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Chapter 1
Relativisti
 Quantum Me
hani
s
1.1 Introdu
tory remarks1.1.1 Spe
ial relativity and Lorentz transformationsEinstein 1905:Postulate that the velo
ity of light (c ≈ 3 · 108m

s

) is invariant in allinertial referen
e frames.Mathemati
al formulation: Minkowski spa
e-timeWhen we spe
ify an instant of time t and a point (x, y, z) in spa
e, we are de�ninga point in spa
e-time. We denote the 
oordinates of su
h a point in spa
e-timeby (x0, x1, x2, x3), where
x0 ≡ ct, x1 ≡ x, x2 ≡ y, x3 ≡ z. (1.1)These 
oordinates are the 
omponents of a four-dimensional ve
tor in spa
e-time.To shorten the notation we label su
h a ve
tor by Greek indi
es µ, ν, so that weget
xµ = (x0, ~x) = (x0, x1, x2, x3). (1.2)7



8 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSThe spa
e-time metri
 tensor (Minkwoski metri
) is given by
gµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 . (1.3)This metri
 de�nes Minkowski spa
e. Later on we will see whi
h 
onsequen
esthe Minowski metri
 implies. Further more we distinguish between two 
lasses ofve
tors. Ve
tors like xµ are 
alled 
ontravariant and those like xν are known as
ovariant ve
tors. Contravariant indi
es are pla
ed as supers
ripts and 
ovariantindi
es as subs
ripts. The Minkowski metri
 determines how to get a 
ovariantve
tor of a 
ontravariant one, and vi
e versa:

xµ =

3∑

ν=0

gµνxν xµ =

3∑

ν=0

gµνx
ν (1.4)Using the Minkowski metri
 expli
itly we obtain that a 
ovariant ve
tor xµ (de-rived from a 
ontravariant ve
tor xν) has negative spa
e 
omponents. To be more
ompa
tly we use the Einstein summation 
onvention, i.e. Greek indi
es whi
happear twi
e (on
e as a 
ontravariant index in supers
ript and on
e as a 
ovariantindex in subs
ript) are summed over.

xµ = gµνx
ν (1.5)So Greek indi
es µ, ν = 0, 1, 2, 3 denote the 
oordinates of a four-dimensionalve
tor in Minkwoski spa
e, while Roman indi
es a, b = 1, 2, 3 denote the 
oordi-nates of a three-dimensional ve
tor in eu
lidian position spa
e. To 
omplete thestru
ture of Minkowksi spa
e, we de�ne the s
alar produ
t of two four-ve
tors aµand bµ:

aµbµ = aµb
µ = a0b0 − ~a ·~b, (1.6)where ~a · ~b denotes the usual dot produ
t between three-ve
tors. Now we 
an
onsider the geometri
al stru
ture of Minkowski spa
e, i.e. we take a look at thenorm of a four-ve
tor aµ:

aµaµ =
(
a0
)2 − |~a|2 (1.7)



9Here we see that the norm is not positive-de�nite. Four-ve
tors 
an be 
lassedinto three types, depending on the sign of their norm:
aµaµ =






< 0 aµ is spa
e-like
= 0 aµ is light-like
> 0 aµ is time-like (1.8)The metri
 tensor de�nes how to 
al
ulate the s
alar produ
t and hen
e, thelength of a ve
tor in Minkowski spa
e:

s2 = aµa
µ = aµgµνa

ν = (ct)2 − |~a|2 (1.9)Often another parametrization, the eigentime τ of a parti
le is used:
τ =

s

c
=
√

(ct)2 − |~x|2 (1.10)Sin
e in the frame where the parti
le is at rest in the origin (~x = const. ≡ 0), i.e.in the parti
le's own frame, τ is by de�ntion the time 
oordinate of the parti
le(we will see that τ is a Lorentz invariant quantity).With these de�nitions, Einstein's postulate 
an be formulated in a mathemati
alway.Transformations between referen
e frames S, S ′ moving with di�erent velo
ities(= Lorentz transformations) leave the length s of any 4-ve
tor on the light 
one(i.e. aµaµ = 0) in Minkowski spa
e invariant.Proof:Be
ause of general 
onsisten
y arguments (homogeneity of Minkowski spa
e), nopoint in Minkowski spa
e should have more spe
ial properties than any otherpoint. This means in parti
ular:Fundamental postulate of spe
ial relativityThe length of any 4-ve
tor (with respe
t to the metri
 g) is invariant undertransformations from one inertial referen
e frame to another.
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x

ct

world line of (accelerated)

light cone
(world line of a photon)
x=ct

world line of a free, massive
particle: v=x/t<c

massive particle: |slope|>1 alwaysFigure 1.1: Classi�
ation of 4-ve
torsThe Lorentz transformations L des
ribe the relationship between the 
oordinates
xµ of two referen
e frames whi
h move relative to ea
h other. Assume that thereferen
e frame S ′ moves with velo
ity −~v relative to the referen
e frame S (~v‖x̂without loss of generality). The Lorentz transformation L 
an be derived fromthe 
ondition s2 =invariant. One �nds that only the primed 
oordinates x′0 and
x′1 are 
hanged while x2 and x3 are un
hanged. If we set

γ =
1√

1 −
(
v
c

)2 , β =
v

c
(1.11)the transformation L 
an be written as:

(Lµν ) =




γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1


 (1.12)It follows thatdet(L) = ±1. (1.13)The sign of the determinant leads to a 
lassi�
ation of the Lorentz transforma-tions.



11det(L) = +1 L0
0 ≥ 1 → proper ortho
hronous Lorentz transformation(no time reversal and no spa
e inversion)det(L) = −1 L0
0 ≥ 1 → improper ortho
hronous Lorentz transformation(no time reversal)det(L) = +1 L0

0 ≤ −1 → proper nonortho
hronous Lorentz transformation(no spa
e inversion)det(L) = −1 L0
0 ≤ −1 → proper ortho
hronous Lorentz transformation1.1.2 Relativisti
 generalization of quantum me
hani
sThe S
hrödinger equation

i~
∂

∂t
ψ(~x, t) =

(
− ~

2

2m
∆ + V (~x)

)
ψ(~x, t) (1.14)is obviously not relativisti
ally 
ovariant (form invariant) sin
e it is of �rst orderin the time variable x0, but se
ond order in the position variable xa, a = 1, 2, 3.Hen
e a relativisti
 generalization of the wave equation is ne
essary. As willbe seen in more detail in the 
ourse of the le
ture, the 
ombination of spe
ialrelativity and quantum me
hani
s has two important 
onsequen
es:1. Relativisti
ally, the mass - and hen
e the parti
le number - are not 
on-served any longer, but mass 
an be transformed into energy and vi
e versa,if there are intera
tions present. Therefore, any relativisti
 quantum the-ory must be a theory of variable parti
le number and obtains the 
hara
terof a �eld theory (i.e. a theory with in�nite number of degrees of freedomdue to in�nite parti
le number).

→ Number of parti
les as a new quantum number 
hara
terizing a quan-tumstate → se
ond quantization
→ Parti
les 
an be 
reated and destroyed by intera
tion → parti
les andanti-parti
lesThe non-
onservation of the parti
le number re
urs also in open many-parti
le systems at non-relativisti
 energy, for instan
e in super
ondu
torswhere ele
trons form pairs and disappear in the super
ondu
ting 
onden-sate. Therefore, �eld theories for 
ondensed matter systems use similarmethods as relativisti
 �eld theories.



12 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS2. The motion of spin as an internal degree of freedom analogous (but notequivalent) to angular momentum follows ne
essarily from the 
ombinationof relativity and quantum me
hani
s.In non-relativisti
 quantum me
hani
s we 
ould to a large part use experimentalresults to obtain the S
hrödinger equation (probabilisti
 nature of quantum me-
hani
s, interferen
e → wave fun
tions, 
orresponden
e prin
iple). In relativisti
quantum me
hani
s this is mu
h less the 
ase, and we have to resort more andmore to symmetry and 
onsisten
y arguments, as will be seen below. This is ageneral feature (and strength) of modern theoreti
al physi
s.1.2 Spin 0 bosons: Klein-Gordon equationWe seek a wave equation (at �rst for a free parti
le) whi
h has no internal degree offreedom (spin 0). The state of the parti
le must be des
ribed by a one-
omponentwave fun
tion (one-dimensional representation of the rotation group), i.e. it mustalso be a Lorentz s
alar ψ(xµ).For a free parti
le the relativisti
 energy-momentum relation is
E =

√
~p2c2 +m2c4. (1.15)Plugging this into the S
hrödinger equation (1.14) one would obtain

i~
∂

∂t
ψ =

√
−~2c2~∇2 +m2c4ψ, (1.16)where we have used

~p =
~

i
~∇. (1.17)This form is problemati
, be
ause it involves gradients of the wave fun
tion ofarbitrary order, as seen by expanding the square root. But this implies a non-lo
al �eld theory, whi
h would violate 
ausality. Therefore we make the Ansatzthat the equation above is quadrati
 in E:

−~
2 ∂

2

∂t2
ψ =

(
−~

2c2~∇2 +m2c4
)
ψ (1.18)



1.2. SPIN 0 BOSONS: KLEIN-GORDON EQUATION 13This is the Klein-Gordon equation. Using the notation
∂µ =

∂

∂xµ
∂µ =

∂

∂xµ
, (1.19)where xµ = (ct, x1, x2, x3) and xµ = (ct, x1, x2, x3) = (ct,−x1, −x2, −x3), we
an rewrite the Klein-Gordon equation in a expli
itly 
ovariant form. Thereforewe write

i~ ∂
∂(ct)

= i~ ∂
∂x0 = i~∂0

i~ ∂
∂xa = −i~∂a, a = 1, 2, 3

}
pµ −→ i~∂µ = i~

(
∂

∂(ct)

−~∇

) (1.20)and obtain the relativisti
ally 
ovariant wave equation:
−~

2 ∂2

∂(ct)2
ψ(~x, t) = (−~

2 ~∇2 +m2c2)ψ(~x, t) (1.21)
⇔

[
∂µ∂

µ +
(mc

~

)2
]
ψ(xµ) = 0 (1.22)The operator

2 := ∂µ∂
µ = ∂2

0 − ~∇2 (1.23)is known as the d'Alembert operator whi
h is a s
alar under Lorentz transforma-tion. The fa
tor mc
~

is the inverse Compton wave length.1.2.1 Free solutions of the Klein-Gordon equation -Con
ept of antiparti
lesThe free Klein-Gordon equation has the plane-wave solutions
ψ(~x, t) = exp

(
− i

~
(Et− ~p~x)

)
= exp

(
− i

~
pµx

µ

)
, (1.24)with

E = ±
√
~p2c2 + (mc2)2. (1.25)For a given momentum ~p there are always two solutions with equal, but oppositein sign energies. The solution with negative energy seems not to be meaningful



14 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSfor a free parti
le, sin
e rest mass and kineti
 energy are both non-negative. Anarbitrary solution of the Klein-Gordon equation 
an be written as a 4-dimensionalFourierintegral (~kµ = pµ)
ψ(xµ) =

∫
d4k
√

2π
4 δ

4

(
kµk

µ −
(mc

~

)2
)
A(kµ)e−ikµxµ

. (1.26)Where A(kµ) is arbitrary, i.e. the solutions with negative energy k0 < 0 
annotbe dis
arded.Re-interpretation:We 
hoose always E = +
√
~p2c2 + (mc2)2 > 0 and the solutions:

ψ(+)(~x, t) = e−
i
~
(Et−~p·~x) (1.27)

ψ(−)(~x, t) = e−
i
~
(−Et−~p·~x) = e−

i
~
(E(−t)−~p·~x) (1.28)The solution with negative energy 
an be seen as that of a parti
le with positiveenergy propagating ba
kward in time. A parti
le propagating ba
kward in timeis 
alled antiparti
le. The 
on
ept of parti
les and antiparti
les will be developedfurther later on.Remark:The existen
e of E < 0 solutions is a 
onsequen
e of se
ond order in time deriva-tives. The wave equation must be of se
ond order in ∂/∂~x, sin
e the kineti
term must be ∼ O(~p2) (more pre
isely: even order in ~p), in order to ful�ll spa
einversion symmetry (parity). The relativisti
 equation must therefore also beof se
ond order in ∂/∂(ct). The relativisti
 formulation ne
essarily implies theexisten
e of antiparti
les.1.2.2 Continuity equation: Violation of parti
le number
onservation, 
onservation of energyIn order to derive a 
ontinuity equation des
ribing the 
onservation of the quan-tum me
hani
al probability, one must again observe that the Klein-Gordon equa-tion is of se
ond order in time. Re
all that the probability density for theS
hrödinger equation is

ρ = ψ∗ψ (1.29)



1.2. SPIN 0 BOSONS: KLEIN-GORDON EQUATION 15and the probability 
urrent is
~ =

~

2mi

(
ψ∗~∇ψ − ψ~∇ψ∗

)
. (1.30)They obey the 
ontinuity equation

∂

∂t
ρ+ ~∇ · ~ = 0. (1.31)Now we determine the 
orresponding expressions for the Klein-Gordon equation.Multiplying the Klein-Gordon equation (1.22) from the left with ψ∗ we get

ψ∗
(
∂µ∂

µ +
(mc

~

)2
)
ψ = 0. (1.32)Taking the 
omplex 
onjugate leads to

ψ

(
∂µ∂

µ +
(mc

~

)2
)
ψ∗ = 0. (1.33)By 
al
ulating the di�eren
e of these equations we �nally get

∂µ (ψ∗∂µψ − ψ∂µψ∗) = 0, (1.34)whi
h 
an be written in a more familiar way as
∂

∂t

[
i~

2mc2

(
ψ∗ ∂

∂t
ψ − ψ

∂

∂t
ψ∗
)]

︸ ︷︷ ︸
ρ

+~∇ · ~

2mi

[
ψ∗~∇ψ − ψ~∇ψ∗

]

︸ ︷︷ ︸
~

= 0. (1.35)While the 
urrent ~ has the well known form, the probability density ρ identi�edfrom the 
ontinuity equation 
ontains a time derivative, again a 
onsequen
e ofthe se
ond-order-in-time nature of the Klein-Gordon equation. As a 
onsequen
e
ρ is in general not positive de�nite! For this reason, the Klein-Gordon equationwas at �rst reje
ted, sin
e it did not seem to give positive probability. However,by Fourier transforming ρ(~x, t) in time for plane waves, one obtains:

ρ(ω, ~x) =
~ω

mc2
ψ∗ψ (1.36)This means that ρ must be interpreted as an energy density (in units of therest mass), rather than a parti
le density. This is in a

ordan
e to the generalobservation that parti
le numbers are not 
onserved in relativisti
 theories, butrather the total energy.



16 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS1.3 Spin 1
2
fermions: Dira
 equation1.3.1 Formulation of the Dira
 equation and Dira
 matri
esThe Klein-Gordon equation was abandoned at �rst, be
ause it seemed to yieldnegative probability density. The interpretation as an energy density 
ame onlylater, after the 
on
ept of antiparti
les had been introdu
ed by Dira
 (�rst forthe 
ase of spin 1

2
fermions). In order to guarantee a positive de�nite probabilitydensity, we now seek a wave equation whi
h is of �rst order in time and whi
his relativisti
ally 
ovariant (without spin in mind yet!). It must still obey therelativisti
 energy-momentum relation

Ê =
√
p̂2c2 + (mc2)2 (1.37)However,1. the square root must be avoided (
ausility) and2. the wave equation must be �rst order in the spa
e derivatives as well, inorder to be 
ovariant.Both requirements 
an be a
hieved by making the Ansatz that the squared totalenergy of a parti
le 
an be written as a 
omplete square of a term involving themomentum only in �rst order. Hen
e this term must also be linear in the restenergy (Dira
). This means

E2 = c2~p2 + (mc2)2 !
= (cα · ~p+ βmc2)2, (1.38)with ~α = (αx, αy, αz), β (spa
e independent). ~α, β must be determined su
hthat the equality is ful�lled:

c2(p2
x + p2

y + p2
z) +m2c4 = c2(α2

xp
2
x + α2

yp
2
y + α2

zp
2
z) + β2m2c4 (1.39)

+c2pxpy(αxαy + αyαx) + c2pypz(αyαz + αzαy)

+c2pzpx(αzαx + αxαz) +mc3[px(αxβ + βαx)

+py(αyβ + βαy) + pz(αzβ + βαz)]



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 17It follows that αx, αy, αz, β 
annot be numbers, but must be matri
es, the Dira
matri
es, whi
h obey the relations:

α2
i = β2 = 1

αiαj + αjαi =: [αi, αj]+ = 0

αiβ + βαi =: [αi, β]+ = 0

i = x, y, z (1.40)
i, j = x, y, z (1.41)
i = x, y, z (1.42)i.e. all α, β anti
ommute among ea
h other, or in 
ompa
t form:Algebra of the Dira
 matri
es

[Mµ,Mν ]+ = 2δµν1 (1.43)with
Mµ = β, αxαyαz. (1.44)Properties and determination of the Dira
 matri
es:1. αx, αy, αz, β are hermitean, in order for the Hamiltonoperator
H = c~α · ~p+ βmc2 to be hermitean.2. All eigenvalues of Mµ are λ = ±1.Proof: (for µ = ν)

(Mµ)2 = 1 (proje
tors!) (1.45)in eigenbasis of Mµ ⇒ λ = ±1 (1.46)
23. The tra
e of Mµ vanishes:tr(Mµ) = 0, µ = 0, 1, 2, 3 (1.47)



18 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSProof: (for µ 6= ν)
MµMν = −MνMµ (1.48)

⇔MµMµ
︸ ︷︷ ︸

1

Mν = −MµMνMµ (1.49)
⇒ tr(Mν) = −tr(MµMνMµ) (1.50)

= −tr(MνMµMµ
︸ ︷︷ ︸

=1

) (1.51)
= −tr(Mν) (1.52)
= 0 (1.53)

24. The dimension d of the matri
es αx, αy, αz, β is even.Proof: (dire
tly from 2. and 3.)
0 = tr(Mµ) =

d∑

i=1

λi =

d∑

i=1

(±1) ⇔ d is even (1.54)
25. The αx, αy, αz, β must be at least 4-dimensional (d ≥ 4), sin
e for d = 2there are exa
tly three hermitean Pauli matri
es obeying the Dira
 algebra,and this set 
annot be enlarged to in
lude a fourth.The Dira
 matri
es are not uniquely determined by their algebra, but 
an be
hosen for d = 4 as

~α =

(
0 ~σ

~σ 0

)
, β =

(
1 0

0 −1

) (1.55)where ~σ = (σx, σy, σz) and
σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

) (1.56)



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 19are the Pauli matri
es. This is the standard representation of the Dira
 matri
es

~α, β. Using the 
orresponden
e prin
iple, we now have the relativisti
 Dira
equation:
i~
∂

∂t
ψ(xµ) = (c~α ·~p+βmc2)ψ(xµ) (1.57)with

~p = −i~~∇. (1.58)Sin
e αx, αy, αz, β are 4-dimensional matri
es, the ψ(xµ) must be a 4-dimensionalve
tor in an abstra
t representation spa
e (in general: d-dimensional, d even).
• ψ(xµ) is 
alled Dira
 spinor
• The fa
t that ψ(xµ) is a d-dimensional obje
t with d even implies that anyrelativisti
 parti
le des
ribed by the Dira
 equation has a two-fold internaldegree of freedom (i.e. 
omes in two �avors). This degree of freedom willbe identi�ed with parti
les and antiparti
les.The remaining two of the 2×2 = 4 = d degrees of freedom will be identi�ed withspin. The existen
e of parti
les/antiparti
les as well as of spin follows from therelativisti
 formulation. Higher dimensional representation of the Dira
 matri
esare possible:
d = 2 · (2S + 1) even (1.59)The fa
tor 2 o

urs be
ause of the parti
le/antiparti
le 
on
ept and S is the spin.This shows that the Dira
 spinors are not 4-ve
tors.1.3.2 Covariant form of the Dira
 equationThe standard representation of the Dira
 equation has non-trivial transformationproperties under Lorentz transformations, sin
e it represents the total energy of
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le, whi
h is the 0-
omponent of a Minkowski 4-ve
tor. It is 
onvenient towrite the Dira
 equation
i~
∂

∂t
ψ = (c~a · ~p+ βmc2)ψ (1.60)in expli
itly 
ovariant form. In order to give it a de�nite transformation behavior,we multiply by 1

c
β

(−i~β∂0ψ + i~βαi∂iψ +mc)ψ = 0 (1.61)and de�ne
γ0 = β (1.62)
γi = βαi, i = 1, 2, 3. (1.63)(Here α, β obey the Dira
 algebra, but do not need to be determined expli
itly)
[
−iγµ∂µ +

mc

~

]
ψ = 0 (1.64)Sin
e mc

~
is a Lorentz s
alar (m is the invariant rest mass), so must

γµ∂µ = γµ
∂

∂xµ
(1.65)be. Therefore γµ =

(
β

β~α

) is a 
ontravariant 4-ve
tor, i.e. transforms un-der Lorentz transformation as γ′µ = Lµνγ
ν , and the equation above is expli
itlyLorentz 
ovariant.Shorthand notation:

γµuµ = γ0u0 − ~γ · ~u =: /u (u slash) (1.66)
(
−i/∂ +

mc

~

)
ψ = 0 (1.67)
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 equation in an expli
itly 
ovariant form.Properties of the γ matri
es (Dira
 matri
es):
γ0 = β is hermitean and (γ0)2 = 1 (1.68)

γi, i = 1, 2, 3 are antihermitean and (γi)2 = −1 (1.69)Proof:
(γi)† = (βαi)† = αiβ = −βαi = −γi (1.70)
(γi)2 = βαiβαi = −ββαiαi = −1 (1.71)

2It follows that the Dira
 γ matri
es obey the algebra:
[γµ, γν ]+ = 2gµν1 Dira
 algebra (1.72)In the standard representation of the ~a, β matri
es the γ matri
es read
γ0 =

(
1 0

0 1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 (1.73)An equivalent representation is obtained by the transformation

γ̃µ = AγµA−1, (A non-singular, arbitrary) (1.74)sin
e this leaves the Dira
 algebra valid. Hen
e the 
omponents of ψ are repre-sentation dependent and are not simple 4-ve
tors.1.3.3 Continuity equation for Dira
 spinorsDira
 spinor:
ψ =




ψ1...
ψ4


 , ψ† = (ψ∗

1 , . . . , ψ
∗
4) (1.75)
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ontinuity equation for the density
ρ = ψ† · ψ =

4∑

i=1

ψ∗
iψi, (1.76)whi
h involves

∂

∂t
(ψ†ψ) =

(
∂

∂t
ψ†
)
ψ + ψ†

(
∂

∂t
ψ

)
. (1.77)At �rst we 
onsider the Dira
 equation

i~

(
∂

∂t
ψ

)
= (−i~c~α · ~∇ + βmc2)ψ (1.78)and multiply by ψ† from the left side and obtain

i~ψ†
(
∂

∂t
ψ

)
= (−i~cψ†~α · ~∇ + βmc2ψ†)ψ. (1.79)Now we 
onsider the Hermitean 
onjugate of the Dira
 equation and multiply by

ψ from the right side:
−i~

(
∂

∂t
ψ†
)
ψ = i~

(
~∇ψ†

)
· c~αψ +mc2ψ†βψ (1.80)Cal
ulating the di�eren
e of these equations one gets:

i~
∂

∂t

(
ψ†ψ

)
= −i~

[
ψ†(c~a) · (~∇ψ) + (~∇ψ†) · (c~α)ψ

] (1.81)
= −~∇ ·

(
ψ†(c~a)ψ

) (1.82)This leads to the 
ontinuity equation we aimed at:
∂

∂t
ρ+ ~∇ · ~ = 0 or ∂µj

µ = 0, (1.83)where
(jµ) =

(
cρ

~

)
, (∂µ) =

(
∂

∂(ct)
∂
∂~x

)
. (1.84)With

ρ = ψ†ψ

~ = ψ†(c~α)ψ = ~vρ

~v := c~α

Dira
 density (1.85)Dira
 
urrent density (1.86)velo
ity operator in Dira
 theory (1.87)
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e the Dira
 equation holds in any inertial referen
e frame (relativisti
 E-prelation), so does the 
ontinuity equation. Hen
e, jµ is indeed a 
ontravriant4-ve
tor, i.e. transforms a

ording to

j′
µ

= Lµνj
ν . (1.88)The dis
ussion up to now has shown that the relativisti
 formulation of quantumme
hani
s ne
essarily implies a fundamental reformulation of the wave equation.Two possibilities:1. The wave equation is se
ond order in time, implying

• positive and negative energy solutions −→ parti
le/ antiparti
le
• non-
onservation of parti
le number, 
onservation of energy−→ bosons2. The wave equation is �rst order in time, but multi
omponent wave fun
tion,implying
• spin, parti
les/ antiparti
les
• 
onservation of parti
le number −→ fermions1.3.4 Lorentz 
ovarian
e of the Dira
 equation: Lorentztransformation of the Dira
 spinors ψWe have derived the Dira
 equation as a representation of the relativisti
 energy-momentum relation

E2 = p2c2 + (mc2)2 (1.89)using the 
orresponden
e prin
iple and postulating an equation linear in E/c =

i~ ∂/∂(ct) and ~p = −i~~∇. The E−~p relation is just an expression of the squaredlength of the energy-momentum 4-ve
tor
pµp

µ =

(
E

c

)2

− ~p2 = (mc)2, (1.90)whi
h is invariant under Lorentz transformations. Therefore, the Dira
 equationis by 
onstru
tion 
ovariant (shape invariant) under Lorentz transformations.



24 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSWe now 
al
ulate what this implies for the transformation of the Dira
 spinor ψunder Lorentz transformation:Although ψ is a 4-
omponent obje
t, it is not a 4-ve
tor in Minkowski spa
e.This is obvious, be
ause there exist higher, even-dimensional representations ofthe γ matri
es (see above). Rather, ψ is a spinor in an abstra
t representationspa
e, as will be seen later.Therefore, the transformation behaviour of ψ under Lorentz transformation isnot a priori obvious.Without restri
ting the generality we 
onsider only spe
ial, ortho
hrone Lorentztransformations (no spa
e inversion, no time inversion, without translations frominertial referen
e frame I to referen
e frame I'):
xµ′ = Lµνx

ν x′ = Lx (1.91)(The matrix L is the representation of L in Minkowski spa
e.)The Dira
 ψ transforms under L a

ording to a linear transformation S(L):
ψ′(x′) = S(L)ψ(x) (1.92)

= S(L)ψ(L−1(x′)) (1.93)S(L) is the representation of L in the 4-dimensional spinor spa
e (i.e. S(L) is a
4 × 4 matrix in spinor spa
e).Lorentz 
ovarian
e of the Dira
 equation:

(
−iγµ∂µ +

mc

~

)
ψ(x) = 0 in frame I (1.94)

(
−iγµ∂′µ +

mc

~

)
ψ′(x′) = 0 in frame I ′ (1.95)The above o

urring partial derivatives are shorten by

∂µ =
∂

∂xµ
and ∂′µ =

∂

∂xµ′
. (1.96)The γ matri
es 
an be 
hosen to be Lorentz invariant. This 
an be seen as follows:

γµ are determined by their algebra only up to a linear transformation,
γ̃µ = AγµA−1 (see above). (1.97)
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ording to

γµ′ = T (L)γµT−1(L). (1.98)Then we 
an always 
hoose in the referen
e frame a new basis representation γ̃′for the matri
es, su
h that:
γ̃′ = γµ ⇒ A = T−1(L) (1.99)

2Now we 
onsider the behavior of the 
ovariant derivative under Lorentz transfor-mation.
∂µ =

∂

∂xµ
=
∂xν ′

∂xµ
∂

∂xν ′
= Lνµ∂

′
ν (1.100)Whi
h 
an be easily performed sin
e:

xν ′ = Lνµx
µ (1.101)

∂xν ′

∂xµ
= Lνµ (1.102)In (1.71) we obtained between ψ and ψ′ the relation

S−1ψ′(x′) = ψ(x). (1.103)Plugging this into the Dira
 equation (1.73) one �nds that
(
−iγµLνµ∂′ν +

mc

~

)
S−1ψ′(x′) = 0. (1.104)By multiplying with S from the left side we get

−iSLνµγµS−1∂′νψ
′(x′) +

mc

~
ψ′(x′) = 0. (1.105)Lorentz 
ovarian
e, 
omparing equation (1.83) with (1.74), we have the 
onditionfor S(L):

SLνµγ
µS−1 = γν (1.106)or

S−1(L)γνS(L) = Lνµγ
µ (1.107)



26 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSDetermining the representation S(L) expli
itlyWe 
onsider in�nitesimal Lorentz transformations �rst. Representation in Minkwoskispa
e:
Lνµ = δνµ + ∆ωνµ, (1.108)where ∆ωνµ is in�nitesimal.Diagonal elements:

L0
0 = 1 (1.109)

Lab = cos(φ) rotation (1.110)
Lνν = cosh(φ) Lorentz boost (1.111)

⇒ Lνν = 1 +O(φ2) (1.112)O�-diagonal elements:
Lνµ ∼

{
sin(φ)

sinh(φ)

}
= O(φ), ν 6= µ (1.113)

⇒ ∆ωνν = O +O(φ2) (1.114)
(∆ωνµ) has at most 6 independent, non-zero elements to linear order in φ. Ea
hone generates an independent Lorentz transformation, 3 rotations, 3 Lorentzboosts in 3 spatial dimensions.Expansion of S(L) in powers of ∆ωνµ:

S = 1+ τ (1.115)
S−1 = 1− τ with τ in�nitesimal (1.116)Plugging this into equation (1.85) we �nd
(1− τ)γµ(1 + τ) = γµ + γµτ − τγµ +O(τ 2) (1.117)

= γµ + ∆ωµνγ
ν (1.118)

[γµ, τ ] = ∆ωµνγ
ν (1.119)
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[γµ, τ1 − τ2] = 0. (1.120)This yields
τ1 − τ2 = α · 1 withα ∈ R (1.121)

2Unique determination of τ : norm invarian
e
• S(L) must have the s
alar produ
t

ψ†(x)ψ(x) =
4∑

α=1

ψ∗
α(x)ψα(x) (1.122)in spinor spa
e, whi
h is invariant. (This implies that the density ρ =

ψ†(x)ψ(x) transforms only through the Lorentz 
ontra
tion of the 
oordi-nates x, and hen
e that ρ has the 
orre
t behavior under Lorentz transfor-mations.)Thus we �nddet(S) = 1, (1.123)up to an irrelevant phase fa
tor.
1 = det(S) = det(1+ τ) = det(1) + tr(τ) (1.124)

= 1 + tr(τ) +O(τ 2) (1.125)tr(τ) = 0 (1.126)The equations have the solutions
τ =

1

8
∆ωµν′g

ν′ν(γµγν − γνγµ) =
1

8
∆ωµν′g

ν′ν [γµ, γν] (1.127)



28 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSRepresentation of Lorentz transformation in Minkwoski and in Dira
 spa
e (in-�nitesimal transformation)
Lνµ = δνµ + ∆ωνµ (1.128)
S(L) = 1+

1

8
∆ωµν′g

ν′ν [γµ, γν ] (1.129)Finite Lorentz transformations
• Transformations in Minkwoski spa
e (4-ve
tors)A �nite Lorentz transformation, generated by the real tensor (ωνµ) 
anbe realized by N-times applying the in�nitesimal transformation

δνµ +
η

N
ωνµ, N → ∞ (1.130)(where η is a free parameter whi
h will be determined below).

Lνµ =

[
lim
N→∞

(
1 +

η

N
ω
)N]ν

µ

= (eηω)νµ (1.131)Example:Lorentz boost to a 
oordinate system moving in x dire
tion with velo
-ity −β = −v/c

ω =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 =: (τ 01)x 101 :=




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


 (1.132)
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(Lνµ) = 1 +

∞∑

k=1

1

k!
(ητx1)

k (1.133)
= 1 − 101 +

∞∑

k=0

1

(2k)!
η2k101 (1.134)

+
∞∑

k=0

1

(2k + 1)!
η2ki+1(τ 01)x

(Lνµ) = 1 − 101 + cosh(η)101 + sinh(η)(τ 01)x (1.135)
=




cosh(η) sinh(η) 0 0

sinh(η) cosh(η) 0 0

0 0 1 0

0 0 0 1


 (1.136)From this result we see that the parameter η of the transformation is relatedto v/c by

tanh(η) =
v

c
= β, (1.137)

cosh(η) = γ =
1√

1 −
(
v
c

)2 , (1.138)
sinh(η) = βγ. (1.139)

• Lorentz transformation of a Dira
 spinor
S(L) = lim

N→∞
[1+

η

N

1

8
(ωµν′g

ν′ν [γµ, γν]︸ ︷︷ ︸
(∗)

)]N (1.140)
= exp

(
η · 1

8
(ωµν′g

ν′ν [γµ, γν ])

) (1.141)[(∗) This produ
t is a 4×4 matrix in spinor spa
e and a s
alar in Minkowksispa
e℄



30 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSExample:Lorentz boost by −v/c in x dire
tion
ωµν′g

ν′ν [γµ, γν ] =







0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1







µν(1.142)
× [γµ, γν ]

= 4α (1.143)Where we have used



0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0







1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 =




0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


 (1.144)and

[γµ, γν ] = [γµ, γν]+ − 2γνγµ (1.145)
= 2gµν1− 2γνγµ (1.146)

[γ0, γ1] = −2γ1γ0 (1.147)
= −2

(
0 −σ1

σ1 0

)(
1 0

0 −1

) (1.148)
= −2

(
0 σ1

σ1 0

) (1.149)
= −2α1 (1.150)The transformation S(L) then be
omes here

S(L) = exp
(η

2
α1

) (1.151)
=

∞∑

k=0

1

(2k)!

(η
2

)2k

+
∞∑

k=0

1

(2k + 1)!

(η
2

)2k+1

α1 (1.152)
S(L) = cosh(η/2)1+ sinh(η/2)α1 (1.153)
S(L) =




cosh(η/2) 0 0 sinh(η/2)

0 cosh(η/2) sinh(η/2) 0

sinh(η/2) 0 0 cosh(η/2)


 (1.154)



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 31This is a Lorentz boost in x dire
tion by tanh(η) = v/c.

• Lorentz transformation of bilinear forms of Dira
 spinorsWe investigate the behavior of bilinear forms like
jµ = c ψ†γ0

︸︷︷︸
ψ̄

γµψ = cψ†

(
1

~α

)
ψ (1.155)uner Lorentz transformation. To this end we need the relation between S†and S−1:

S†γ0 = bγ0S−1 (1.156)with
b =





+1, L00 ≥ 1 (ortho
hronous)
−1, L00 ≤ −1 (time reversal) (1.157)(See F. S
hwabl, Advan
ed quantum me
hani
s, p. 144 for the proof)We introdu
e the shorthand notation

ψ̄ := ψ†γ0, (1.158)sin
e this 
ombination appears regularly in bilinear forms like jµ above.Lorentz transformation
ψ′ = Sψ (1.159)
ψ̄′ = ψ†S†γ0 = bψ†γ0S−1 = bψ̄S−1 (1.160)Hen
e, we have the transformations:� Ve
tor (4-
urrent):

jµ = cψ̄γµψ (1.161)
jµ′ = cbψ̄ S−1γµS︸ ︷︷ ︸

=Lµ
νγν

ψ = cbLµνψ̄γ
νψ = bLµνj

ν (1.162)
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alar or pseudos
alar time reversal
ψ̄ψ = ψ†γ0ψ (1.163)
ψ̄′ψ′ = bψ̄S−1Sψ = bψ̄ψ (1.164)1.3.5 Non-relativisti
 limit of the Dira
 equation: Couplingto the ele
tromagneti
 �eld and the existen
e of spinStandard representation:

i~
∂

∂t
ψ = [c~α · ~p+ βmc2]ψ (1.165)In order to "probe" the nature of the parti
les des
ribed by the Dira
 equation,we need to 
ouple the parti
les to some external �eld, espe
ially the ele
tromag-neti
 �eld. As in non-quantum me
hani
s, the 
oupling to the ele
tromagneti
�eld arises from the postulate of lo
al U(1) gauge invarian
e of the Dira
 equation.Phase transformation:

ψ(x) 7−→ ψ′(x) = e−iθ(x)ψ(x) (1.166)
∂

∂(ct)
7−→ ∂

∂(ct)
+ i

∂θ

∂(ct)
=: Dt (1.167)

∂

∂~x
7−→ ∂

∂~x
+ i

∂θ

∂~x
=: D~x (1.168)or pµ = i~

∂

∂xµ
7−→ pµ − ~

∂θ

∂xµ
= Πµ (1.169)Where the 4-ve
tor x is denoted as

x =

(
ct

~x

)
. (1.170)Generalizing the gradient �eld (∂θ/∂xµ) to an arbitrary �eld, the ele
tromagneti
4-ve
tor potential is introdu
ed:Kineti
 4-momentum:

Πµ =
(
pµ −

q

c
Aµ

) (1.171)
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q

c
Aµ = ~

∂θ

∂xµ
(1.172)and q is the 
harge of the parti
le.Contravariant representation:

Πµ = gµνΠν = pµ − q

c
Aµ (1.173)

cΠ0 = i~
∂

∂t
− qΦ (1.174)

~Π = −i~ ∂

∂~x
− q

c
~A (kineti
 momentum) (1.175)Dira
 equation in an ele
tromagneti
 �eld:

i~
∂

∂t
ψ = [c~α ·

(
~p− q

c
~A
)

︸ ︷︷ ︸
~Π

+βmc2 + qΦ]ψ (1.176)We 
onsider the non-relativisti
 limit v ≪ c for Φ = 0 and obtain the Dira
equation
Eψ =

[
c~α · ~Π + βmc2

]
ψ. (1.177)Stationary solutions:

ψ(t) = ψe−
i
~
Et (1.178)De�ning 
omponents

ψ(x) =

(
χ(x)

Φ(x)

)
, (1.179)where χ,Φ are 2-
omponent spinors.

(
E −mc2 −c~σ · ~Π
−c~σ · ~Π E +mc2

)(
χ

Φ

)
= 0 (1.180)

(E −mc2)︸ ︷︷ ︸
Es

χ− c~σ · ~Π = 0 (1.181)
(E +mc2)︸ ︷︷ ︸
Es+2mc2

Φ − c~σ · ~Πχ = 0 (1.182)
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hrödinger equation (shifted by mc2 withrespe
t to E).Non-relativisti
 
ase, v ≪ c and small �eld ∣∣∣ qc ~A∣∣∣≪ |~p|:
Es ≈ ~p2

2m
≪ mc2 (1.183)

|~Π| ≈ m|~v| ≪ mc (1.184)
Φ =

(
c~σ · ~Π
E +mc2

)
χ (1.185)

E +mc2 = Es + 2mc2 ≈ 2mc2 (1.186)
c · |~Π| ≈ mc|~v| (1.187)∣∣∣∣

Φi

χi

∣∣∣∣ ∼= 1

2

v

c
≪ 1, i = 1, 2 (1.188)

Φ ∼= 1

2mc
(~σ · ~Π)χ (1.189)In the non-relativisti
 limit, χ and Φ are 
alled the large and small 
omponents,respe
tively.Eliminate the small 
omponent from the Dira
 equation:(1.148) in (1.140):

Esχ =
1

2m
(~σ · ~P i)(~σ · ~Pi)χ (1.190)Note that the produ
t in the bra
kets is a s
alar produ
t in position spa
e butthe produ
t of the terms in bra
kets is matrix produ
t. by repla
ing

Es −→ i~
∂

∂t
(1.191)we �nally obtain the Pauli equation:

i~
∂

∂t
ψ =

1

2m
(~σ · ~Π)(~σ · ~Π)ψ (1.192)Using the identity

(~σ · ~u)(~σ · ~v) = ~u · ~v + i~σ · [~u× ~v] (1.193)
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tors) and

[~Π × ~Π] =
(
~p− q

c
~A
)
×
(
~p− q

c
~A
) (1.194)

= [~p× ~p]︸ ︷︷ ︸
=0

−q
c
[ ~A× ~p] − q

c
[~p× ~A] +

q2

c2
[ ~A× ~A]︸ ︷︷ ︸

=0

(1.195)
= −q

c
[ ~A× ~p] − q

c
[~p× ~A] +

q

c
[ ~A× ~p] (1.196)

=
i~q

c
[~∇× ~A] (1.197)

=
i~q

c
~B (1.198)one obtains:

i~
∂

∂t
χ =

[ 1

2m
(~p− q

c
~A)2 − q~

mc︸︷︷︸
=2µB

·1
2
~σ · ~B

]
χ (1.199)This equation des
ribes a 2-
omponent spinor, whose 2 internal degrees of free-dom 
ouple to the magneti
 �eld like an angular momentum 1

2
~σ with a magneti
moment q~

mc
= 2µB = gµB.The relativisti
 theory predi
ts spin 1

2
with a Landé fa
tor g = 2.

µB =
q~

mc
Bohr magneton (1.200)1.3.6 Solutions of the Dira
 equation for free parti
lesWe set ~ = c = 1 from now on. Consider the free Dira
 equation:

(−iγµ∂µ +m)ψ = 0 (1.201)The rest mass m is then the only s
ale in the problem. A length or energy s
aleis re
onstru
ted from it in a unique way by multiplying with appropriate fa
torsof ~, c.
m −→ mc

~
=

1

λCompton inverse Compton wave length (1.202)
−→ mc2 = E0 rest energy (1.203)
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les at rest: ~pψ = 0Dira
 equation:
(−iγ0∂0 +m)ψ = 0 (1.204)Putting in the γ matrix expli
itly one obtains:






1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 (−i∂0) +




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


m


ψ = 0 (1.205)This equation has normalized solutions:

ψ(+)(x) = ur(E = m, ~p = 0)e−imt r = 1, 2 (1.206)
ψ(−)(x) = vr(E = m, ~p = 0)e+imt m =rest energy (1.207)
u1(m,~0) =




1

0

0

0


 , u2(m,~0) =




0

1

0

0


 (1.208)

v1(m,~0) =




0

0

1

0


 , v2(m,~0) =




0

0

0

1


 (1.209)

(pµ) =

(
m
~0

) (1.210)There exist solutions with E > 0(u1, u2) and solutions with E < 0(v1, v2).2. Solutions with �nite momentum ~p and total energy EThese solutions 
an be obtained from the 4 solutions at rest by applying aLorentz transformation to an inertial frame with velo
ity −~v. Without lossof generality we 
hoose ~x‖~p: px = pThe relation between p and v is obtained from the Lorentz transformation



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 37of the 4-momentum:

(
E

p

)
=

(
γ βγ

βγ γ

)(
m

0

)
=

(
γm

βγm

) (1.211)
γ =

1√
1 − β2

(1.212)
β =

v

c
= v (1.213)

px = βγm (1.214)The fa
tor γm is the relativisti
 mass enhan
ement . For the Lorentz trans-formation in Minkowski spa
e,
(
L µ
x ν

)
=




cosh η sinh(η) 0 0

sinh(η) cosh(η) 0 0

0 0 1 0

0 0 0 1


 . (1.215)The Dira
 spinors transform with

S(Lx) = cosh(η/2)1+ sinh(η/2)α1, (1.216)i.e.
u′1(E, ~p) =




cosh(η/2)

0

0

sinh(η/2)


 , u′2(E, ~p) =




0

cosh(η/2)

sinh(η/2)

0


 (1.217)

v′1(E, ~p) =




0

sinh(η/2)

cosh(η/2)

0


 , v′2(E, ~p) =




sinh(η/2)

0

0

cosh(η/2)


 (1.218)

u′i, v
′
i, i = 1, 2 
an be expressed expli
itly in terms of the energy E and themomentum p of the parti
le using

cosh(η) = γ =
E

m
sinh(η) = βγ =

px
m

(E > 0) (1.219)
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cosh(η/2) =

√
1

2
(cosh(η) + 1) =

√
1

2m
(E +m) (1.220)

sinh(η/2) = sgn(η)

√
1

2
(cosh(η) − 1) = sgn(px)

√
1

2m
(Em) (1.221)

= sgn(px)

√
1

2m

E2 −m2

E +m
= px

√
1

2m(E +m)
(1.222)

u1(E, px) =



√

1
2m

(E +m)χ1

px
√

1
2m(E+m)

χ2


 (1.223)

u2(E, px) =



√

1
2m

(E +m)χ2

px
√

1
2m(E+m)

χ1


 (1.224)

v1(E, px) =




px
√

1
2m(E+m)

χ2√
1

2m
(E +m)χ1


 (1.225)

v2(E, px) =




px
√

1
2m(E+m)

χ1√
1

2m
(E +m)χ2



 (1.226)with
χ1 =

(
1

0

)
χ2 =

(
0

1

)
. (1.227)As expe
ted from the analysis of the non-relativisti
 limit for v ≪ cthe upper 
omponents ofu1, u2 are ≈ 1,the lower 
omponents ofu1, u2 are ≈ v

2c
≪ 1,the upper 
omponents of v1, v2 are ≈ v

2c
≪ 1,the lower 
omponents of v1, v2 are ≈ 1.The solutions for arbitrary dire
tion of ~p are obtained by repla
ing

pxχ2 −→ ~σ · ~pχ1 (1.228)
pxχ1 −→ ~σ · ~pχ2. (1.229)
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an be shown by applying a rotation in 3-dimensional position spa
e tothe above solutions for ~p‖x̂, or by dire
t solution of the Dira
 equation. Thespa
e-time dependent phase fa
tors of the solutions are Lorentz invariantand read:

e−imt
′

= e−ip
0′x0

′

︸ ︷︷ ︸in rest frame = e−ip
µxµ︸ ︷︷ ︸in moving frame (1.230)

= e−i(Et−~p~x) (1.231)
e+imt

′

= e
+ip0

′
x0

′

= e+ip
µxµ (1.232)

= e−i(−Et+~p~x) (1.233)Hen
e, the free solutions of the Dira
 equation with momentum ~p read:
ψ

(+)
~p,r (x) = ur(E, ~p)e

−i(Et−~p~x) (1.234)
ψ

(−)
~p,r (x) = vr(E, ~p)e

−i(−Et+~p~x) (1.235)with the relativisti
 dispersion E = +
√
p2 +m2. (Sin
e by 
onstru
tion

H2
D = −i~ ∂

∂t
, where HD is the Dira
 Hamilton operator.)Orthogonality relations of the ur, vr

ūr(k)us(k) = δrs r, s = 1, 2 (1.236)
~vr(k)vs(k) = −δrs (1.237)
ūr(k)vs(k) = 0 (1.238)
v̄r(k)us(k) = 0 (1.239)1.3.7 Angular momentum and spinWe have derived the generates of the Lorentz group both in Minkowski and in spinspa
e. Therefore, we 
an now identify the generates of 3-dimensional rotations,whi
h are, by de�nition the 
omponents of angular momentum. The rotation inspinor spa
e gives an additional 
ontribution, identi�ed with spin.

Lµν = δµν + ∆ωµν Minowski spa
e (1.240)
S(L) = 1+

1

8
∆ωµν [γµ, γν] Spinor spa
e (1.241)



40 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSA Dira
 spinor is a variable both in Minkowski and in Spinor spa
e. Rotation by
∆~ϕ, |∆~ϕ| = rotation angle.

∆ωij = −εijk∆ϕk (∆ω0
µ = ∆ωµ0 = 0) (1.242)De�ne:

σµν =
i

2
[γµ, γν] (1.243)

σij = σij = εijkΣk (1.244)One 
an show that
Σk =

(
σk 0

0 σk

) (1.245)where σk are the Pauli matri
es. Plugging the 
ommutator relation above inequation (1.204) one obtains:
S(L) = 1− i

4
∆ωµνσµν (1.246)And �nally:

ψ′(x′) = L {ψ(x)} = Sψ(x) = Sψ
(
L−1x′

) (1.247)1.3.8 Physi
al interpretation of the solutions of the Dira
equation: The antiparti
le 
on
eptAs seen in 1.2.6, the Dira
-Hamiltonian has positive as well as negative energyeigenvalues E, be
ause β has the eigenvalues ±1.Free parti
les with a negative energy spe
trum whi
h is not bounded from beloware a problem be
ause of two reasons:1. kineti
 as well as rest energy should be positive2. there is no stable ground state; i.e. a parti
le 
ould go to in�nitely lowenergies via s
attering pro
esses and the system would not be stable.In this se
tion we show at �rst that the E < 0 solutions 
annot simply be dis-
arded as unphysi
al, be
ause they ne
essarily appear in physi
al systems in
onne
tion with the E > 0 solutions. We then give a physi
al interpretation ofthe E < 0 solutions, whi
h remedies the paradox.
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kets and �Zitterbewegung�The general wave pa
ket is given by the expression:

ψ(x) =

∫
d4p

(2π)4
δ(p2

0 −E2)
∑

s=1,2

[
(2π)2m b̃(p, s)Ws(p) e

−ipµxµ
] (1.248)wherein d4p

(2π)4
δ(p2

0 −E2) = d3p
E

is a Lorentz-invariant measure and the Deltafun
-tion guarantees, that ψ is a solution of the Dira
 equation. The expansion 
oef-�
ients are given by 2m b̃(p, s) and like always in this 
ontext is E =
√
|~p|2 +m2(relativisti
 dispersion).Furthermore we identify:

Ws(p) =

{
us(p), p0 > 0

vs(p), p0 < 0.
(1.249)Using δ(p2

0 −E2) = 1
2p0

[δ(p0 − E) + δ(p0 + E)] we get
ψ(x) =

∫
d3p

(2π)3

m

E

∑

s=1,2

[
b(p, s)us(p)e

−ipµxµ

+ d∗(p, s)vs(p)e
+ipµxµ] (1.250)with

b(p, s) = 2πb̃(E, ~p, s) (1.251)
d∗(p, s) = 2πb̃(−E, ~p, s). (1.252)a) Superposition of states with E > 0 onlyFor wave pa
kets 
ontaining only E > 0 solutions no unexpe
ted behavior ap-pears: d∗ ≡ 0, p0 = E.
ψ(+)(x) =

∫
d3p

(2π)
3
2

m

E

∑

s=1,2

b(p, s)us(p)e
−ipµxµ (1.253)
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ase the total 
urrent is given by
~J (+) =

∫
d3x

(2π)3
~ (+)(x) (1.254)

= c

∫
d3x

(2π)
3
2

ψ(+)†(x)~αψ(+)(x) (1.255)
= c

∑

s

∫
d3p

(2π)3

m

E

∣∣b(p, s)
∣∣2 ~p
E

(1.256)
=

〈
~p

E

〉
= 〈~vG〉 (1.257)

whi
h is the averaged group velo
ity over all states in the pa
ket. The groupvelo
ity itself is given by ~vG = ∂E
∂~p

=
∂
√

|~p|2+m2

∂~p
= ~p

E
. In (1.256) we have used theorthogonality relations for u, vb) Wave pa
kets 
ontaining E > 0 and E < 0 solutionsWave pa
kets whi
h are superpositions of E > 0 and E < 0 solutions of theDira
 equation 
annot be avoided generally. In this 
ase unexpe
ted behaviorappears, as the following example shows.Time evolution of a free and lo
alized wave pa
ket whi
h 
ontains at t = 0only E > 0 
omponents and its width is 
hara
terized by a parameter d (totalwidth: 4d):

ψ(t = 0, ~x) =
1

(2πd2)
3
4

e
i~x~k− x2

(2d)2w (1.258)
wherein w is a pure E > 0 spinor, e.g. w =

(
χ1

0

)
=




1

0

0

0


.
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4d

k

Figure 1.2: Gaussian wave pa
ketDe
omposition of the Gaussian wave pa
kets into plane waves in order to des
ribeits time dependen
e using the Fourier transformation:
e
i~x~k− x2

(2d2) =

∫
d3p

(2π)3

(
4πd2

2π

) 3
2

e−d
2(~p−~k)

2 (1.259)whi
h is a Gaussian wave pa
ket in ~p-spa
e shifted by ~k.Some further 
al
ulation delivers
b(p, s) = 2

3
2d3e−d

2(~p−~k)
2

u†s(vp)w 6= 0 (1.260)
d∗(p, s) = 2

3
2d3e−d

2(~p−~k)
2

v†s(p)w 6= 0 (1.261)what shows that the general wave pa
ket ψ(t, ~x) 
ontains both E > 0 and E < 0
omponents.The E < 0 
omponents are important for a wave pa
ket with initially only E > 0
omponents, if the wave pa
ket is lo
alized mu
h stronger than the parti
le'sCompton-wavelength χC :
d≪ χC =

~

mc

~,c=1
=

1

m
. (1.262)As we presupposed is w =
(
χ1

0

). Using the free parti
le spinors us, vs we get theratio
d∗(p)

b(p)
=

|~p− ~k|
E +m

(
|~k| ≪ 1

)
. (1.263)
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omponents with negative energy 
anbe negle
ted for less strong lo
alization of the parti
le but have to be 
onsideredfor strong lo
alization.
• weak parti
le lo
alization: Wave pa
ket extension d≫ 1

m
:

|~p− ~k| . d−1 ≪ m ⇐⇒ d∗

b
≪ 1. (1.264)

• strong parti
le lo
alization: Wave pa
ket extension d≪ 1
m
:

|~p−~k| ≈ d−1 ≫ m =⇒ |~p−~k| ≈ E ⇐⇒ d∗

b
≈ 1 (1.265)Zitterbewegung:In Physi
al expe
tation values su
h as 〈~x〉 the 
ontributions with energies equalin size but opposite in sign lead to interferen
e terms with os
illatory time de-penden
e.(It should be mentioned that in the modulus squared of terms with only E > 0the time dependen
e 
an
els out.)

〈~x〉 =

∫
d3xψ†(x)~xψ(x) (1.266)

d

dt
〈~x〉 =

d

dt

∫
d3xψ†(0, ~x)e+iHt~xe−iHtψ(0, ~x) (1.267)

=

∫
d3xψ†(t, ~x)i [H,~x]︸ ︷︷ ︸

−ic~α

ψ(t, ~x) (1.268)
=

∫
d3xψ†(x)c~αψ(x) = ~J(t) (1.269)

J i(t) =

∫
d3p

(2π)3

m

E

{
pi

E

∑

s

[
|b(p, s)|2 + |d(p, s)|2

] (1.270)
+ i
∑

s,s′

[
b∗(p, s)d∗(p, s)e2iEtus(p)σ

i0vs′(p) (1.271)
− b(p, s)d(p, s)e−2iEtvs′(p)σ

i0us(p)
]} (1.272)In this equation we see the time independent �rst part and a time dependentse
ond 
ontribution to the total 
urrent. The se
ond part 
ontains os
illations(Zitterbewegung) with frequen
ies of 2E > 2mc2

~
= 2 × 1021s−1 for ele
trons.
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 parti
le at a potential well (s
atteringproblem in 1 dimension)

I II

x1=x

V(x1)=q  (x1)φ

V0

Figure 1.3: 1-dimensional s
attering wallSin
e V (x1) = const in the regions I and II respe
tively, there are �plane wavesolutions� with energy E.Region I:We use unnormalized wave fun
tions: Normalization fa
tor √E+m
2m

is omitted!In
ident wave from left with E > 0:
ψin(x) = e−iEteipx




1

0

0
p

E+m


 (1.273)Ansatz for the re�e
ted wave:

ψrefl(x) = e−iEt

{
ae−ipx




1

0

0
−p
E+m




︸ ︷︷ ︸
u1

+be−ipx




0

1
−p
E+m

0




︸ ︷︷ ︸
u2

} (1.274)
with

E = +
√
p2 +m2 > m, p = +

√
E2 −m2. (1.275)A

ording to the interpretation (Pauli equation) the upper two 
omponents andthe lower two 
omponents, respe
tively, represent the spin. The se
ond term of
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ψrefl des
ribes a free parti
le with opposite spin where we will �nd below thatthe 
oe�
ient b vanishes.Region II:Transmitted wave:

ψtrans(x) = eiEt

{
ceiqx




1

0

0
q

E−V0+m


+ deiqx




0

1
q

E−V0+m

0




} (1.276)with
q =





+
√

(E − V0)2 −m2, |E − V0| ≥ m

i
√
m2 − (E − V0)2, |E − V0| ≤ m

. (1.277)We should remark that the normalized solution has no singularity at E−V0 +msin
e q = 0.

E

q

Re(q)Re(q)

Im(q)

m+V0m−V0 V0

Figure 1.4: Transmitted wave solutionWith the given information we �nd...
• real, i.e. propagating solutions for

E ≥ m+V0 > 0 or E ≤ −m+V0 (if E ≥ m : V0 ≤ 2m) (1.278)
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• exponentially de
aying solution for
−m+ V0 < E < m+ V0 (1.279)Sin
e the Dira
 equation is of �rst order in ∂

∂xµ , the wavefun
tion must be 
on-tinuous, not its derivative:
ψI(0)

!
= ψII(0) (1.280)The 
onditions for the 
oe�
ients a, b, 
, d result from the various 
omponentsof ψ:(i) 1 + a = c(ii) b = d(iii) −b p
E+m

= d q
E−V0+m

2.⇐⇒
b = d = 0unless V0 = 0 , p = q (trivial)(iv) (1 − a) = rc , r = q

p
E+m

E−V0+mTherefore the spin is not �ipped during the s
attering pro
ess, be
ause the 
oef-�
ients b and d vanish.
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ussion of the solutions:
propagating
solutions

m
0

E>m

E

x

E−V0<−m
E<−m

(II)(I)

(2)

−m

E−V0>m

V0+mV +m

V0−m
m

(1)
0

Figure 1.5: Complete solution in both regionsPropagating solutions exist, if the absolute value of the energy, measured relativeto the potential level, is greater or equal to the rest energy m:
• region I : |E| > m

• region II : |E − V0| > m.We 
onsider regular and propagating in
ident waves E > m in region I and
V0 > 0:Propagating transmitted solutions exist for

1) E − V0 ≥ m for any V0 > 0 regular, E − V0 > 0

2)
E − V0 ≤ −m
E ≥ m

}
m ≤ E ≤ V0 −mfor E0 > 2m

irregular, E − V0 < 0.Therefore we 
on
lude, that for E ≥ m and V0 ≥ 2m exists:
• a propagating transmitted solution in the well with negative energy 
om-pared to the potential V0

• a propagating re�e
ted solution with positive energy.
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ted 
urrents:The transmitted and the re�e
ted 
urrent are orthogonal:

jtrans ⊥ jrefl (1.281)The 
ontinuity of ψ at x = 0 delivers:
c =

2

1 + r
and a =

1 − r

1 + r
. (1.282)Furthermore we use the known expression

~j = cψ†~αψ with ~α =

(
0 ~σ

~σ 0

) (1.283)where, in this 
ase, c stands for the speed of light!The information on the dire
tion of ~j is en
oded in the 
omponents of ψ andwe get:
jy = jz, jx 6= 0. (1.284)

jtrans

jin
=

4r

(1 + r)2
,

jrefl
jin

=

(
1 − r

1 + r

)2 (1.285)Therefore the 
urrent is 
onserved:
jtrans

jin
+
jrefl
jin

= 1. (1.286)However, for q, p > 0, m < E < V0 −m, i.e. V0 > 2m, E − V0 + m < 0, r < 0:
jrefl
jin

> 1,
jtrans

jin
< 0 (1.287)For the group velo
ity of the transmitted wave in x-dire
tion we �nd

vtrans,x =
dE

dq
=

d

dq

(√
q2 +m2

) (1.288)
=

2q

+
√
q2 +m2

=
2q

E − V0
= − 2q

|E − V0|
(1.289)what shows, that vtrans is opposite to q!



50 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSInterpretation:A stationary solution in the parameter range E > m, V0 > 2m and an in
identwave onto the well ne
essarily 
ontains a parti
le 
urrent jtrans 
oming out of thewell, or an antiparti
le 
urrent going into the well.The well does not provide any energy for parti
le-antiparti
le pair produ
tion(sin
e it is time independent and, hen
e, energy 
onserved).Rather, the pro
ess 
orresponds to a partial 
onversion of parti
les into antipar-ti
les at the well boundary, without 
hange of the energy.Hole theory: Interpretation of the E < 0 solutions in terms of antipar-ti
lesWe now have to �nd a way to solve the problems with the E < 0 solutions of theDira
 equation whi
h are:
• E < 0 solutions are ne
essary as a part of the Dira
 equation's 
ompleteset of eigenstates to des
ribe the physi
al wave pa
ket.
• Due to the E < 0 states matter would not be stable.A preliminary solution �rst was given by Dira
. He supposed all the E < 0 statesto be o

upied by one ele
tron ea
h. In this sense a de
ay of E > 0 ele
trons into

E < 0 states is prevented by the Pauli prin
iple.
e−

e+

hω

p

EE(p)

Figure 1.6: Ex
itation of a parti
le-antiparti
le pair



1.3. SPIN 1
2
FERMIONS: DIRAC EQUATION 51Altogether the Va
uum is to be seen as an in�nite sea of E < 0 parti
les (ele
-trons), the Dira
 sea.Unfortunately the Dira
 sea is not observable. Although it 
onsists of an in�nitenumber of 
har
hed parti
les, it does not 
reate any for
e, be
ause of translationinvarian
e (in�nite and homogeneous).However: Problem of in�nite massConsequently the Dira
 sea 
an be observed only indire
tly through its ex
i-tations.Antiparti
le 
on
eptA missing ele
tron in the Dira
 sea with E < 0, ~p, 
harge q is equivalent to a realparti
le with E > 0, −~p, 
harge − q; spin − σ, whi
h is 
alled an antiparti
le.In 
ase the parti
le is an ele
tron, its antiparti
le is the positron.For the 
reation of parti
le-antiparti
le pairs di�erent ways a 
on
eivable:1. Time dependent �elds ~ω > 2mc2

hω

pFigure 1.7: Creation of parti
le-antiparti
le pairs
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reation of E < 0 bound states: nu
lear 
ollisions
-4 -2 0 2 4

-3

-2

-1

0

1

xFigure 1.8: Adiabati
 
reation of bound statesCorresponden
e E < 0 solution - antiparti
leThe Dira
 sea equals the va
uum state and therefore ψ(±) ≡ 0. In detail:
• ψ(+)(x): o

upied E > 0, ~p, σ state: parti
le E > 0, ~p, σ, e
• ψ(−)(x): uno

upied E < 0, ~p, σ state: antiparti
le −E > 0, −~p, −σ, −eExample: The Klein paradoxon

particle

particle

antiparticle

0

V

x

V

j in (+)

(+)

jrefl>j in

ψ(−)

j trans<0

V0>2m
m<E<V0−m

0

ψ

ψ

Figure 1.9: Klein paradoxonFinally we give a summary of the problems behind the idea of the Dira
 sea:
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• Non-observability: translation invarian
e
• In�nite mass problem
• Many parti
le problem: The 
on
ept of parti
le-antiparti
le pairs makesthe Dira
 sea idea inherently in
omplete:Creation of many parti
les� Lo
ality of the theory implies that the parti
le 
an be lo
alized in theDira
 sea in an arbitrarily small length s
ale ∆x.� In detail:

∆p ≥ ~ ∆x−1 (1.290)
∆E ≈ c∆p ≥ ~c

∆x
(1.291)

=⇒ if ∆x <
1

2

~

mc
=

1

2
χC (1.292)

∆E ≥ 2mc2 (1.293)whi
h leads to parti
le-antiparti
le produ
tion (In equation 1.217 weused the Compton wavelength χC).I.e. the lo
ality of the relativisti
 theory ne
essarily implies that onemust formulate it as a many-parti
le theory, whi
h leads to the �eldtheory.1.3.9 Dis
rete symmetries of the Dira
 equationCharge 
onjugation CThe re-interpretation of E < 0 solutions in terms of antiparti
les with oppositequantum numbers and 
harge suggests that there is a symmetry of the Dira
equation (i.e. a transformation whi
h leaves the Dira
 equation shape invariant)whi
h transforms the E < 0 solutions for 
harge e = −e0 < 0 into E > 0 solutionsfor 
harge −e = e0 > 0.This transformation will be 
alled 
harge 
onjugation C.
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onstru
tion of the transformation we start with the Dira
 equation forthe possible 
harges:for 
harge e: [γµ(i∂µ − eAµ) −m]ψ = 0 (1.294)for 
harge -e: [γµ(i∂µ + eAµ) −m]ψC = 0 (1.295)We 
onstru
t the transformation C, whi
h transforms ψ into ψC: ψC = Cψ.The relative sign 
hange between i∂µ and eAµ is obtained by taking the 
om-plex 
onjugate of (1.245):
C̃ [−γµ∗(i∂µ + eAµ) −m] C̃−1C̃ψ∗ = 0. (1.296)However this also introdu
es relative sign between the kineti
 and the rest energyterms, and also 
hanges γµ −→ γµ∗.In order to revert these 
hanges, we look for a transformation C̃ su
h that
C̃ γµ∗ C̃−1 = −γµ (1.297)Note that su
h a transformation is allowed, sin
e the γµ are determined by theiralgebra only up to similarity transformations.Considering the γµ in the standard represantation,
γ0 = β =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 , (1.298)(1.248) indi
ates that C̃

• inter
hanges the upper and lower 
omponents an
• transforms σi −→ σi∗ (i = 1, 2, 3).This is performed by the matrix

C̃ =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


 = iγ2 in standard representation (1.299)

C̃−1 = C̃ . (1.300)
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e, we have

Cψ = C̃ψ∗ = iγ2 ψ∗ (standard representation) (1.301)
γµγν + γνγµ = 2gµν1 (1.302)
(iγ2)γµ∗(iγ2) = [(−i

−γ2

︷︸︸︷
γ2∗ )︸ ︷︷ ︸

=iγ2

γµ(−iγ2∗)]∗ (1.303)
= −[γ2γµγ2]∗ (1.304)
= −[γ2(2gµ2

1− γ2γµ)]∗ (1.305)
= [2δµ2γ2 − γµ]∗ (1.306)
=

{
−γµ , µ 6= 2

2γ2∗ − γ2∗ = −γ2 , µ = 2
(1.307)

where, in (1.256), we made use of (γ2)2 = −1.Altogether we 
on
lude that C
• inter
hanges the upper and lower 
omponents of ψ, C̃

• transforms E −→ −E in the exponential fa
tor of ψ, ( )∗

• inverts the momentum ~p −→ −~p

• �ips the spin (C̃)

• transforms from a solution for 
harge e to 
harge −e (by 
onstru
tion).
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 spinor
ψ =




1

0
p√
E+m

0



e−i(Et−pz) (1.308)

Cψ =




0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0







1

0
p√
E+m

0



e+i(Et−pz) (1.309)

=




0
−p√

−E−m
0

1



e−i(−Et−(−p)z) (1.310)

where (1.258) is an E > 0 solution with ~p || ẑ, pz = p and spin ↑and (1.259) is an E < 0 solution with ~p || ẑ, pz = −p and spin ↓.Consequently the 
harge 
onjugation not only inverts the 
harge, but 
ompletelytransforms a parti
le solution into an antiparti
le solution and vi
e versa.Sin
e any spinor 
an be Fourier de
omposed in terms of free spinors, this re-mains true for any solution for an arbitrary potential Aµ.
Time reversal (inversion of motion) TThe time reversal transformation T is de�ned by

T : t 7−→ −t (1.311)
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T : ~p 7−→ −~p (momentum) (1.312)
~L = [~r × ~p] 7−→ −~L (angular momentum) (1.313)

~S 7−→ −~S (spin analogous to ~L) (1.314)
Φ(~x, t) 7−→ Φ(~x,−t) = Φ(~x, t) (1.315)
~A(~x, t) 7−→ ~A(~x,−t) = − ~A(~x, t) (1.316)
e 7−→ e (same for q in operators) (1.317)

(1.264),(1.265)
=⇒ Aµ(~x, t) 7−→ Aµ(~x, t) (el.-magn. 4-potential) (1.318)We 
onstru
t the time reversal transformation from the form invarian
e of theDira
 equation:

[γµ(i∂µ − eAµ) −m]ψ = 0 (1.319)Time reversed Dira
 equation:
[γµ(−i∂µ − egµνAν) −m]ψT = 0 (1.320)with ψT = Tψ the time reversed spinor.One 
an 
hose:
ψT = Tψ = iΣ2ψ∗ (1.321)

with iΣ2 =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 = i

(
σ2 0

0 σ2

)
. (1.322)Note: For s
alar parti
les is C ≡ T !
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e inversion) P
P : ~x 7−→ −~x t 7−→ t , E 7−→ E (1.323)

~p 7−→ −~p (1.324)
~L 7−→ +~L (1.325)
~S 7−→ +~S (1.326)
Aµ 7−→ Aµ

{
Φ 7−→ Φ
~A 7−→ − ~A

(1.327)Parity transformation of the Dira
 spinorThe phase fa
tor e−ipµxµ remains invariant, sin
e
P : p0 7−→ p0 , x0 7−→ x0 (1.328)

pi 7−→ −pi , xi 7−→ −xi , i = 1, 2, 3. (1.329)From the parity symmetry of the Dira
 equation one obtains, in a way analogousto C, T:
Pψ(~x, t) = γ0 ψ(−~x, t) with γ0 =

(
1 0

0 −1

)
. (1.330)1.3.10 Separation of Spinor 
omponents into spin and parti
le-antiparti
le degrees of freedom: The Foldy-WouthuysentransformationProblem: Physi
al meaning of the Dira
 spinor 
omponentsHaving derived the spin operator ~Σ = ~

2

(
~σ 0

0 ~σ

) and having introdu
ed theparti
le- antiparti
le degree of freedom, we are now able to dis
uss the meaningof the 4-spinor degrees of freedom for the general 
ase, i.e. not only in the non-relativisti
 limits. This will ultimately lead to the systemati
 treatment of therelativisti
 
orre
tions to the S
hrödinger dynami
s.
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les at rest the Dira
 spinors are in the standard representation:

ψ
(+)
~p=0 , ↑ =




1

0

0

0


 e−imt , ψ

(+)
~p=0 , ↓ =




0

1

0

0


 e−imt , E = m > 0 (1.331)

ψ
(−)
~p=0 , ↑ =




0

0

1

0


 e+imt , ψ

(−)
~p=0 , ↓ =




0

0

0

1


 e+imt , E = −m < 0 (1.332)

These are eigenstates of the spin operator Σz = ~

2




1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1


 as indi-
ated, i.e. the upper two 
omponents des
ribe the spin of parti
les, the lower two
omponents the spin of antiparti
les, in a

ordan
e to the Pauli equation.However, for free, moving parti
les one obtains after a Lorentz boost in the stan-dard representation:
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• For motion in z-dire
tion (|| spin quantization axis ẑ)

ψ
(+)
~p||bz , ↑(x) =

√
E +m

2m




1

0
pz

E+m

0


 e−ipµxµ E > 0 (1.333)

ψ
(+)
~p||bz , ↓(x) =

√
E +m

2m




0

1

0
pz

E+m


 e−ipµxµ (1.334)

ψ
(−)
~p||bz , ↑(x) =

√
E +m

2m




pz

E+m

0

1

0


 e+ipµxµ E < 0 (1.335)

ψ
(−)
~p||bz , ↓(x) =

√
E +m

2m




0
pz

E+m

0

1


 e+ipµxµ (1.336)

z||p^ ^

ΣzFigure 1.10: Motion in z-dire
tion
These are eigenstates of the spin Σz with eigenvalues s = ±1

2
~, as forparti
les at rest.
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• For motion in x-dire
tion (⊥ spin quantization axis ẑ)
ψ

(+)
~p||bx , ↑(x) =

√
E +m

2m




1

0

0
pz

E+m


 e−ipµxµ E > 0 (1.337)

ψ
(+)
~p||bx , ↓(x) =

√
E +m

2m




0

1
pz

E+m

0


 e−ipµxµ (1.338)

ψ
(−)
~p||bx , ↑(x) =

√
E +m

2m




0
pz

E+m

1

0


 e+ipµxµ E < 0 (1.339)

ψ
(−)
~p||bx , ↓(x) =

√
E +m

2m




pz

E+m

0

0

1


 e+ipµxµ (1.340)

z

x||p^ ^

^

Figure 1.11: Motion in x-dire
tionThe mixing of upper and lower 
omponents o

urs be
ause in the standard rep-resentation the Dira
 equation has o�-diagonal blo
ks:
1 i

∂

∂t
ψ =

(
m+ eΦ ~α · ~π

ւ

ր
~α · ~π −m+ eΦ

)
ψ = Hψ. (1.341)Sin
e the representation of the γµ matri
es is unique only up to an arbitrarysimilarity transformation

γ̃µ = AγµA−1 (1.342)



62 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSit is possible to �nd a representation su
h that E < 0 solutions have only upper
omponents and E < 0 solutions have only lower 
omponents, i.e. a seperationof parti
le and antiparti
le solutions in upper and lower 
omponents is possible.The unitarity transformation separating parti
le and antiparti
le 
omponents isde�ned su
h that it brings the Dira
 equation to blo
k diagonal form.In general, this transformation is di�
ult and time dependent, sin
e it requirestransforming the exa
t, time dependent, solutions ψ.De�nition:
• Operator with only diagonal blo
ks: even operator
• Operator with only o�-diagonal blo
ks: odd operatorThese spinors are not eigenstates of Σz and have a redu
ed σz expe
tation value:
〈σz〉 = ±m

E

~

2
! (1.343)For velo
ity |~v| → c, i.e. E =

√
p2 +m2 → ∞:

〈σz〉px→∞ = 0 similarly: 〈σy〉px→∞ = 0. (1.344)The spin polarization of parti
les moving at the speed of light, |~v| → c, is eitherparallel or antiparallel to the dire
tion of motion, what leads to heli
ity.
x

v=cFigure 1.12: Heli
ityFrom this example we see that, in the standard representation of the γµ matri
es,for general, moving parti
les the spin and parti
le-antiparti
le degrees of freedomare mixed among the 4-spinor 
omponents (i.e. ψ(+) has both upper and lower
omponents, and has, in general, no de�nite z-
omponent of spin).Only in the non-relativisti
 limit the upper two 
omponents 
orrespond to parti-
les (spin ↑, ↓) and the lower two 
omponents to antiparti
les (spin ↑, ↓).
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loser look on equation (1.289):For the normalization we 
al
ulate:

ψ
(+)†
~p||bx , ↑ · ψ

(+)
~p||bx , ↑ =

E +m

2m

(
1 0 0 px

E+m

)



1

0

0
px

E+m


 (1.345)

=
E +m

2m

(E2 +m2 + 2Em) +

E2−m2

︷︸︸︷
p2

(E +m)2
(1.346)

=
E +m

2m

2E2 + 2Em

(E +m)2
=

E

m
(1.347)

whi
h 
an
els with the invariant measure in ∫ d4x for total laprobability.Therefore we get:
〈σz〉 =

normalization︷︸︸︷
m

E
ψ

(+)†
~p||bx , ↑ Σz ψ

(+)
~p||bx , ↑ (1.348)

=
m

E

E +m

2m

(E2 +m2 + 2Em) − p2

(E +m)2
(1.349)

=
m

E

E +m

2m

2m2 + 2Em

(E +m)2
=

m

E
. (1.350)



64 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICSFinally the general spinor is given by:
ψ

(+)
~p , ↑(x) =

√
E +m

2m




1

0
pz

E+m
px+ipy

E+m


 e−ipµxµ E > 0 (1.351)

ψ
(+)
~p , ↓(x) =

√
E +m

2m




0

1
px+ipy

E+m
pz

E+m


 e−ipµxµ (1.352)

ψ
(−)
~p , ↑(x) =

√
E +m

2m




pz

E+m
px+ipy

E+m

1

0



e+ipµxµ E < 0 (1.353)

ψ
(−)
~p , ↓(x) =

√
E +m

2m




px+ipy

E+m
pz

E+m

0

1


 e+ipµxµ (1.354)

The Foldy-Wouthuysen transformationThe separating transformation 
an be found systemati
ally in powers of E−m
m

,whi
h, hen
e, leads to systemati
 relativisti
 
orre
tions.In general:
A−1 =: e−iS , S hermitean, time dependent; e−iS de
ouples the upper and lower
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omponents.

ψ′ = e+iS ψ (1.355)
i
∂

∂t
e−iSe+iS︸ ︷︷ ︸

1

ψ = H e−iSe+iS︸ ︷︷ ︸
1

ψ Dira
 equation (1.356)
i
∂

∂t

(
e−iS ψ′)

︸ ︷︷ ︸
i( ∂

∂t
e−iS)ψ′+ie−iS ∂

∂t
ψ′

= H e−iS ψ′ ∣∣e+iS · (1.357)
i
∂

∂t
ψ′ = e+iS

(
H − i

∂

∂t

)
e−iS

︸ ︷︷ ︸
H′

ψ′. (1.358)
wherein H′ is blo
k-diagonal.a) The Foldy-Wouthuysen transformation for free parti
les

H = ~α · ~p+ βm =

(
1m ~α · ~p
~α · ~p −1m

)
= βm+ O︸︷︷︸

odd

(1.359)For ~B =




Bx

0

Bz


 in the x-z plane analogous to diagonalizing H = σxBx + σzBz

Θ

σ
z

x

y

Figure 1.13: Rotation by an angle ϑ0 about the y-axis(→ e
i
2
σyϑ0 = e−

1
2
σzσxϑ0).
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hose the following Ansatz:
e±iS = e±

σz︷︸︸︷
β

σx︷ ︸︸ ︷
(~α · p̂ )ϑ(~p) = 1 cosϑ± β(~α · ~p ) sinϑ (1.360)

= e±βO ϑ
|~p | (time independent) (1.361)with p̂ =

~p

|~p | (1.362)where in (1.308) we used a Taylor expansion. Furthermore:
H′ = eiS H e−iS (1.363)

= eβ(~α·bp )ϑ(~α · p̂+ βm)(1 cosϑ− β(~α · p̂ ) sinϑ) (1.364)
= eβ(~α·bp )ϑ (1 cosϑ+ β(~α · p̂ ) sinϑ)︸ ︷︷ ︸

eβ(~α·bp )ϑ

(~α · p̂ + βm) (1.365)
= (cos 2ϑ+ β(~α · p̂ ) sin 2ϑ)(~α · p̂+ βm) (1.366)
= ~α · ~p

(
cos 2ϑ− m

|~p |

)

︸ ︷︷ ︸
!
= 0

+βm

(
cos 2ϑ+

|~p |
m

sin 2ϑ

) (1.367)
=⇒ tan 2ϑ =

|~p |
m

(1.368)
sin 2ϑ =

p√
m2 + p2

=
p

E
, cos 2ϑ =

m√
m2 + p2

=
m

E
(1.369)in (1.313) we used the anti-
ommutator [α , β]+ = 0.We now put (1.317) into (1.315) to get the �nal result for H′:

H′ = βm

(
m

E
+

|~p |2
mE

)
= β

1

E

(
|~p |2 +m2

) (1.370)whi
h is blo
k diagonal and wherein E is the energy eigenvalue and ~p is an oper-ator.For small momenta: |~p | ≪ m

iS = βO ϑ

|~p | ≈ βO 1

2m
(1.371)
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e±β(~α·bp )ϑ =

∞∑

k=0

1

(2k)!
[β(~α · p̂ )]2k +

∞∑

k=0

1

(2k + 1)!
[β(~α · p̂ )]2k+1 (1.372)

(~α · p̂ )2 = αipiαjpj =
1

2
{αi, αj}
︸ ︷︷ ︸

δij

pipj = |~p |2 (1.373)
Foldy-Wouthuysen transformation in an ele
tromagneti
 �eld

H = ~α ·
(
~p− e ~A

)
+ βm+ eφ = βm+ ε+ O (1.374)with ε = 1eφ βε = ε (1.375)

O = ~α(~p− e ~A) βO = −Oβ (1.376)where in (1.322) the βm-term is the O(m)-term expli
itly written in order togenerate an 1
m
expansion.As in the �eld-free 
ase we expe
t that in the non-relativisti
 limit the properFoldy-Wouthuysen transformation is given by:

iS =
β

2m
O now with O = ~α·

(
~p− e ~A

)
. (1.377)The relativisti
 
ase 
an then be treated by repeating this transformation su�-
iently often, leading to an expansion in |~p−e ~A|

m
.

H′ = eiS
(

H − i
∂

∂t

)
e−iS (1.378)wherein ∂

∂t
only a
ts on e−iS.With the Baker-Campbell-Hausdor� identity:

eABe−A = B+[A ,B]+
1

2
[A , [A ,B]]+. . .+

1

k!
[A , [A , . . . , [A ,B] . . .]]︸ ︷︷ ︸k 
ommutators + . . . (1.379)
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H′ = H + i[S ,H] +

i2

2
[S , [S ,H]] (1.380)

+
i3

6
[S , [S , [S ,H]]] +

i4

24


ontains O( 1
m3 ) terms

︷ ︸︸ ︷
[S , [S , [S , [S ,H]]]] (1.381)

− Ṡ − i

2
[S , Ṡ] − i2

6
[S , [S , Ṡ]] + . . . (1.382)With the 
ommutation relations for β and ~α the term of �rst order in 1

m
is givenby:

i[S ,H] = −O +
β

2m
[O , ε] +

1

m
βO2 (1.383)wherein the �rst O 
an
els the odd term to O

(
1
m0

).Computing all 
ommutators, disregarding the time dependen
e of the �elds(Ṡ = −i β
2m

Ȯ ≡ 0), we obtain:
H′ = βm+

ε′︷ ︸︸ ︷
β

(O2

2m
− O4

8m2

)
+ ε (1.384)

− 1

8m2
[O , [O , ε]] +

β

2m
[O , ε] − O3

3m2︸ ︷︷ ︸
O′

= βm+ ε′ + O′ (1.385)with O′ ∼ O
(

1
m

) only.The odd terms 
an be determined to O
(

1
m

) by another Foldy-Wouthuysen trans-formation, de�ned by
iS =

β

2m
O′ ∼ O

(
1

m2

)
. (1.386)

H′′ = βm+ ε′ +
β

2m
[O′ , ε′] +

(even and odd terms of O( 1

m4

))(1.387)
= βm+ ε′ + O′′. (1.388)
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2m
O′′ ∼ O

(
1
m3

) blo
kdiagonal-izes H to O
(

1
m3

):
H′′′ = β

(
m+

O2

2m
− O4

8m3

)
+ ε− 1

8m2

[
O , [O , ε] + iȮ

]
+O

(
1

m4

) (1.389)with only even powers of O −→ H′′′ is even up to O
(

1
m3

).Evaluating the powers of O in H′′′ one obtains �nally
H′′′ = β

(
m+

(
~p− e ~A

)2

2m
− 1

8m3

[(
~p− e ~A

)2

− e~Σ · ~B
]2)

+ eφ (1.390)
− e

2m
β ~Σ · ~B − e

8m2
~Σ ·
[
~∇× ~E

]

− e

4m2
~Σ ·
[
~E ×

(
~p− e ~A

)]
− e

8m2
~∇ · ~E .In H′′′ the upper and lower 
omponents are de
oupled.For parti
le solutions (E > 0): ψ′ =

(
χ
0

):
i
∂ϕ

∂t
=

{
m+ eφ+

1

2m

(
~p− e ~A

)2

− e

2m
~σ · ~B (1.391)

−(|~p |2)2

8m3
− e

4m2
~σ ·
[
~E ×

(
~p− e ~A

)]
− e

8m2
~∇ · ~E

}
ϕwherein up to the third term in order of their appearan
e one re
ognizes theparti
le's rest energy, its kineti
 energy and furthermore the spin and Landéfa
tor.This Hamiltonian also 
ontains the relativisti
 
orre
tions:1. Relativisti
 mass 
orre
tion H1 = − (|~p |2)2

8m3From expansion:
|~p |2

2
√
m2 + p2

=
|~p |2
2m

− (|~p |2)2

8m3
+ . . . (1.392)
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ouplingfor 
entral symmetri
 potential:
E = −~∇φ(r) = −1

r

∂φ

∂r
~r , ~A = 0 (1.393)

~σ ·
[
−1

r

∂φ

∂r
~r × ~p

]
= −1

r

∂φ

∂r

(
~σ · ~L

) (1.394)
H2 =

e

4m2

1

r

∂φ

∂r

(
~σ · ~L

) (1.395)what means that the Spin-orbit 
oupling is strongest for ∂φ
∂r

large, i.e. inheavy elements or near surfa
es of metals.3. Darwin term
H3 = − e

8m2
~∇ · ~E (1.396)

H3 is sensitive to lo
al variations of the ele
tri
 �eld, and 
an, therefore, beinterpreted as due to the Zitterbewegung with an amplitude ∼ λCompton =
~

mc
.1.4 Further representations of the Dira
 equation1.4.1 Massless fermions (neutrinos)For massless parti
les (m = 0) the Dira
 equation reads

γµpµ ψ = 0 or (1.397)
1p0 ψ = c~α · ~p ψ (1.398)It is seen that for m = 0 only three matri
es obeying the Dira
 equation appear,

{αi, αj} = 2i εijkαk. Therefore a 2-dimensional representation of the Dira
 equa-tion in terms of Pauli matri
es is possible.In the following we investigate what these two 
omponents 
orrespond to physi-
ally, and why in the massless 
ase the number of degrees of freedom is redu
edfrom four to two.
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√
p2c2 + (mc2)2 for free parti
les, it follows thatfor m = 0 the groupvelo
ity is (E > 0 solutions):

~v~p =
∂E

∂~p
m=0
=

∂

∂~p
(|~p |c) = c

~p

|~p | , (1.399)i.e. massless parti
les move at the speed of light.But, as we have seen in se
tion 1.3.10.1, parti
les moving at the speed of light(
|~p |
E

= 1
) 
annot have a non-zero expe
tation value of spin 
omponents perpen-di
ular to ~p: 〈σ⊥〉 = 0 for m = 0.It should be mentioned that the perpendi
ular 
omponents 
an �u
tuate abouttheir vanishing expe
tation value: 〈~σ2

⊥〉 > 0 in general, just like a σz eigenstatehas �u
tuating σx, σy 
omponents.As will be seen, the redu
tion of degrees of freedom from four to two 
orrespondsto the absen
e of perpendi
ular (transversal) spin 
omponents in the massless
ase.Be
ause of the longitudinal1 nature of spin for m = 0, it is useful to 
onsider theproje
tion of the spin operator ~Σ along the dire
tion of ~p:
ĥ(~p ) = ~Σ · ~p

|~p | heli
ity operator (1.400)
ĥ(~p ) obeys

(
~Σ · ~p

|~p |2
)2

=
3∑

i,j=1

ΣiΣj
pipj
|~p |2 (1.401)

=

3∑

i=1

Σ2
i︸︷︷︸

=1

p2
i

|~p |2 = 1, (1.402)be
ause for plane waves:
pipj =

{
0 , i 6= j

p2
i , i = j

(1.403)1Note: For general, non-plane wave states the longitudinality holds for su
h 
omponents oftheir Fourier de
omposition into momentum eigenstate.
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ity h = ±1.
Σ

Σ

p

p helicity h=+1

helicity h=−1Figure 1.14: Eigenvalues of the heli
ity operatorAs easily be veri�ed (~Σ · ~p
) 
ommutes with the Dira
 Hamiltonian H:

[
~Σ · ~p , (c~α · ~p+mc2)︸ ︷︷ ︸

H

]
= 0 (1.404)so that (~Σ · ~p

) and H 
an be diagonalized simultaneously.Therefore we seek a representation of the massless Dira
 equation in terms of(
~Σ · ~p

):
γµpµ ψ = 0 or (1.405)
~γ · ~p ψ = γ0p0 ψ with ~γ =

(
0 ~σ

−~σ 0

) (1.406)
−→ ~Σ · ~p and ~Σ =

(
~σ 0

0 ~σ

) (1.407)Therefore ~γ is transformed into ~Σ by multiplying with ( 0 −1
1 0

) whi
h 
an berepresented as
(

0 −1
1 0

)
= γ5γ0 , γ5 ≡ iγ0γ1γ2γ3

︸ ︷︷ ︸in general =

(
0 1

1 0

)

︸ ︷︷ ︸standard representation (1.408)Multiplying the Dira
 equation, m = 0, with γ5γ0 from left delivers �nally:
~Σ · ~p ψ = γ5p0 ψ (1.409)
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e [~Σ · ~p , γ5
]

= 0 these operators 
an be diagonalized simultaneously, whi
hleads to the followingDe�nition:
γ5 = iγ0γ1γ2γ3 is 
alled the 
hirality operator. (1.410)Equation (1.355) is brought to blo
k diagonal form by applying the unitarytransformation
ψch = Uψ with U =

1√
2

(
1+ γ5

) (1.411)
γµ ch = Uψ U−1 et
., (1.412)leading to two independent 2-
omponent equations, the Weyl equations:
(
p0 − ~σ · ~p

)
ψch

1 = 0 (1.413)
(
p0 + ~σ · ~p

)
ψch

2 = 0 (1.414)with the 2-
omponent heli
ity operator ~σ · ~p
|~p | .

ψch = 1√
2

(
1+ γ5

) is 
alled the 
hiral representation.The Weyl equations are, ea
h one by itself, not parity invariant (~σ ·~p P7−→ −~σ ·~p),but transform mutually into ea
h other. The 
onsequen
e is, that if a parti
le isdes
ribed by one of the Weyl equations, parity is not an allowed transformation,i.e. the parti
le o

urs either with heli
ity h = +1 or h = −1 in nature, but 
an-not o

ur with either one. For this reason, the Weyl equations were histori
allynot 
onsidered further at �rst.However, experiments showed that the only known massless fermion, the neu-trino, does indeed o

ur in nature only with heli
ity h = −1 and are 
alledlefthanded. With the same ba
kground antineutrinos with h = +1 are 
alledrighthanded. This shows that neutrinos are indeed des
ribed by the simplest pos-sible, 2-dimensional representation of massless fermions.Outlook:Experiments by Wu et al. showed that parity is not 
onserved by the weak inter-a
tion (SU(2) gauge intera
tion), i.e. the weak intera
tion 
ouples the two Weyl
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tion also generates the small, but �nitemass2 of neutrinos via va
uum �u
tuations.

2observed �rst time in 2002; Kamiokande, Japan



1.4. FURTHER REPRESENTATIONS OF THE DIRAC EQUATION 751.4.2 Majorana representationDe�nition: Majorana representation of the γ matri
es:
• γ0 imaginary, antisymmetri

• γk imaginary, symmetri
Example:
γ0 =

(
0 σ2

σ2 0

)
,

γ1 = i

(
0 σ1

σ1 0

)
,

γ2 = i

(
1 0

0 −1

) (1.415)
σ3 = i

(
0 σ3

σ3 0

) (1.416)It follows that in Majorana representation the free Dira
 equation is real:
[
iγµ∂µ −m

]
ψ = 0 . (1.417)The 
harge 
onjugation is in Majorana representation:

ψC = ψ∗ , sin
e (1.418)
[
γµ(i∂µ − eAµ) −m

]
ψ = 0 | ∗ (1.419)

[
− γµ(−i∂µ − eAµ) −m

]
ψ∗ = 0 (1.420)

[
γµ(i∂µ + eAµ) −m

]
ψ∗ = 0 ψ∗ = ψC (1.421)While the Majorana representation is 
ompletely general, it is espe
ially usefulfor neutral fermions:

ψ 
an be 
hosen real (ψ∗ = ψ) in this 
ase and is 
alled Majorana spinor. There-fore a Majorana spinor has half as many degrees of freedom than a Dira
 spinor.
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