
Universität Bonn 23.6.2010
Physikalisches Institut
Prof. Dr. H. Kroha, Z. Y. Lai, M. Trujillo Mart́ınez
http://www.th.physik.uni-bonn.de/th/Groups/kroha

Advanced Condensed Matter Theory — SS10

Exercise 7

7.1 Tunnel current (25 points)

In the lecture, it was mentioned that one can measure the local density of states (DOS) of a
substrate by performing a scanning tunneling microscope experiment. In this exercise, we will
derive an elementary relation between the DOS and the measured dI/dV signal. For that purpose,
consider the model Hamiltonian (see Fig. 1)

H =
∑
k

(εT(k)− µT) c†k,T ck,T +
∑
k

(εS(k)− µS) c†k,S ck,S

+
∑
k,k′

(
tkk′ c

†
k,T ck′,S + t∗kk′ c

†
k′,S ck,T

)
(1)

≡ HT +HS +Hhyb

≡ H0 +Hhyb

The indices S and T denote the substrate and the tip, respectively.

a) The current flowing between tip and substrate is given by

I(t) = e0
dNS

dt
(t) = −e0

dNT

dt
(t), NS(T)(t) =

∑
k

c†k,S(T)(t) ck,S(T)(t)

where here the operators are represented in the Heisenberg representation. In the Heisenberg
representation the equation of motion is given by the time-independent Hamiltonian as

dNS

dt
(t) = −i

[
NS(T)(t),H

]
Use the Heisenberg equation of motion to derive

〈I(t)〉 = e0i
∑
k,k′

(
tk′k 〈c

†
k′,T(t) ck,S(t)〉 − t∗k′k 〈c

†
k,S(t) ck′,T(t)〉

)
.

b) Show that in leading order of the tunneling amplitude the current expectation value finally
reads

〈I(t)〉 = e0
∑
k,k′

∣∣∣tk′k

∣∣∣2 ∞∫
−∞

dt′
(
〈c†k′,T(t) ck,S(t)c†k,S(t′) ck′,T(t′)〉0

− 〈c†k,S(t) ck′,T(t)c†k′,T(t′) ck,S(t′)〉0
)

≡ IS→T − IT→S.



Hint : Remind yourselves of the section on linear response theory in Theoretical Condensed
Matter Theory last semester. There you learned that, we can derive the response function of
a system to an external perturbation Hhyb via the formula (using our problem Hamiltonian
as an example)

〈I(t)〉 = −ie0

∞∫
−∞

dt′ 〈
[
ṄS(t),Hhyb(t

′)
]
〉0 (2)

Here we stress that the operators ṄS(t) and Hhyb(t
′) are now in the interaction representation,

i.e., ṄS(t) ≡ eiH0tNSe
−iH0t, and the same for Hhyb(t

′). Also, the notation 〈 · · · 〉0 denotes
taking the average value over the ground state. Now the reason for the fact that we have now
our operators in the interaction representaion is due to the derivation of the linear response
formula itself, in the following way: lets assume we want to derive the current response
operator J(r, t) from the current operator j(r, t) (the explicit form of the respective operators
does not concern us here; this is only an illustrative example)

J(r, t) = 〈 ψ′ | eiHtj(r)e−iHt | ψ′ 〉
= 〈 ψ′ | ei(H0+Hhyb)tj(r)e−i(H0+Hhyb)t | ψ′ 〉

where | ψ′ 〉 is the wave function at t = 0 for an interacting system (with the fullH = H0+Hhyb

involved, where Hhyb is again a perturbation part). Now we also know that

e−i(H0+Hhyb)t = e−itH0U(t)

⇒ U(t) = e−itH0e−i(H0+Hhyb)t

⇒ J(r, t) = 〈 ψ′ | U †(t)eiH0tj(r)e−iH0tU(t) | ψ′ 〉

where U(t) = T exp

[
−i

t∫
0

dt′Hhyb(t
′)

]
is the well-known time development operator, T the

time-ordering operator. Now since | ψ′ 〉 = T exp

[
−i

0∫
−∞

dt′Hhyb(t
′)

]
| ψ 〉 , with | ψ 〉 denoting

the ground state we see also that U(t) | ψ′ 〉 = T exp

[
−i

t∫
−∞

dt′Hhyb(t
′)

]
| ψ 〉 ≡ S(t,−∞) | ψ 〉 .

Now we can rewrite

J(r, t) = 〈 ψ′ | U †(t)eiH0tj(r)e−iH0tU(t) | ψ′ 〉
= 〈 ψ | S†(t,−∞)j(r, t)S(t,−∞) | ψ′ 〉

where j(r, t) is now in the interaction picture. Expanding S(t,−∞) up to 1st order in Hhyb

and resubstituting it we see that

J(r, t) = 〈 ψ | S†(t,−∞)j(r, t)S(t,−∞) | ψ 〉

= 〈 ψ |

1 + i

t∫
−∞

dt′Hhyb(t
′)

 j(r, t)
1− i

t∫
−∞

dt′Hhyb(t
′)

 | ψ 〉
= 〈 ψ |

j(r, t)− i t∫
−∞

dt′ [j(r, t)Hhyb(t
′)−Hhyb(t

′)j(r, t)]

 | ψ 〉



and assuming 〈 ψ|j(r, t) | ψ 〉 = 0 you have the expression

J(r, t) = −i
t∫

−∞

dt′ 〈 ψ | [j(r, t),Hhyb(t
′)] | ψ 〉

Therefore one starts with all the operators in the Heisenberg picture, but since we want to do
the calculation with Hhyb as a perturbation, the perturbation part goes into the time evolution
operator and the rest of the operators in the commutator is defined in the interaction picture.
This final expression looks very much like (2), of course.

c) Denote the joint many body states of sample and tip by |n, n′〉 ≡ |n〉T|n′〉S to derive the
spectral representation

IS→T =
2πe0
ZG

∑
k,k′

∑
n,n′

∑
m,m′

∣∣∣tk′k

∣∣∣2 ∣∣∣〈n, n′|c†k′,Tck,S|m,m
′〉
∣∣∣2 e−β(En−µT) e−β(E

n′−µS)

× δ(En + En′ − Em − Em′)

and the corresponding one for IT→S.

Show that IS→T can be expressed as

IS→T = 2πe0
∑
k,k′

∣∣∣tk′k

∣∣∣2 ∫ dω Ak′,T(ω)Ak,S(ω) fT(ω) (1− fS(ω)) ,

where

fS(T)(ω) =
1

eβ(ω−µ
S(T)

)
.

Derive also the corresponding expression for IT→S.

Hint :

– Use the definition of the spectral function from the lecture, i.e.,

Ak,S(ω) =
1

ZS
G

∑
n′,m′

∣∣∣〈n′|c†k,S|m′〉∣∣∣2 (e−βẼn′ + e−βẼm′ )δ(ω + En′ − Em′)

and similarly for Ak′,T (ω), where Ẽn ≡ En − µT , Ẽn′ ≡ En′ − µS inserting this into the
expression for IS→T given on the sheet, try to recover expression for IS→T given above.

– ZG = ZS
G · ZT

G

–
∣∣∣〈n, n′|c†k′,Tck,S|m,m′〉

∣∣∣2 ≡ ∣∣∣〈n|c†k′,T|m〉
∣∣∣2 ∣∣∣〈n′|ck,S|m′〉∣∣∣2

– The average value 〈 · · · 〉0 ≡
1
ZG

∑
n,n′
〈n, n′|e−βH0 · · · |n, n′〉



d) For simplicity, we assume
∣∣∣tk′k

∣∣∣2 ≈ |t|2 = const. Furthermore, the local density of states of

the tip is typically a smooth and slowly varying function and we can approximate

NT(ω) =
∑
k

Ak,T(ω) ≈ N0 .

The difference of the chemical potentials arises from the applied voltage V : µT − µS = e0V .
Show that then the dI/dV -measurement is related to the local DOS of the substrate via

d〈I〉
dV

= e20ΓNS(µS + e0V ), Γ = 2πN0 |t|2.

V
t

Figure 1: STM setup


