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Advanced Theoretical Condensed Matter Physics — SS11

Exercise 1

(Please return your solutions before Tue. 26.04.2011)

1.1. Green’s functions for noninteracting electrons

In the lecture the position dependent Green’s function was defined. In the same way
one can define a momentum dependent retarded Green’s function:

GR
kσ(t, t′) = −iΘ(t− t′) 1

ZG
tr

{
e−β(Ĥ−µN̂)

[
ckσ(t), c†kσ(t′)

]
+

}
(1)

(The advanced and time-ordered momentum dependent Green’s functions are defined
in complete analogy to the lecture). We will consider a system of noninteracting
electrons here

H0 = H0 − µN =
∑
kσ

(ε(k)− µ)c†kσckσ

a) Determine the time-dependence of ckσ(t) and c†kσ(t′) for the noninteracting sys-
tem H0 by using the equation of motion for a Heisenberg operator.

b) Compute the retarded Green’s function (1) for the noninteracting system using
the results of a).

GR,0
kσ (t, t′) = −iΘ(t− t′)e−

i
~ (ε(k)−µ)(t−t′) = GR,0

kσ (t− t′) (2)

c) Derive the Fourier transform

GR,0
kσ (E) =

∞∫
−∞

d(t− t′)GR,0
kσ (t− t′) eiE(t−t′) =

1

E − (ε(k)− µ) + i0+
(3)

Hint: Use the residue theorem to show first that

Θ(t− t′) = i

∞∫
−∞

dω

2π

e−iω(t−t′)

ω + i0+
.

The Green’s function can also be defined as the resolvent of a wave operator. In our
case this is the Schrödinger operator:

(i∂t −H0)G
R,0(t− t′) = δ(t− t′)

d) Show that this equation is fullfilled by (2) by writing it in momentum space
representation. What is the corresponding equation in energy space? Show
that (3) is the resolvent of the Schröedinger operator in energy space.



In general, the retarded Green’s function contains a non-infinitesimal imaginary part
in the denominator

GR
kσ(ω) =

1

ω − (ε(k)− µ) + iτ−1

e) Use the residue theorem to calculate the time-dependent Green’s function by
Fourier transform. How does the Green’s function behave for large (t − t′)?
How can one interprete τ? Try to explain why a finite τ > 0 might occur.

1.2. Green’s functions: general properties

In the previous exercise, you calculated explicitely the retarded Green’s function G
for the special case of a diagonal Hamiltonian. However, in most cases the system is
much more complex, e.g., in the presence of interactions. Nevertheless some analytical
properties of G will always hold. We will discuss some of them in this exercise.

a) Normalization:
Use the explicit definition of the spectral function Akσ(ω) (see lecture),

Akσ(ω) =
1

ZG

∑
n,m

|〈n|ckσ|m〉|2
(
e−βEn + e−βEm

)
δ(ω + En − Em), (4)

to show that Akσ(ω) is normalized,

∞∫
−∞

dω Akσ(ω) = 1.

Use the spectral representation of GR
kσ(ω) (see lecture),

GR
kσ(ω) =

∞∫
−∞

dω′
Akσ(ω′)

ω − ω′ + i0+
, (5)

to find the relation between ImGR
kσ(ω) and Akσ(ω). Calculate

∞∫
−∞

dω ImGR
kσ(ω).

b) Analytic properties:
We will now investigate some additional analytic properties of the zero-temperature
Green’s functions. We can write the definition of the Green’s function as given
in (5) in the following way

Gkσ(z) =

∞∫
−∞

dω′
Akσ(ω′)

z − ω′
, (6)

where z is now an arbitrary complex number, and notice that the “Green’s
function” has for the moment arbritary analytic properties (it does not have a
R-superscript).



i) Write down the definition of the spectral function A(ω) in terms of the
difference of retarded and advanced Green’s functions.

ii) We now assume a certain analyticity property for z. Let Imz > 0. Re-
mind yourself also of the analyticity properties of the retarded GR

kσ(ω)
and advanced GA

kσ(ω) Green’s function. Therefore, show, using Cauchy’s
theorem, that

Gkσ(z) = − 1

2πi

∞∫
−∞

dω′
GR

kσ(ω′)

z − ω′
, (7)

iii) At this point set z = ω+ i0+ in (7). Show that our Green’s functions obey
the Kramers - Kronig relations:

ImGR
kσ(ω) = − 1

π
P

∞∫
−∞

dω′
ReGR

kσ(ω′)

ω′ − ω
(8)

ReGR
kσ(ω) =

1

π
P

∞∫
−∞

dω′
ImGR

kσ(ω′)

ω′ − ω
(9)

where the symbol P in front of the integral sign denotes the principal part
of the integral.
Hint: Use the relation 1

ω′−ω±iδ = P
(

1
ω′−ω

)
∓ iπδ(ω′ − ω)

This means that the real and imaginary parts of the Green’s function are
not to be found independently, but rather can be calculated from one
another. This is an important feature of the Green’s function in that
from it one sees that the Green’s functions obey causality, and therefore
corresponds to physical correlation functions.

iv) As an exercise on the application of the Kramers - Kronig relations, show,
using (9) that the real part of the function GR

kσ(ω) with the imaginary part

ImGR
kσ(ω) = − 1

1 + ω2

is given by

ReGR
kσ(ω) =

ω

1 + ω2

c) Asymptotic behavior:
You can assume that Akσ(ω) ≡ 0 if |ω| > ωmax for some 0 < ωmax <∞. Show

lim
ω→±∞

ω ·GR
kσ(ω) = 1,

i.e., GR
kσ(ω) ≈ 1/ω for large energies.

d) In general, the retarded Green’s function is of the form

Gkσ(ω) =
1

ω − ε̃(k)− Σkσ(ω)
, with ε̃(k) = ε(k)− µ.



(For simplicity, in exercise 1.1 e) we approximated Σkσ(ω) ≈ const.)

Assume ImΣkσ(ω) = −i0+ + O(ω2) and expand the Green’s function around
(ε̃(k) = 0, ω = 0) up to first order and show that it takes the form

Gkσ(ω) =
z

ω − ε̃∗(k) + i0+
+ Gincoh

kσ (ω),

where Gincoh
kσ (ω) contains all higher order contributions. What are the explicit

forms of the expression z and ε̃∗(k)? We have seen, in exercise 1.1e), that the
imaginary part of the Green’s function represents a “decay parameter” for the
Green’s function. What role, which you can conclude from this exercise, does
the real part play?


