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Advanced Theoretical Condensed Matter Physics — SS11

Exercise 2

(Please return your solutions before Tu. 3.5.2011)

2.1. In-Class Exercise: Wick’s Theorem in the Matsubara Formalism

Recall from the lecture that in order to perform the perturbation expansion in terms
of Feynman diagrams, a technical fact relating an arbritary order Green’s function
to products of single particle Green’s functions, Wick’s theorem, is required. A proof
of Wick’s theorem in the zero-temperature formalism is relatively straightforward,
due to the fact that at zero temperature, the expectation values of normal -ordered
product of creation / annihilation operators vanishes, and therefore the time-ordered
product of those operators are the same as the the sum. But in the case of finite-
temperature, since groud-state expectation values do no vanish, Wick’s theorem needs
to be proven in a slightly different way. This exercise will guide you through the steps
required to prove Wick’s theorem in the Matsubara formalism.

We start with the usual definition of the n-particle Green’s function in the Matsubara
formalism:

G(n)
0 (ν1τ1, . . . , νnτn; ν ′1τ

′
1, . . . , ν

′
nτ
′
n)

= (−1)n
〈
Tτ

[
ĉν1(τ1) · · · ĉνn(τn)ĉ†ν′n(τ ′1) · · · ĉ†ν′1(τ

′
1)
]〉

0
(1)

Here the indices νi denote arbritary quantum numbers (~r, σ etc) assigned to particle
i, τi are the imaginary time variables, and the “0” subscript denotes average with
respect to a non-interacting Hamiltonian H0. Time evolution of the creation and
annihilation operators are also defined with respect to H0, i.e.,

ĉ(τ) = eτH0ce−τH0 (2)

We first simplify our expression in (1) by introducing the operator symbol

di(σi) =

{
ĉνi

(τi), i ∈ [1, n]

ĉ†ν′2n+1−i
(τ ′2n+1−i), i ∈ [n+ 1, 2n]

and furthermore we define the permutations of the 2n operators as

P (d1(σ1) · · · d2n(σ2n)) = dP1(σP1) · · · dP2n(σP2n)

a) Using the definition of the Green’s function given in (1), argue that it can be
rewritten in the form

G(n)
0 (i1, . . . , i2n) = (−1)n

∑
P∈S2n

(±1)P θ(σP1 − σP2) · · · θ(σPn−1 − σPn)×

× 〈dP1(σP1) · · · dP2n(σP2n)〉0 (3)



The easiest way to show Wick’s theorem for finite temperatures is through the equa-
tion of motion of the n-particle Green’s function. Since in (3) we have a product
of θ-functions and H0-averaged product of the dPi

(σi) operators, we expect that a
derivative with respect to a time variable, τ1 for example, will produce 2 kinds of
contributions: one coming from the derivative of the θ-function, and another coming
from the derivative of the expectation value itself.

b) Differentiate (1) with respect to τ1. What do you obtain for the equation of
motion? Show that differentiation with respect to an arbitrary index i yields
the following expression

G−1
0i G(n)

0 = −∂θτiG(n)
0 (4)

where the quantities G−1
0i and h0 are defined in the following way

G−1
0i = −∂τ − h0, H0 =

∑
νν′

h0,νν′c
†
νcν′ (5)

−∂τG0(ντ, ν
′τ ′)−

∑
ν′′

h0,νν′′G0(ν
′′τ, ν ′τ ′) = δ(τ − τ ′)δνν′ (6)

and ∂θτi only operates on the θ-functions.

Take now the case where τi and τ ′j are next to each other. There are 2 such terms in
(1), corresponding to τi being either smaller or larger than τ ′j. This corresponds to
different arguments of the θ-functions.

c) Calculate the right-hand side of (4) for the times τi and τ ′j as described above.

d) With the help of the equal-time (anti-)commutation relations[
ĉνi

(τi), ĉ
†
ν′j

(τi)
]
B,F

= δνi,ν′j[
ĉνi

(τi), ĉνj
(τi)
]
B,F

= 0

show that (4) can be rewritten as

G−1
0i G(n)

0 =
n∑
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δνi,ν′j
δ(τi − τ ′j)(−1)xGn−1

0 (ν1τ1, . . . , νnτn︸ ︷︷ ︸
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′
1, . . . , ν

′
nτ
′
n︸ ︷︷ ︸

withoutj

) (7)

e) Determine x by looking at the various definitions of Green’s functions and minus
signs picked up when commutating fermions. Integrating (7) according to (5)
and obtain Wick’s theorem:
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2.2 Homework Exercise: Feynman Diagrams in 1st Order Perturbation Theory

Generally, Green’s function cannot be calculated exactly, but one has to use ap-
propriate approximations. In this exercise, we want to use perturbation theory and
to practice the calculation of Feynman diagrams. For that purpose, consider the
Hamiltonian H of interacting electrons,

H ≡ H0 + V =
∑
k,σ

(ε(k)− µ) c†kσ ckσ +
∑
k,k′,q
σ,σ′

V σ,σ′

q c†k+q,σ c
†
k′−q,σ′ ck′σ′ ckσ.

We want to calculate the single-particle Matsubara Green’s function Gkσ(iω) by treat-
ing the potential V as a perturbation. According to Dyson’s equation,

Gkσ(iω) = G0
kσ(iω) +G0

kσ(iω)Σkσ(iω)Gkσ(iω),

we have to calculate the self energy Σkσ(iω). Restricting to 1st order in V this
corresponds to the evaluation of the two Feynman diagrams

.

a) General case:

Use the Feynman rules to show that the first diagram (Hartree term) yields

Σ
(H)
kσ (iω) =

(
V σ,σ

q=0 + V σ,−σ
q=0

)∑
k′

f(ε(k′)− µ)

and the second one (Fock term) yields

Σ
(F)
kσ (iω) = −

∑
q

V σ,σ
q f(ε(k− q)− µ).

Hint: Recall that for a holomorphic function F (z)

1

β

∑
ω

F (iω) = −
∮
C1

dz

2πi
f(z)F (z) =

∮
C2

dz

2πi
f(z)F (z),

where C1 encloses only the poles of f(z) and C2 only those of F (z).

b) Coulomb interaction:
Consider the concrete example of a Coulomb interaction of a gas of free electrons
in three dimensions. The Fourier transform of the Coulomb potential is

V σ,σ′

q =

{
0 , q = 0

1
V

4πe20
q2

, q 6= 0
(e0: elementary electric charge).



Use the result from a) to obtain

Σkσ(iω) = −
∑
q

V σσ
k−q f(ε(q)− µ)

T→0
=

e20
2π
kF

(
2 +

k2
F − k2

kkF

ln

∣∣∣∣∣kF + k

kF − k

∣∣∣∣∣
)
.

Hint:
x∫

0

dy y ln

∣∣∣∣y − 1

y + 1

∣∣∣∣ = −x− 1

2

(
1− x2

)
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣
Feynman rules: (Matsubara representation)

1) Draw all connected, topologically distinct diagrams of order n.

2) Each vertex corresponds to V σσ′
q

ω, k, σ

ω ′, k ′− q, σ ′

ω, k
+ q, σ

ω
′ , k

′ , σ
′

= − 1

β
V σ,σ′

q .

3) Each line ω, k, σ corresponds to −G0
kσ(iω) =

−1

iω − ε(k) + µ
.

4) Each non-propagating line, and , gets a factor eiω0+

.

5) Each closed fermion loop gets an additional factor (−1).

6) All internal indices (momenta, spins, energies, ...) have to be summed over.

7) For the Coulomb interaction, we have energy conservation at the vertex, i.e.,
δω′+ω′′ = δω′′′+ω′′′′


