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Condensed Matter Field Theory — WS09/10

Exercise 3

(Please return your solutions before Fr. 27.11. 12:00h)

3.1 Schrödinger, Heisenberg and Dirac picture (15 points)
To describe time dependences of physical systems one can choose between three equiv-
alent pictures. In this exercise we want to study these three pictures and we will derive
the equations of motions for the operators and the states depending on the represen-
tation. In the end we will derive an expression for the time evolution operator in the
Dirac picture which will serve as a starting point for the diagrammatical treatment
of many body physics.

In the Schrödinger picture the states evolve with time, while the operators are
time-independent. The equation of motion reads

i~∂t|ΨS(t)〉 = Ht|ΨS(t)〉 .

where the subindex t denotes the explicit time dependence of the Hamiltonian. The
time-evolution operator is defined by

|ΨS(t)〉 = US(t, t0)|ΨS(t0)〉 ,

with US unitary, US(t0, t0) = 1 and US(t, t0) = US(t, t′)US(t′, t0).

(a) Derive the equation of motion for the time-evolution operator and solve it to
show that

US(t, t0) = 1 +

∞
∑

n=1

(

−
i

~

)n ∫ t

t0

dt1

∫ t1

t0

dt2 . . .

∫ tn−1

t0

dtn Ht1 . . .Htn

holds. Where t0 ≤ tn ≤ tn−1 ≤ . . . ≤ t1 ≤ t. What does the time evolution
operator look like for a closed system, i.e. ∂H

∂t
= 0 ?

In order to rewrite the expression for US(t, t0) we introduce Dyson’s time-ordering
operator:

TD(A(t1)B(t2)) =

{

A(t1)B(t2) , t1 > t2
B(t2)A(t1) , t2 > t1

With the help of figure 1 one can see that:

∫ t

t0

dt1

∫ t1

t0

dt2 Ht1Ht2 =

∫ t

t0

dt2

∫ t

t2

dt1 Ht1Ht2 . (1)



Figure 1: Transformation of the time ordering operator.

(b) Use relation (1) to show that
∫ t

t0

dt1

∫ t1

t0

dt2 Ht1Ht2 =
1

2!

∫ t

t0

∫ t

t0

dt1dt2 TD(Ht1Ht2)

holds and generalize this to

US(t, t0) =

∞
∑

n=0

1

n!

(

−
i

~

)n
t

∫

t0

dt1

t
∫

t0

dt2 · · ·

t
∫

t0

dtnTD (Ht1 . . .Htn) .

In the Heisenberg picture the time-dependence is shifted to the operators and the
states are constant in time. The state in Heisenberg representation is defined by

|ΨH〉 = |ΨS(t0)〉 ,

t0 arbitrarily fixed.
Since |ΨS(t)〉 = US(t, t0)|ΨS(t0)〉 it holds that |ΨH〉 = U−1

S (t, t0)|ΨS(t)〉.

(c) On condition that 〈ΨH |AH(t)|ΨH〉
!
= 〈ΨS(t)|AS|ΨS(t)〉 holds for an arbitrary

operator A deduce the relation between AH(t) and AS. Derive the equation of
motion for AH(t).

The Dirac picture is a mixed representation. Starting point is the Hamiltonian

H = H0 + Vt ,

where H0 is for the free system and Vt describes a (in general) time-dependent inter-
action. For this picture we make the following ansatz:

|ΨD(t0)〉 = |ΨS(t0)〉 = |ΨH〉

|ΨD(t)〉 = UD(t, t′)|ΨD(t′)〉

|ΨD(t)〉 = e
i

~
H0(t−t′)|ΨS(t)〉



Note that without interaction (Vt = 0) the Dirac picture becomes the Heisenberg
picture.

(d) Derive the relation between UD(t, t′) and US(t, t′).

(e) Provided that 〈ΨD(t)|AD(t)|ΨD(t)〉
!
= 〈ΨS(t)|AS|ΨS(t)〉 derive AD(t) in depen-

dence of AS and write down the equation of motion for AH . You will see that
the dynamics of the operators is completely determined by H0.

(f) Derive the equation of motion for the state in Dirac representation and show
that the dynamics of the states is given by Vt.

(g) Finally, derive the equation of motion for UD(t, t′) and solve it to show that

UD(t, t′) =
∞

∑

n=0

1

n!

(

−
i

~

)n
t

∫

t′

. . .

t
∫

t′

dt1 . . . dtn TD(V D
t1

. . . V D
tn

) (2)

holds.

3.2 Perturbative expansion of the causal Green’s function (15 points)
The time evolution operator (2) is ordered by powers of the interaction V . In the
following we will use it to construct the ground state of the interacting system out
of the unique groundstate of the free system |η0〉. To do so, we will introduce an
artificial time dependence to switch on the interaction adiabatically

Hα = H0 + V e−α|t| ; α > 0,

and perform the limit α → 0 in the end. The time evolution operator becomes

UD
α (t, t0) =

∞
∑

n=0

1

n!

(

−i

~

)n
t

∫

t0

· · ·

t
∫

t0

dt1 · · ·dtne
−α(|t1|+···|tn|)TD{V

D(t1) · · ·V
D(tn)}.

(3)
The eigenstate of the interacting system will be time independent in the limit α → 0
and t → −∞. For T = 0 this state will differ form |η0〉 only by a phase factor which
can be set to 1. The Gell-Mann-Low-Theorem1 now states, that if the state

|Ẽ0〉 = lim
α→0

UD
α (0,−∞)|η0〉

〈η0|UD
α (0,−∞)|η0〉

, (4)

exists in all orders of perturbation theory it is an exact eigenstate of H.

(a)* Prove the Gell-Mann-Low-Theorem.

It is not for sure that there will be no ’crossover’ of the states during evolution in
time. Therefore we make the additional assumption that there will be no crossover
and |E0〉 is indeed the groundstate of the interacting system.
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(b) The state

|Ẽ ′
0〉 = lim

α→0

UD
α (0, +∞)|η0〉

〈η0|UD
α (0, +∞)|η0〉

,

which evolves from the free groundstate backward in time is identical to (4).
Why is this so?

The Green’s function for T = 0 is an expectation value of Heisenberg operators in
the normalized groundstate |E0〉.

(c) Show that

〈E0|A
H(t)|E0〉 = lim

α→0

〈η0|U
D
α (∞, t)AD(t)UD

α (t,−∞)|η0〉

〈η0|UD
α (∞, t), UD

α (t,−∞)|η0〉
, (5)

holds and derive a similar expression for

〈E0|A
H(t)BH(t′)|E0〉. (6)

where AH(t) and BH(t′) are operators in the Heisenberg picture.

In the definition of the causal Green’s function (8) Wick’s time ordering operator
Tǫ occurs. In contrast to Dyson’s time ordering operator TD, Tǫ gives rise to an
additional factor of ǫ = ±1 for each commutation of two operators. Nevertheless,
since the interaction operator for fermions always contains an even number of creation
or annihilation operators, we can set

Tǫ = TD.

(d) Plug the time evolution operator (3) into (5) and (6). Show that

〈E0|A
H(t)|E0〉 = lim

α→0

1

〈η0|Sα|η0〉

∞
∑

n=0

1

n!

(

−i

~

)n
∞

∫

−∞

· · ·

∞
∫

−∞

dt1 · · · dtne−α(|t1|+···|tn|)

· 〈η0|Tǫ {V (t1) · · ·V (tn)A(t)} |η0〉 (7)

holds and that the causal Green’s function can be written as

iGc
AB(t, t′) =〈E0|Tǫ

{

AH(t)BH(t′)
}

|E0〉 (8)

= lim
α→0

1

〈η0|Sα|η0〉

∞
∑

n=0

1

n!

(

−i

~

)n
∞

∫

−∞

· · ·

∞
∫

−∞

dt1 · · ·dtne
−α(|t1|+···|tn|)

· 〈η0|Tǫ {V (t1) · · ·V (tn)A(t)B(t′)} |η0〉.

where we have dropped the index for operators in the Dirac picture for simplic-
ity.

It will turn out that the expectation values of the free groundstate will lead
to the free causal Green’ function G

c,0
AB(t, t′) which is simple to calculate (see

exercise 2.1). Hereby it is possible to express the full causal Green’s function
Gc

AB(t, t′) in a complicated way in terms of G
c,0
AB(t, t′) and the interaction po-

tential V (see Wick’s theorem, Feynman diagrams).



Hints:

(a)* Consider
(H− η0)U

D
α (0,−∞)|η0〉 =

[

H, UD
α (0,−∞)

]

−
|η0〉

and use the equation of motion for a Dirac operator to convert the commutator
into a time derivative. Then use partial integration to get rid of the time
derivative. Extract a coupling constant λ out of the interaction V (t) = λṼ (t)
and adjust the summation index in both summands stemming from the partial
integration to show that

(H− η0)U
D
α (0,−∞)|η0〉 = αi~λ

∂

∂λ
UD

α (0,−∞)|η0〉

holds. Finally take the limit α → 0.

(c) Write AH(t) and BH(t′) in Dirac representation and introduce the scattering
matrix Sα = UD

α (∞,−∞).

(d) Use (7) as a starting point. Consider a time t with

t1, t2, . . . , tn > t

t̄1, t̄2, . . . , t̄m < t

to split up

Tǫ{. . . } = Tǫ{V (t1) · · ·V (tn)}A(t) Tǫ{V (t̄1) · · ·V (t̄m)}.


