
qdVkd

U + Ed − ǫk
Skq · Sd −

1

2

∑

q,k,σ

V ∗
qdVkd

U + Ed − ǫk
c
†
kσcqσ

H10(E − H22)
−1H21 = 2

∑

q,k

V ∗
qdVkd

ǫk − Ed

Skq · Sd +
1

2

∑

q,k

V ∗
qdVkd

ǫk − Ed

c
†
kσcqσ −

∑

k

V ∗
kdVkd

ǫk − Ed

,

where we used the relation
∑

σ ndσ = 1.

f) Insert these results in Heff to obtain

Heff = 2
∑

q,k

JkqSkq · Sd +
∑

q,k,σ

[ǫkδqk + Kkq] c
†
kσcqσ + Ed −

∑

k

V ∗
kdVkd

ǫk − Ed

, (5)

where Jkq =
[

V ∗

qd
Vkd

U+Ed−ǫk
+

V ∗

qd
Vkd

ǫk−Ed

]

and Kkq =
V ∗

qd
Vkd

2

[

1

ǫk−Ed

−
1

U+Ed−ǫk

]

. Moreover Kkq can be

absorbed in the conduction electron dispersion as follows

ǫkδqk + Kkq −→ ǫkq

and the energies may be measured with respect to the last two terms in Heff , leading to

HKondo ≡ Heff = 2
∑

q,k

JkqSkq · Sd +
∑

q,k,σ

ǫkqc
†
kσcqσ. (6)

Prove that Jkq is positiv near the Fermi surface.


