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Advanced Condensed Matter Theory — SS10

Exercise 5

Please return your solutions during the lecture on June 9, 2010
to be discussed on June 10, 2010

1.1 The Relation between Anderson and Kondo Hamiltonian: (25 points)

In the following we consider the low energy limit of the Anderson Hamiltonian:

H,=E, Z Nae + Unging, + Z ekcfmckg + Z (decfmd(, + h.c.> , (1)
o k,o k,o
where d, is the annihilation operator of the isolated atomic d state.

a) Restrict your considerations to the atomic part of the Hamiltonian (1), i. e.

Htomic = Ea Z Ngo + Ungingy,
g

and give its eigenstates. Require £y < 0 and Ey + U > 0 and show that the ground-state of
the system is a magnetic doublet.

If the ground-state configuration of the Anderson model (1) for Vi, is the singly occupied one, then
the other configurations are higher excited states. Next we want to derive an effective Hamiltonian
by taking into accound virtual excitations to these states within lowest order perturbation theory.

b) If we write the total wavefunction as
U =U,+ Uy + Wy,

where W, is the component in which the d-state has the occupation number n, then the
Schodinger equation H,V = EW takes the form

Hy Hopi O vy v
Hy Hyi Hypp Vi | =E£¥Y (2)
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with H,,, = P,H4P,, and P, the projection operator on to the subspace with d occupation
n. Why are Hsy and Hy, equal to zero?

Show that the projection operators
Po=(1—=n41)(1 =nay), Pr=na(l—ng)+nqg(l—mng), Po=nana,

satisfy >~ P, =1 and P, P, = 6pm P



c)

d)

Eliminate ¥y and ¥, from Eq. (2) to obtain

HeyWy = [Hyy + Hio(E — Has) 'Ho + Hio(E — Hoo) ™ 'Hot] U1 = EV;. (3)

Derive the following equations:

ViV E—Ed—H(])_l
Hyp(E — Hy) 'Hy = =) > — <1— dodlel cqr
12 ) Ha U+ By — e U+ E;— e kota
B ZZ 1 Vid E—FE;— Hy\ !
Hio(E = Hoo) o = - €k i Eq ( €k —dEd 0) dZCkUCIleT @
aq.k o7

Hint: First show for the COl’IlpOIlGIltS, that HOO = H()P(), H11 = (H() + Ed]l>P1, HQQ = (HO +
2B + UN) Py, Hig = Y, Vil cko Po, Hoy = S, Viydh cio Py, where Hy = 3, €xcl Cho-

From now on we restrict ourselves to the singly occupied subspace, i.e. lowest order in Vi,

and therefore neglect the fractions of the form % in Eq. (4). Prove, that

Z cligdicmdg = (Skq Sq+ - (Z Cka-cqo> <Z nd‘r)) )

where Sf(q = %Za 5 cLa (O'i)aﬁ Cqp With o the Pauli matrices. The second quatization repre-
sentation of Sy is the same, except that the d operators appear instead of the ¢’s.

Hint: 37, 045005 = 200505y — Oapdys

Finally derive

\ % de 1 Vded
Hyy(E — Hyp) 'Hy = 2y — 9 g -8;—-Y 9 ¢,
12( 22) 21 g; U+t Ey— e kq " Dd qu: U+ E;— e CkoCa
V* Vi 1 VoiVia VieaVka
H E _ H —IH — 2 qd S . S _ qa T o — L
10( 22)" Ha Zka—Ed kq d+2§€k_E ko Ca ;Ek_Edy

where we used the relation ) _ng, = 1.

Insert these results in H.;s to obtain

V2 Via
Heff =2 Z quSkq : Sd + Z [Ekéqk + qu] CLOCqU + Ed - Z Eki—E7 (5)
q,k q.k,o Kk K d
VZVid VZ Via VaaVid 1 1
where Jxq = U+q§rek ekad} and Kyq = 25 [Ekad — U+Ed7€k] Moreover Kyq can be

absorbed in the conduction electron dispersion as follows
Ek(sqk + qu — €kq

and the energies may be measured with respect to the last two terms in H.s¢, leading to

HKondo = Heff =2 Z quSkq . Sd + Z EkqCLJCqU. (6)

a.k a.k,o

Prove that Jiq is positiv near the Fermi surface.



