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Chapter 1

Relativistic Quantum Mechanics

1.1 Introductory remarks

1.1.1 Special relativity and Lorentz transformations

Einstein 1905:

Postulate that the velocity of light (¢~ 3-10%2) is invariant in all

inertial reference frames.

Mathematical formulation: Minkowski space-time

When we specify an instant of time ¢ and a point (x,y, z) in space, we are defining
a point in space-time. We denote the coordinates of such a point in space-time

L 2% 2%), where

by (2% z
r=c,r =x,x° =y, 0 = 2. (1.1)

These coordinates are the components of a four-dimensional vector in space-time.
To shorten the notation we label such a vector by Greek indices p, v, so that we

get

" = (22, %) = (2%, 2", 2%, 2?). (1.2)
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The space-time metric tensor (Minkwoski metric) is given by

1 0 0 0
0 -1 0
, = 1.3
Ju 0 0 —1 ( )
0 O 0 -1

This metric defines Minkowski space. Later on we will see which consequences
the Minowski metric implies. Further more we distinguish between two classes of
vectors. Vectors like o are called contravariant and those like x, are known as
covariant vectors. Contravariant indices are placed as superscripts and covariant
indices as subscripts. The Minkowski metric determines how to get a covariant

vector of a contravariant one, and vice versa:

3 3
ot = Zg‘“’xu T, = Zgwx” (1.4)
v=0 v=0

Using the Minkowski metric explicitly we obtain that a covariant vector z,, (de-
rived from a contravariant vector x”) has negative space components. To be more
compactly we use the Einstein summation convention, i.e. Greek indices which
appear twice (once as a contravariant index in superscript and once as a covariant

index in subscript) are summed over.
x, = g;wxu (15)

So Greek indices u,v = 0,1,2,3 denote the coordinates of a four-dimensional
vector in Minkwoski space, while Roman indices a,b = 1, 2,3 denote the coordi-
nates of a three-dimensional vector in euclidian position space. To complete the

structure of Minkowksi space, we define the scalar product of two four-vectors a*

and bH:

—

a'b, = a, b = a’t’ — - b, (1.6)

where @ - b denotes the usual dot product between three-vectors. Now we can
consider the geometrical structure of Minkowski space, i.e. we take a look at the

norm of a four-vector a*:

aa, = (a0)2 — |al? (1.7)



Here we see that the norm is not positive-definite. Four-vectors can be classed

into three types, depending on the sign of their norm:

<0 a* is space-like
a'a,=<{ =0 a*is light-like (1.8)
>0 a* is time-like

The metric tensor defines how to calculate the scalar product and hence, the

length of a vector in Minkowski space:

s = a,a" = a'g,,a” = (ct)* —|a|® (1.9)

Often another parametrization, the eigentime 7 of a particle is used:
S =
r="2"=/(ct)? - |72 (1.10)
c

Since in the frame where the particle is at rest in the origin (¥ = const. = 0), i.e.
in the particle’s own frame, 7 is by defintion the time coordinate of the particle
(we will see that 7 is a Lorentz invariant quantity).

With these definitions, Einstein’s postulate can be formulated in a mathematical

way.

Transformations between reference frames S, S” moving with different velocities

(= Lorentz transformations) leave the length s of any 4-vector on the light cone

(i.e. a*a, = 0) in Minkowski space invariant.

Proof:
Because of general consistency arguments (homogeneity of Minkowski space), no
point in Minkowski space should have more special properties than any other

point. This means in particular:

Fundamental postulate of special relativity
The length of any 4-vector (with respect to the metric g) is invariant under

transformations from one inertial reference frame to another.
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ct

A . .
world line of a free, massive

particle: v=x/t<c

light cone
(world line of a photon
X=ct

world line of (accelerated)
massive particle: |slope|>1 always

X

Figure 1.1: Classification of 4-vectors

The Lorentz transformations L describe the relationship between the coordinates
x# of two reference frames which move relative to each other. Assume that the
reference frame S’ moves with velocity —4 relative to the reference frame S (¥]|z
without loss of generality). The Lorentz transformation L can be derived from

2

the condition s?> =invariant. One finds that only the primed coordinates 2™ and

2’ are changed while 22 and 23 are unchanged. If we set

y=—— f=- (1.11)

the transformation L can be written as:

¥y By 00
0 0
= (1.12)
0 0 01
It follows that
det(L) = =+1. (1.13)

The sign of the determinant leads to a classification of the Lorentz transforma-

tions.



11

det(L)=+1| LY >1 | — proper orthochronous Lorentz transformation

(no time reversal and no space inversion)

det(L)=—1| LY >1 | — improper orthochronous Lorentz transformation

(no time reversal)

det(L) = +1| L) < —1 | — proper nonorthochronous Lorentz transformation

(no space inversion)

det(L) = —1 | LY < —1 | — proper orthochronous Lorentz transformation

1.1.2 Relativistic generalization of quantum mechanics

The Schrédinger equation
zhgg/)(f t) = <—h—2A + V(f)) U(Z,t) (1.14)
ot 2m ’
is obviously not relativistically covariant (form invariant) since it is of first order
in the time variable 2%, but second order in the position variable 2% a = 1,2, 3.
Hence a relativistic generalization of the wave equation is necessary. As will
be seen in more detail in the course of the lecture, the combination of special

relativity and quantum mechanics has two important consequences:

1. Relativistically, the mass - and hence the particle number - are not con-
served any longer, but mass can be transformed into energy and vice versa,
if there are interactions present. Therefore, any relativistic quantum the-
ory must be a theory of variable particle number and obtains the character
of a field theory (i.e. a theory with infinite number of degrees of freedom

due to infinite particle number).

— Number of particles as a new quantum number characterizing a quan-

tumstate — second quantization

— Particles can be created and destroyed by interaction — particles and

anti-particles

The non-conservation of the particle number recurs also in open many-
particle systems at non-relativistic energy, for instance in superconductors
where electrons form pairs and disappear in the superconducting conden-
sate. Therefore, field theories for condensed matter systems use similar

methods as relativistic field theories.



12 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS

2. The motion of spin as an internal degree of freedom analogous (but not
equivalent) to angular momentum follows necessarily from the combination

of relativity and quantum mechanics.

In non-relativistic quantum mechanics we could to a large part use experimental
results to obtain the Schrodinger equation (probabilistic nature of quantum me-
chanics, interference — wave functions, correspondence principle). In relativistic
quantum mechanics this is much less the case, and we have to resort more and
more to symmetry and consistency arguments, as will be seen below. This is a

general feature (and strength) of modern theoretical physics.

1.2 Spin 0 bosons: Klein-Gordon equation

We seek a wave equation (at first for a free particle) which has no internal degree of
freedom (spin 0). The state of the particle must be described by a one-component
wave function (one-dimensional representation of the rotation group), i.e. it must

also be a Lorentz scalar ¢(z*).

For a free particle the relativistic energy-momentum relation is

E = \/p*c® +m?2ct. (1.15)

Plugging this into the Schrédinger equation (1.14) one would obtain

ih%w - \/—hzczﬁz + m2chy), (1.16)
where we have used
h -
p=-=V. (1.17)

2

This form is problematic, because it involves gradients of the wave function of
arbitrary order, as seen by expanding the square root. But this implies a non-
local field theory, which would violate causality. Therefore we make the Ansatz
that the equation above is quadratic in E:

92

—hzﬁ = <—h20262 + m204> Y (1.18)
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This is the Klein-Gordon equation. Using the notation

) )
- [
=g = G (1.19)

where a# = (ct, ', 2%, 2*) and x, = (ct, x1, To, x3) = (ct, —a', —2%, —2%), we

can rewrite the Klein-Gordon equation in a explicitly covariant form. Therefore

we write
ihs2s = ih=2 = iho e
ot — ¥ oah ’ hd,, =il | ) 1.20
ihaga:—ihaa,azl,z?)}p”_)l R W (1.20)
and obtain the relativistically covariant wave equation:
2 0 272 2.2
- 8(Ct>2¢(x,t) = (=h"V= +m c)Y(Z, 1) (1.21)
2
& {auaﬂ + (%) } W(a) = (1.22)
The operator
0:=9,0" = 92 — V* (1.23)

is known as the d’Alembert operator which is a scalar under Lorentz transforma-

tion. The factor %€ is the wnverse Compton wave length.

1.2.1 Free solutions of the Klein-Gordon equation -

Concept of antiparticles

The free Klein-Gordon equation has the plane-wave solutions

W@, 1) = exp (—%(Et - ﬁf)) = exp (—%pua:“) , (1.24)
with
E = + /P2 + (mP). (1.25)

For a given momentum p there are always two solutions with equal, but opposite

in sign energies. The solution with negative energy seems not to be meaningful
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for a free particle, since rest mass and kinetic energy are both non-negative. An
arbitrary solution of the Klein-Gordon equation can be written as a 4-dimensional
Fourierintegral (hk* = p#)
d*k 2 :
P(at) = / 5 (kuk“ - (@) )A(k“)e"k“x”. (1.26)
V2T h

Where A(k*) is arbitrary, i.e. the solutions with negative energy £ < 0 cannot
be discarded.

Re-interpretation:
We choose always E = +/p?c? + (mc?)? > 0 and the solutions:

P
P

) = BT (1.27)
) = e wCBFD — o (B(-)-F) (1.28)

Tt
Tt
The solution with negative energy can be seen as that of a particle with positive
energy propagating backward in time. A particle propagating backward in time
is called antiparticle. The concept of particles and antiparticles will be developed

further later on.

Remark:

The existence of ¥ < 0 solutions is a consequence of second order in time deriva-
tives. The wave equation must be of second order in 9/0%, since the kinetic
term must be ~ O(p?) (more precisely: even order in p), in order to fulfill space
inversion symmetry (parity). The relativistic equation must therefore also be
of second order in 9/0(ct). The relativistic formulation necessarily implies the

existence of antiparticles.

1.2.2 Continuity equation: Violation of particle number

conservation, conservation of energy

In order to derive a continuity equation describing the conservation of the quan-
tum mechanical probability, one must again observe that the Klein-Gordon equa-
tion is of second order in time. Recall that the probability density for the

Schrodinger equation is

="y (1.29)
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and the probability current is

A . .
> *\Taly — ) 1.30
7= 5= (vVe - uVy) (1.30)
They obey the continuity equation
g + ﬁ 7=0 (1 31)
o TV T '

Now we determine the corresponding expressions for the Klein-Gordon equation.
Multiplying the Klein-Gordon equation (1.22) from the left with ¢* we get

" (auau + (%)2) ¥ =0. (1.32)
Taking the complex conjugate leads to

" (aua“ + (%)2) vt = 0. (1.33)
By calculating the difference of these equations we finally get

Op (V" 0utp — 90"Y7) = 0, (1.34)
which can be written in a more familiar way as

g {% <¢*%¢ - w%@b*)} iy 2% w90 —vPu] 0. )

—

p 7
While the current 7 has the well known form, the probability density p identified
from the continuity equation contains a time derivative, again a consequence of
the second-order-in-time nature of the Klein-Gordon equation. As a consequence
p is in general not positive definite! For this reason, the Klein-Gordon equation
was at first rejected, since it did not seem to give positive probability. However,

by Fourier transforming p(Z,¢) in time for plane waves, one obtains:

plw,7) = 22 g (1.36)

mc?

This means that p must be interpreted as an energy density (in units of the
rest mass), rather than a particle density. This is in accordance to the general
observation that particle numbers are not conserved in relativistic theories, but

rather the total energy.
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1.3 Spin % fermions: Dirac equation

1.3.1 Formulation of the Dirac equation and Dirac matrices

The Klein-Gordon equation was abandoned at first, because it seemed to yield
negative probability density. The interpretation as an energy density came only
later, after the concept of antiparticles had been introduced by Dirac (first for
the case of spin % fermions). In order to guarantee a positive definite probability
density, we now seek a wave equation which is of first order in time and which
is relativistically covariant (without spin in mind yet!). It must still obey the

relativistic energy-momentum relation
E = /P2 + (mc?)? (1.37)

However,

1. the square root must be avoided (causility) and

2. the wave equation must be first order in the space derivatives as well, in

order to be covariant.

Both requirements can be achieved by making the Ansatz that the squared total
energy of a particle can be written as a complete square of a term involving the
momentum only in first order. Hence this term must also be linear in the rest

energy (Dirac). This means
E? = + (m®)? = (ca- p+ Bmc?)?, (1.38)

with @ = (o, oy, a.), § (space independent). &, § must be determined such
that the equality is fulfilled:

Aoy +py +p2) +mPct = lagp + g + azpl) + Fmict (1.39)
+papy(Qpay, + aya,) + Epyp.(aya, + azay)
+epape(zay + agaz) +mepy (a8 + fay)
+py(oyf + Boy) + pz(zf + fas)]
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It follows that oy, oy, oy, 8 cannot be numbers, but must be matrices, the Dirac

matrices, which obey the relations:

=3 =1 = x,y,% (1.40)
aaj +ajoy = Jog, a5l =0 i,j] = T,Y,% (1.41)
a,ﬂ+/@a,~ =. [Oéi,ﬁ]+ =0 1 = T, Y,z (142)

i.e. all a, # anticommute among each other, or in compact form:

Algebra of the Dirac matrices

[M*, M), =261 (1.43)

with

M" = 3, azayo,. (1.44)

Properties and determination of the Dirac matrices:

1. ag, oy, o, B are hermitean, in order for the Hamiltonoperator

H = cd - p+ Bmc® to be hermitean.

2. All eigenvalues of M* are A = +1.

Proof: (for yu =v)

(M"? = 1 (projectors!) (1.45)
in eigenbasis of M* = X = =1 (1.46)
O

3. The trace of M* vanishes:

tr(M*) = 0,1 =0,1,2,3 (1.47)
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Proof: (for u # v)

MPMY = —M"M" (1.48)
& MPMEMY = —M*MYM" (1.49)
1
= tr(M¥) = —te(M*MYM"Y) (1.50)
= —tr(M” M" M) (1.51)
=1
= —tr(M") (1.52)
_ 0 (1.53)
O

4. The dimension d of the matrices a, oy, o, B is even.
Proof: (directly from 2. and 3.)
d d
O=tr(M") =) N=) (£1) <« diseven (1.54)
i=1 i=1

O

5. The o, ay, a,, f must be at least 4-dimensional (d > 4), since for d = 2
there are exactly three hermitean Pauli matrices obeying the Dirac algebra,

and this set cannot be enlarged to include a fourth.

The Dirac matrices are not uniquely determined by their algebra, but can be

chosen for d = 4 as

0 & 1 0
50), ﬁz(o—n) (1.55)

where ¢ = (0, 0y, 0,) and

ax:<01>,ay:<9 _i>,azz<1 0) (1.56)
10 10 0 —1
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are the Pauli matrices. This is the standard representation of the Dirac matrices

a, 3. Using the correspondence principle, we now have the relativistic Dirac

equation:
L0 I 2
zhad)(ar“) = (cd-p+pme”)ip(xt) (1.57)
with
7= —ihV. (1.58)

Since o, oy, o, § are 4-dimensional matrices, the ¢ (z*) must be a 4-dimensional

vector in an abstract representation space (in general: d-dimensional, d even).

o (x") is called Dirac spinor

e The fact that ¢(z*) is a d-dimensional object with d even implies that any
relativistic particle described by the Dirac equation has a two-fold internal
degree of freedom (i.e. comes in two flavors). This degree of freedom will

be identified with particles and antiparticles.

The remaining two of the 2 x 2 = 4 = d degrees of freedom will be identified with
spin. The existence of particles/antiparticles as well as of spin follows from the
relativistic formulation. Higher dimensional representation of the Dirac matrices

are possible:
d=2-(25+1) even (1.59)

The factor 2 occurs because of the particle/antiparticle concept and S is the spin.

This shows that the Dirac spinors are not 4-vectors.

1.3.2 Covariant form of the Dirac equation

The standard representation of the Dirac equation has non-trivial transformation

properties under Lorentz transformations, since it represents the total energy of
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a particle, which is the 0-component of a Minkowski 4-vector. It is convenient to

write the Dirac equation

ih%w = (ca - p'+ pmc*)y (1.60)

in explicitly covariant form. In order to give it a definite transformation behavior,

we multiply by %ﬁ

(—ihB0yt + ihBa' 0 + me)h = 0 (1.61)
and define

0 _

o= p (1.62)

o= Bati=1,2,3. (1.63)

(Here v, B obey the Dirac algebra, but do not need to be determined explicitly)

mc
Since %€ is a Lorentz scalar (m is the invariant rest mass), so must
1O, = fyui (1.65)
: ozt '
be. Therefore v# = < s is a contravariant j-vector, i.e. transforms un-
a

der Lorentz transformation as v* = L!+¥, and the equation above is explicitly

Lorentz covariant.

Shorthand notation:

Y, =y ug — 7 - @ =: fi (u slash) (1.66)
(—z‘@ + %) =0 (1.67)
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This is the Dirac equation in an explicitly covariant form.

Properties of the v matrices (Dirac matrices):

7= is hermitean and ()2 =1

i

7%, i=1,2,3  are antihermitean and  (7)* = —1

('Vi)T = (ﬂozi)]L =a'f=—-Fa' = —’Vi
(7i>2 = 60éiﬂai = —ﬂﬂaiai = _1

It follows that the Dirac 7 matrices obey the algebra:

s =2¢"1 Dirac algebra

In the standard representation of the @,  matrices the v matrices read

1 0 : 0 o
= ) b= ; , 1=1,23

An equivalent representation is obtained by the transformation

A= AyPATY (A non-singular, arbitrary)

21

(1.72)

(1.73)

(1.74)

since this leaves the Dirac algebra valid. Hence the components of i) are repre-

sentation dependent and are not simple 4-vectors.

1.3.3 Continuity equation for Dirac spinors

Dirac spinor:
U
b= |, =)
Y4

(1.75)
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We want to derive a continuity equation for the density

4
p=1t =" Wi, (1.76)
=1
which involves
)= () urvt (50). (1.77)
At first we consider the Dirac equation
ih (%@z)) = (—ihed@ - V + fmc) (1.78)
and multiply by ¢! from the left side and obtain
il (%¢) = (—ikicpta - vV + gmcyh. (1.79)

Now we consider the Hermitean conjugate of the Dirac equation and multiply by
1 from the right side:

8 —
—ih (EW) b = ik (W*) e + myT By (1.80)
Calculating the difference of these equations one gets:
ihsr (W) = —ih |¢1(cd) - (V) + (Vi) - (ca)y| (1.81)
= V- (¥'(caw) (1.82)
This leads to the continuity equation we aimed at:
a —
ap—l—V-sz or ot =0, (1.83)
where
[ CP 9.) = 8(act) 1.84
=) @)={ % ). (1.84)
J o7
With
p = Y Dirac density (1.85)
7 = Yi(ed)y = Tp Dirac current density (1.86)
v o= ca velocity operator in Dirac theory (1.87)
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Since the Dirac equation holds in any inertial reference frame (relativistic E-p
relation), so does the continuity equation. Hence, j* is indeed a contravriant

4-vector, i.e. transforms according to
g =Lr,5". (1.88)

The discussion up to now has shown that the relativistic formulation of quantum

mechanics necessarily implies a fundamental reformulation of the wave equation.
Two possibilities:

1. The wave equation is second order in time, implying

e positive and negative energy solutions — particle/ antiparticle

e non-conservation of particle number, conservation of energy — bosons
2. The wave equation is first order in time, but multicomponent wave function,
implying
e spin, particles/ antiparticles

e conservation of particle number — fermions

1.3.4 Lorentz covariance of the Dirac equation: Lorentz

transformation of the Dirac spinors v

We have derived the Dirac equation as a representation of the relativistic energy-

momentum relation
E? = p*c® + (mc?)? (1.89)

using the correspondence principle and postulating an equation linear in E/c =
ihd/0(ct) and = —ihV. The E — jrelation is just an expression of the squared

length of the energy-momentum 4-vector

pup’ = (5)2 —p* = (me)?, (1.90)

which is invariant under Lorentz transformations. Therefore, the Dirac equation

is by construction covariant (shape invariant) under Lorentz transformations.
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We now calculate what this implies for the transformation of the Dirac spinor v

under Lorentz transformation:

Although v is a 4-component object, it is not a 4-vector in Minkowski space.
This is obvious, because there exist higher, even-dimensional representations of
the 7 matrices (see above). Rather, v is a spinor in an abstract representation
space, as will be seen later.

Therefore, the transformation behaviour of ¢ under Lorentz transformation is
not a priori obvious.

Without restricting the generality we consider only special, orthochrone Lorentz
transformations (no space inversion, no time inversion, without translations from

inertial reference frame I to reference frame I'):
o = L*, 2" =Lz (1.91)

(The matrix L is the representation of L in Minkowski space.)

The Dirac ¢ transforms under L according to a linear transformation S(L):

P = S(L)Y(x) (1.92)
= S(Lyy(L () (1.93)

S(L) is the representation of L in the 4-dimensional spinor space (i.e. S(L) is a

4 x 4 matrix in spinor space).

Lorentz covariance of the Dirac equation:

<—z'fy“8# + %) P(z) = 0 in frame [ (1.94)
<—i7“8l2 + %) P = 0 in frame I’ (1.95)
The above occurring partial derivatives are shorten by
0 , 0
W % and a“ — a:BM/- (196)

The v matrices can be chosen to be Lorentz invariant. This can be seen as follows:

~# are determined by their algebra only up to a linear transformation,

= Ayt AT (see above). (1.97)
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Suppose 7 transforms under Lorentz transformation according to
Ay = T(L)y*T(L). (1.98)

Then we can always choose in the reference frame a new basis representation 7’

for the matrices, such that:
¥ = = A=T7"L) (1.99)

O
Now we consider the behavior of the covariant derivative under Lorentz transfor-

mation.

0 dz"" 0

ne oxh B ozt Oxv’

Which can be easily performed since:

= 1,0, (1.100)

' = LYt (1.101)
81.1// .
o = L, (1.102)

In (1.71) we obtained between ¢ and ¢ the relation

S (2') = ¥ (). (1.103)
Plugging this into the Dirac equation (1.73) one finds that
(—W“L”Hai + %) S~ (@) = 0. (1.104)

By multiplying with S from the left side we get

mc

h

Lorentz covariance, comparing equation (1.83) with (1.74), we have the condition

for S(L):

—iSLY ST (2)) + =/ (') = 0. (1.105)

SLY S~ =" (1.106)

or

S~HL)y'S(L) = L" A" (1.107)
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Determining the representation S(L) explicitly

We consider infinitesimal Lorentz transformations first. Representation in Minkwoski

space:
Lr, =9d",+Av", (1.108)

where Aw”u is infinitesimal.

Diagonal elements:

L’ =1 (1.109)
Lt = cos(¢) rotation (1.110)
L”, = cosh(¢) Lorentz boost (1.111)
=L, = 1+0(¢*) (1.112)

Off-diagonal elements:

5 sin(¢) B
L, ~ { sinh(6) } = 0(¢), v#E L (1.113)
= Aw’, = 0+ 0(¢?) (1.114)

(Aw?,) has at most 6 independent, non-zero elements to linear order in ¢. Each

one generates an independent Lorentz transformation, 3 rotations, 3 Lorentz

boosts in 3 spatial dimensions.

Expansion of S(L) in powers of Aw":

S = 1+7 (1.115)
S™' = 1 -7  with 7 infinitesimal (1.116)

Plugging this into equation (1.85) we find

(L= (L+7) = 7" +4%7 — " + O(r?) (1.117)
= A4 Awt Y (1.118)
7] = Awk A (1.119)
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This determines 7 up to an additive matrix proportional to 1.

Proof:

If there were two solutions 7y, 7o, then
[y, 11 — 1] = 0.
This yields

m—Ty=a-1 witha € R

Unique determination of 7:  norm invariance

e S(L) must have the scalar product

4

Uiz)(z) = i) ta(z)

a=1

27

(1.120)

(1.121)

(1.122)

in spinor space, which is invariant. (This implies that the density p =

YT ()1 (z) transforms only through the Lorentz contraction of the coordi-

nates x, and hence that p has the correct behavior under Lorentz transfor-

mations.)
Thus we find
det(S) =1,

up to an irrelevant phase factor.

1 =det(S)=det(l+7) = det(1)+ tr(r)
= 1+tr(r) +O(7%)
tr(r) = 0

The equations have the solutions

1 , 1 ,
7= A0 (e = ) = gAY [ )

(1.123)

(1.124)
(1.125)
(1.126)

(1.127)



28 CHAPTER 1. RELATIVISTIC QUANTUM MECHANICS

Representation of Lorentz transformation in Minkwoski and in Dirac space (in-

finitesimal transformation)

L, = &, +Aw, (1.128)

1 ,
S(L) = 1+ Aw",g"" [ ] (1.129)

Finite Lorentz transformations

e Transformations in Minkwoski space (4-vectors)

A finite Lorentz transformation, generated by the real tensor (w”,) can

be realized by N-times applying the infinitesimal transformation

v o
0", + Nl N — o0 (1.130)

(where 7 is a free parameter which will be determined below).

14 _ : E N Y _ nw v
L, = []\}12:1)0 <l+ Ng) ] ) = (e™)", (1.131)

Example:

Lorentz boost to a coordinate system moving in x direction with veloc-

ity =0 = —v/c
0100 1 000
N I SR B o [0 0 0
= 0000 0000
0000 0000
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Therefore we get

|
(L%) = 1+ 5 0ma)* (1.133)
k=1
= 1-1%+ Z @n%lm (1.134)
k=0 '

= ]‘ 2ki+1/,_01
+;(2k+1)!” (7

(L) = 1- 1% + cosh(n) 1% + sinh(n)(7™), (1.135)

cosh(n) sinh(n) 0 0

_ | sinh(n) cosh(n) 0 0 (1.136)
0 0 10
0 0 01

From this result we see that the parameter n of the transformation is related

to v/c by
tanh(n) = %:ﬁ, (1.137)
cosh(n) = 7:%, (1.138)
1=(2)
sinh(n) = (7. (1.139)

e [orentz transformation of a Dirac spinor

; U 1 v'v
S(L) = i [1+ 5= (@07 b )Y (1.140)
)
1 wo Vv
= exp (0 g(Wg™ D wl) (1.141)

[(*) This product is a 4 x 4 matrix in spinor space and a scalar in Minkowksi

space|
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Example:

Lorentz boost by —v/c in x direction

w”,j,g”," [

Where we have used

01

o O =

0
0
0
and

Vs W]

(Y0, 1]

0100 1
1000 0
W) = 0000 0
0000 0
X[’yw'yu]
= 4o
0 0 1 0 0 0 0
0 0 0o -1 0 0o | |1
0 0 00 -1 0| o
0 0 0 0 0 -1 0

h/ua 71/]4. - 271/7/1

29uu]l - 2%/}/#
1 0
0 -1

=271
_9 ( 0 —01
01 0

01 0

—20&1

The transformation S(L) then becomes here

exp <ga1)

k=0 k=0
cosh(n/2)1 + sinh(n/2)a;
cosh(n/2) 0 0
0 cosh(n/2) sinh(n/2)
sinh(n/2) 0 0

(@)
o O O O
o o O O

Z @ (g)2k n Z m (g)ﬂc—i—l o

sinh(n/2)
0

cosh(n/2)
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1%

(1.142)

(1.143)

(1.144)

(1.145)
(1.146)
(1.147)

(1.148)

(1.149)

(1.150)

(1.151)

(1.152)

(1.153)

(1.154)
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This is a Lorentz boost in z direction by tanh(n) = v/c.

e Lorentz transformation of bilinear forms of Dirac spinors

We investigate the behavior of bilinear forms like

=iy’ = ey ( ]i ) P (1.155)
~—~ (%
0

uner Lorentz transformation. To this end we need the relation between ST

and S
STy =y 5! (1.156)
with
00 > h
- +1, L™ >1 (orthochronous) (1.157)
-1, L% < —1 (time reversal)

(See F. Schwabl, Advanced quantum mechanics, p. 144 for the proof)

We introduce the shorthand notation

Y =Ty, (1.158)

since this combination appears regularly in bilinear forms like j# above.

Lorentz transformation
P = Sy (1.159)
P = YISy = bty = bypST! (1.160)
Hence, we have the transformations:

— Vector (4-current):

j“ = cq/_}fy“q/} (1161)
g = STypS Y = L' Yy = bL! 5 (1.162)
——

:L‘LV'YV
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— Lorentz scalar or pseudoscalar time reversal

O (1.163)
P = bpSTESY = b (1.164)

1.3.5 Non-relativistic limit of the Dirac equation: Coupling

to the electromagnetic field and the existence of spin

Standard representation:
) L ,
2h§¢ = [cd - p'+ Pmc|y (1.165)

In order to "probe" the nature of the particles described by the Dirac equation,
we need to couple the particles to some external field, especially the electromag-
netic field. As in non-quantum mechanics, the coupling to the electromagnetic

field arises from the postulate of local U(1) gauge invariance of the Dirac equation.

Phase transformation:

b(z) — P(z) = e @Dy(z) (1.166)

a((zt) — a&) +i8(82€) =D (1.167)

a% — %Hg—g —. D, (1.168)

or puzih% — pu—h% ~1I, (1.169)

Where the 4-vector x is denoted as

z= ( “ ) . (1.170)

Generalizing the gradient field (00/0x") to an arbitrary field, the electromagnetic

4-vector potential is introduced:

Kinetic 4-momentum:

I, = (pu - %Au) (1.171)
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Where
q 00
A, =h— 1.172
c H 81’“ ( )
and ¢ is the charge of the particle.
Contravariant representation:
M = g™, = p* — L4 (1.173)
c
0
I’ = ih— —q® 1.174
c ihar =4 (1.174)
I ih 0 Ly (kinetic momentum) (1.175)
= —th— —-= n momentum :
or ¢
Dirac equation in an electromagnetic field:
L0, g 2
2h§¢ =[cd- (p—=A)+Lmc” + qPy (1.176)
*

o
We consider the non-relativistic limit v < ¢ for ® = 0 and obtain the Dirac

equation
Ey = [co? T+ Bmc*| . (1.177)

Stationary solutions:

Y(t) = e i (1.178)
Defining components
x(z)
) = , 1.179
where y, ® are 2-component spinors.
E—mcé —c3-1
e T Xl =0 (1.180)
—ca -1 E 4 mdc? P
(E—mc®)x—cd- -l = 0 (1.181)
E
(E+mc?)®—cd-Tly = 0 (1.182)
~——

Es+2mc?
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With E, the energy eigenvalue of the Schrodinger equation (shifted by mc? with
respect to F).

Non-relativistic case, v < ¢ and small field %/T‘ < |pl:
P 2
E, ~ — 1.183
T < me ( )
ITI| =~ m|v] < me (1.184)
-1
o — 1.185
<E + mc2> X ( )
E+mc® = E,+2mc® =~ 2mc* (1.186)
c- | ~ md|7] (1.187)
q)i lv
— = —— 1  =1,2 1.188
" P < 1, 4} , ( )
1 B
d =2 —(o-11 1.189
(5 T (1.180)

In the non-relativistic limit, x and ® are called the large and small components,

respectively.
Eliminate the small component from the Dirac equation:

(1.148) in (1.140):
1 . .

Note that the product in the brackets is a scalar product in position space but

the product of the terms in brackets is matrix product. by replacing

E, — ih% (1.191)

we finally obtain the Pauli equation:

0 1 e -
ihst = o (6 - 1) (3 - Ty (1.192)

Using the identity

(G- @) (G- T) =@ -T+i& - [il x 7] (1.193)
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(where @ and v are arbitrary vectors) and

— — . _ g — S g —
Mx 1 = <p CA) x (p CA) (1.194)
. q: 7 Qoo ., Criro T
= Ixpl-LAxp - Lpx A+ L [Ax A (1.195)
N—— C & C7 N
=0 =0
= A g = 2 A+ 1A g (1.196)
_ g g (1.197)
C
_ @g (1.198)

one obtains:

1 B} 1,
o= [o-- LAy - 25 By (1.199)
m e e
=2up

This equation describes a 2-component spinor, whose 2 internal degrees of free-

1

;0 with a magnetic

dom couple to the magnetic field like an angular momentum
moment fn—}z =2Uup = gup.

The relativistic theory predicts spin % with a Landé factor g = 2.

_ah

Bohr magneton (1.200)
me

KB

1.3.6 Solutions of the Dirac equation for free particles

We set from now on. Consider the free Dirac equation:
(=" 0, +m) =0 (1.201)

The rest mass m is then the only scale in the problem. A length or energy scale
is reconstructed from it in a unique way by multiplying with appropriate factors
of h,c.

1
m o— o inverse Compton wave length  (1.202)

h B )\Compton
— mc® = E rest energy (1.203)
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1. Particles at rest: py =0

Dirac equation:
(=i +m)y = 0

Putting in the v matrix explicitly one obtains:

10 0 O 100 0
01 0 0100
—i0y) + m| =0
00 —1 S IR, v
00 0 -1 00 01
This equation has normalized solutions:
¢(+)@) = u(E=m,p= 0)€_imt r=1,2
w(_)@) = v(E=mp= 0)6“"” m =rest energy
1 0
g O =, 1
5 0 — s s 0 =
uy(m, 0) 0 us(m, 0) 0
0 0
0 0
" 0 , 0
wm®) = |V e |
0 1
A m
(") i

(1.204)

(1.205)

(1.206)
(1.207)

(1.208)

(1.209)

(1.210)

There exist solutions with £ > 0(uy, u2) and solutions with £ < 0(vy, vq).

2. Solutions with finite momentum p and total energy E

These solutions can be obtained from the 4 solutions at rest by applying a

Lorentz transformation to an inertial frame with velocity —o. Without loss

of generality we choose Z||p: p, =p

The relation between p and v is obtained from the Lorentz transformation
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of the 4-momentum:

()= G)GE)-(m) e

1
1= (1.212)
B = %:v (1.213)
px = Pym (1.214)

The factor ym is the relativistic mass enhancement. For the Lorentz trans-

formation in Minkowski space,

coshn sinh(n) 0 0
(L") = sinh(n) cosh(n) 0 0 (1215)
0 0 10
0 0 01
The Dirac spinors transform with
S(L,) = cosh(n/2)1 + sinh(n/2)ax, (1.216)
ie.
cosh(n/2) 0
0 cosh(n/2)
(E,p) = . W (E, ) = 1.217
(.7 ’ B = | S| )
sinh(n/2) 0
0 sinh(n/2)
sinh(n/2) 0
(E.p) = (B, ) = 1.218
wEn = | oo | e o | e
0 cosh(n/2)

ui, vl i = 1,2 can be expressed explicitly in terms of the energy E and the

17 Y1)

momentum p of the particle using

cosh(n) =~y = % sinh(n) = By = % (E>0) (1.219)
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and the theorems for the 1/2 arguments:

cosh(n/2) = \/; (cosh(n)+1) =

/

1
2m

A

sinh(n/2) = sgn(n )\/;(cosh

§°\H

= sgn(p.)

3]~
&5
+
S
x

Uy (E7 pm) = 1
Dz 2m(E+m) X2
5 (B +m)xs
2m
u2(E7 pm) = 1
Dz \/ 2m(E+m) X1
1
Pz 2m(E+m) X2
Ul(Eap:E) - L(E{-m)
om X1
1
Dz 2m(E+m) X1
U2(E7pm) - L(E{-m)
om X2

with

(1)

>
[N}
o

g

—_

) |

— 1) = sgn(p:)

mz
1 222
E+m

(E+m)

(1.220)

(1.221)

(1.223)

(1.224)

(1.225)

(1.226)

(1.227)

As expected from the analysis of the non-relativistic limit for v < ¢

the upper components of uy, us are

the lower components of uq, us are

the upper components of vy, v, are

the lower components of vy, v, are

The solutions for arbitrary direction of p are obtained by replacing

PzX2 — O -DX1
: ﬁXz-

Qu

PzX1 —

Q

Q

Q

Q

(1.228)
(1.229)
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This can be shown by applying a rotation in 3-dimensional position space to
the above solutions for p]|z, or by direct solution of the Dirac equation. The

space-time dependent phase factors of the solutions are Lorentz invariant

and read:
pmimt _mipa _ iphay (1.230)
—— ~——
in rest frame in moving frame
_ ilBt—p®) (1.231)
ptimt’ o Jtip¥wo’ _ tiphay (1.232)
o~ i(—Et+pT) (1.233)

Hence, the free solutions of the Dirac equation with momentum p read:

(@) = u (B, p)e P (1.234)
W (2) = v (B, p)e I (1.235)

with the relativistic dispersion £ = +4/p* + m?2. (Since by construction

H? = —ih?2

5> Where Hp is the Dirac Hamilton operator.)

Orthogonality relations of the wu,, v,

U (k)us(k) = O rs=1,2 (1.236)
U (k)vs(k) = —drs (1.237)
iy (k)vs(k) = 0 (1.238)
v (k)us(k) = 0 (1.239)

1.3.7 Angular momentum and spin

We have derived the generates of the Lorentz group both in Minkowski and in spin
space. Therefore, we can now identify the generates of 3-dimensional rotations,
which are, by definition the components of angular momentum. The rotation in

spinor space gives an additional contribution, identified with spin.

L*, = 6, + Aw”, Minowski space (1.240)

1
S(L) = 1+ éAw’“’ [Vyus W] Spinor space (1.241)
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A Dirac spinor is a variable both in Minkowski and in Spinor space. Rotation by

AP, |Ag| = rotation angle.

Aw' = —giih A (Aw’, = Awy = 0) (1.242)
Define:
1
Ouw = 5[7}1771/] (1243)
ol = g =k (1.244)

One can show that

ok 0
vk _ 1.245
( O ) (1215

k

where ¢% are the Pauli matrices. Plugging the commutator relation above in

equation (1.204) one obtains:

S(L)=1- %Aw’“’aw (1.246)
And finally:
V'(2') = L{y(z)} = S¢(x) = Sy (L") (1.247)

1.3.8 Physical interpretation of the solutions of the Dirac

equation: The antiparticle concept

As seen in 1.2.6, the Dirac-Hamiltonian has positive as well as negative energy
eigenvalues E, because ( has the eigenvalues +1.
Free particles with a negative energy spectrum which is not bounded from below

are a problem because of two reasons:

1. kinetic as well as rest energy should be positive

2. there is no stable ground state; i.e. a particle could go to infinitely low

energies via scattering processes and the system would not be stable.

In this section we show at first that the £/ < 0 solutions cannot simply be dis-
carded as unphysical, because they necessarily appear in physical systems in
connection with the £ > 0 solutions. We then give a physical interpretation of

the E' < 0 solutions, which remedies the paradox.
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Wave packets and 7Zitterbewegung”

The general wave packet is given by the expression:

U(x) = / (;ijf; Sph— E%) Y [(zﬁ)sz@, )W (p) e—ipuw“] (1.248)

s=1,2

g 3p . .
wherein (gwl)l d(pt— E%) = % is a Lorentz-invariant measure and the Deltafunc-

tion guarantees, that 1 is a solution of the Dirac equation. The expansion coef-
ficients are given by 2m b(p, s) and like always in this context is £/ = /[p]? + m?

(relativistic dispersion).

Furthermore we identify:

Wi(p) = { us(2) | (1.249)

vle) = [ GRS B ™ d (p up)et ] (1.250)

(271-) s=1,2 B
with
b(p,s) = 21b(E, 7, 5) (1.251)
d*(p,s) = QWZ(—E,}?,S). (1.252)

a) Superposition of states with £ > 0 only

For wave packets containing only £ > 0 solutions no unexpected behavior ap-

pears: d*=0, po = FE.

W (z) = / (;ZW]; 3% 3" b(p, s)uy(p)e " (1.253)

s=1,2
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In this case the total current is given by

= [ (1.254)
R B e R E s
= o G wE ) (1.255)

- CZ/%% \b(g,s)f% (1.256)

— <%> = () (1.257)

which is the averaged group velocity over all states in the packet. The group
/172 .
= 0E _ Vi tm? £.In (1.256) we have used the

T op
orthogonality relations for u, v

velocity itself is given by vg

b) Wave packets containing £ > 0 and E < 0 solutions

Wave packets which are superpositions of £ > 0 and E < 0 solutions of the
Dirac equation cannot be avoided generally. In this case unexpected behavior

appears, as the following example shows.

Time evolution of a free and localized wave packet which contains at ¢ = 0

only £ > 0 components and its width is characterized by a parameter d (total

width: 4d):

¢ w7y (1.258)

wherein w is a pure £ > 0 spinor, e.g. w = ( %1 ) =

o O O =
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Figure 1.2: Gaussian wave packet

Decomposition of the Gaussian wave packets into plane waves in order to describe

its time dependence using the Fourier transformation:

3

e g2 3 2\ 2 Lo

TR /(;Z—p;g (Zl;r—d> i e —F)’ (1.259)
T T

which is a Gaussian wave packet in p-space shifted by k.

Some further calculation delivers

b(p,s) = Q%d?’e_d%ﬁ_g)zul(vp)w # 0 (1.260)
d*(p,s) = Q%d?’e_d%ﬁ_gyﬁ(]_a)w # 0 (1.261)

what shows that the general wave packet (¢, ¥) contains both £ > 0 and E <0

components.

The E < 0 components are important for a wave packet with initially only £ > 0
components, if the wave packet is localized much stronger than the particle’s
Compton-wavelength ye:

h h,c=1 1

d< xo=— (1.262)
mc

m

As we presupposed is w = ()Bl). Using the free particle spinors ug, v, we get the

ratio

d*(p)  |p— k| .
T~ Eim <|k:| < 1) . (1.263)
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Finally we use this ratio to show that the components with negative energy can
be neglected for less strong localization of the particle but have to be considered

for strong localization.

e weak particle localization: Wave packet extension d > %:

-k Sd<m = %<< 1. (1.264)
e strong particle localization: Wave packet extension d < %:
F—kl~d'>m = |[f-k~E << £m1(1.265)
Zitterbewegung:

In Physical expectation values such as (Z) the contributions with energies equal
in size but opposite in sign lead to interference terms with oscillatory time de-
pendence.

(It should be mentioned that in the modulus squared of terms with only £ > 0

the time dependence cancels out.)

@ = [ ¢ (1.266)
%(@ = %/d%z/ﬁ(o,f)e“Htfe—thw(o,f) (1.267)
— /d?’xq/ﬁ(t,f)i [H, Z](t, T) (1.268)

— [ Erviweave) = T (1.269)

10 = [ G {5 S b+ o) (1.270)
+iy [b* (p, 8)d" (p, 5)e2 210, (p) vy (p) (1.271)

— b(p, s)d(p, s)e~ 2P, (]_J)aious(]g)} } (1.272)

In this equation we see the time independent first part and a time dependent

second contribution to the total current. The second part contains oscillations

(Zitterbewegung) with frequencies of 2E > % =2 x 10*'s7! for electrons.
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The Klein paradoxon: Dirac particle at a potential well (scattering

problem in 1 dimension)

V(x1)=gp(xt)

X1=X

Figure 1.3: 1-dimensional scattering wall

Since V(z') = const in the regions I and II respectively, there are "plane wave

solutions” with energy FE.

Region I:

We use unnormalized wave functions: Normalization factor E;—mm is omitted!

Incident wave from left with £ > 0:

1
—iBt _ipx 0
Yin(z) = e 'e® 0 (1.273)
p
E+m
Ansatz for the reflected wave:
1 0
¢ ( )_ —iEt —ipxT 0 —|—b —ipxT 1 (1 274)
rei\L) = € ae 0 € _p .
E+m
—p 0
E+m
—_———
u1 u2

with
E=+\/p*+m? > m, p=+VE?—m? (1.275)

According to the interpretation (Pauli equation) the upper two components and

the lower two components, respectively, represent the spin. The second term of
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Yregr describes a free particle with opposite spin where we will find below that

the coefficient b vanishes.
Region II:

Transmitted wave:

1 0
wtrans(ﬁ) =€ ce'? + de'? q (1276)
O E—Vo+m
E—‘go—i-m 0
with
+(E=Vp)2—m?, |E—=Vy| > m
g VY ’ . (1.277)
iv/m?— (E —Vp)?, |[E— Vol < m

We should remark that the normalized solution has no singularity at £ — Vy+m

since ¢ = 0.

q
| Im(q) |
- Re(q) Re(q)
E
Figure 1.4: Transmitted wave solution

With the given information we find...

e real, i.e. propagating solutions for

E>m+Vy>0 or

E<—-m+V, (if E>m : Vo <2m) (1.278)
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e exponentially decaying solution for

—m+Vo<E<m+V, (1.279)

Since the Dirac equation is of first order in a%, the wavefunction must be con-

tinuous, not its derivative:

¥1(0) = ¥1:(0) (1.280)

The conditions for the coefficients a, b, ¢, d result from the various components

of ¥:

i) l14a=c
i) b=d
b=d=0
_p=L_ —q q 2
(111) E+m E-Vo+m = unless V5 =10 , pP=4q (trivial)
(iv) (1—a)=rc , r= %E—E\—/Er—tm

Therefore the spin is not flipped during the scattering process, because the coef-
ficients b and d vanish.
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Discussion of the solutions:

0] (1

E T T T T T 1
E_ T
FINNNNNNNY o @
" — M propagating
Vo—m solutions

E>m

N NN\
(77777777 e

@)

Figure 1.5: Complete solution in both regions

Propagating solutions exist, if the absolute value of the energy, measured relative

to the potential level, is greater or equal to the rest energy m:

e region /: |E| >m

e region II: |E— Vol > m.

We consider regular and propagating incident waves £ > m in region [ and
Vo > O:

Propagating transmitted solutions exist for

1) E-Vy>m for any V4 >0 regular, £ — V5 > 0

EF-V, < — < E<V,—
0="m M= s e irregular, £ — Vy < 0.
for FEy>2m

Therefore we conclude, that for £ > m and V; > 2m exists:

e a propagating transmitted solution in the well with negative energy com-
pared to the potential 1

e a propagating reflected solution with positive energy.
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Transmitted and reflected currents:

The transmitted and the reflected current are orthogonal:

jtransJ-jreﬂ (1281)

The continuity of ¢ at x = 0 delivers:

2 d 1—r
e an = .
¢ 1+7r ¢ 1+7r

(1.282)

) (1.283)

where, in this case, ¢ stands for the speed of light!

Furthermore we use the known expression

Q o
o Q

j=cplay  with a@= (

The information on the direction of j is encoded in the components of 1 and

we get:
Jy = Jao IJx#0. (1.284)
. rans 4 .ro 1-— ?
Junans r o el ! (1.285)
Jin (1 -+ 7’)2 Jin 1 “+r

Therefore the current is conserved:

]t%ans 4 ]feﬁ — 1 (1.286)
Jin Jin

However, for ¢, p >0, m< E<Vy—m, ie.Vog>2m, E—-Vy+m <0, r<0:

Jrel g s (1.287)
Jin Jin
For the group velocity of the transmitted wave in x-direction we find

dFE d

Viransx — 7 — 5 <\/ q2 -+ m2) (1288)
’ dq  dq

2q 2q

29
HE+m: E-Vo BV

what shows, that Vi, 1S opposite to q!

(1.289)
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Interpretation:

A stationary solution in the parameter range £ > m, V;, > 2m and an incident
wave onto the well necessarily contains a particle current ji.,s coming out of the
well, or an antiparticle current going into the well.

The well does not provide any energy for particle-antiparticle pair production
(since it is time independent and, hence, energy conserved).

Rather, the process corresponds to a partial conversion of particles into antipar-

ticles at the well boundary, without change of the energy.

Hole theory: Interpretation of the £ < 0 solutions in terms of antipar-

ticles

We now have to find a way to solve the problems with the £ < 0 solutions of the

Dirac equation which are:

e I/ < 0 solutions are necessary as a part of the Dirac equation’s complete

set of eigenstates to describe the physical wave packet.

e Due to the F < 0 states matter would not be stable.

A preliminary solution first was given by Dirac. He supposed all the ' < 0 states
to be occupied by one electron each. In this sense a decay of £ > 0 electrons into

E < 0 states is prevented by the Pauli principle.

Figure 1.6: Excitation of a particle-antiparticle pair
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Altogether the Vacuum is to be seen as an infinite sea of E < 0 particles (elec-

trons), the Dirac sea.

Unfortunately the Dirac sea is not observable. Although it consists of an infinite
number of charched particles, it does not create any force, because of translation
invariance (infinite and homogeneous).

However: Problem of infinite mass

Consequently the Dirac sea can be observed only indirectly through its exci-

tations.

Antiparticle concept

A missing electron in the Dirac sea with E < 0, p, charge ¢ is equivalent to a real
particle with £ > 0, —p, charge — ¢; spin — o, which is called an antiparticle.
In case the particle is an electron, its antiparticle is the positron.

For the creation of particle-antiparticle pairs different ways a conceivable:

1. Time dependent fields Aw > 2mc?

Figure 1.7: Creation of particle-antiparticle pairs
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2. adiabatic creation of ¥ < 0 bound states: nuclear collisions

Figure 1.8: Adiabatic creation of bound states

Correspondence £ < ( solution - antiparticle

The Dirac sea equals the vacuum state and therefore 1) = 0. In detail:

o V(1) occupied E > 0, p, o state: particle £ > 0, 7, 0, e

o (7)(2): unoccupied E < 0, p, o state: antiparticle —E > 0, —p, —0, —e

Example: The Klein paradoxon

v | | | | ‘ T Vp>2m

7 A I M<E<Vg-n
; particleji”—G)» _lIJ(_) antiparticlé

, o Jrans<0

+
- particle _Lp : i
Jrefi”lin
0

Figure 1.9: Klein paradoxon

Finally we give a summary of the problems behind the idea of the Dirac sea:



1.3. SPIN% FERMIONS: DIRAC EQUATION 53
e Non-observability: translation invariance
e Infinite mass problem

e Many particle problem: The concept of particle-antiparticle pairs makes

the Dirac sea idea inherently incomplete:

Creation of many particles

— Locality of the theory implies that the particle can be localized in the

Dirac sea in an arbitrarily small length scale Ax.

— In detail:
Ap > hAz™! (1.290)
AE = cAp>Z—Z (1.291)
— if Az < %%:%XC (1.292)
AE > 2mc (1.293)

which leads to particle-antiparticle production (In equation 1.217 we
used the Compton wavelength xc).

L.e. the locality of the relativistic theory necessarily implies that one
must formulate it as a many-particle theory, which leads to the field

theory.

1.3.9 Discrete symmetries of the Dirac equation
Charge conjugation C

The re-interpretation of £ < 0 solutions in terms of antiparticles with opposite
quantum numbers and charge suggests that there is a symmetry of the Dirac
equation (i.e. a transformation which leaves the Dirac equation shape invariant)
which transforms the £ < 0 solutions for charge e = —¢y < 0 into £ > 0 solutions
for charge —e = ¢y > 0.

This transformation will be called charge conjugation C.
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For the construction of the transformation we start with the Dirac equation for

the possible charges:

for charge e: V*(i0, — eA,) —m|y = 0 (1.294)
for charge -e: V(i0, + eA,) —mjye = 0 (1.295)

We construct the transformation C, which transforms ¢ into ¢c: 1o = C1b.

The relative sign change between 0, and eA, is obtained by taking the com-

plex conjugate of (1.245):
C[—4"(i8, + eA,) —m] C1Cy* = 0. (1.296)

However this also introduces relative sign between the kinetic and the rest energy
terms, and also changes ~* —— ~#*,

In order to revert these changes, we look for a transformation C such that
Cyr Ol = —H (1.297)

Note that such a transformation is allowed, since the v* are determined by their

algebra only up to similarity transformations.

Considering the 4* in the standard represantation,

1 0 - 0 ot
0 7 .
= (3= , = . , 1=1,2,3, 1.298
v=p ( 0 —1 ) v ( i 0 ) ( )

(1.248) indicates that C

e interchanges the upper and lower components an

e transforms o' — o* (i=1,2,3).

This is performed by the matrix

= iv? in standard representation (1.299)

— O
=
—_
(@]
o O O =

c! = C. (1.300)
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Hence, we have

Cep = Co* =ir?y* | (standard representation)

YA+ = 291
_»Y?
A~
()" (iv*) = (=i v )" (=)
:i*yz
=~y
= —[Y*(2¢"1 = > M)
= [20"%9% =M
{ _’}/M y M 7é 2

Wy ===, p=2

where, in (1.256), we made use of (7?)* = —1.

Altogether we conclude that C

interchanges the upper and lower components of ), C
transforms £ — —FE in the exponential factor of ¢, ( )*
inverts the momentum p — —p

flips the spin (C)

%)

(1.301)

(1.302)
(1.303)

(1.304)
(1.305)
(1.306)

(1.307)

transforms from a solution for charge e to charge —e (by construction).
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Example: free Dirac spinor

1
0 —i(Et—pz)
b = ; o P (1.308)
E+m
0
0 0 0 1 1
0 0 —-10 0 :
Cep = ) etilBt=p2) (1.309)
0 -1 0 0 .
10 0 O 0
0
—D
_ —E-m | o—i(-Bt—(-p)2) (1.310)
0
1

where (1.258) is an F > 0 solution with p'|| Z, p, = p and spin |
and (1.259) is an E < 0 solution with p'|| Z, p, = —p and spin |.

Consequently the charge conjugation not only inverts the charge, but completely

transforms a particle solution into an antiparticle solution and vice versa.

Since any spinor can be Fourier decomposed in terms of free spinors, this re-

mains true for any solution for an arbitrary potential A*.

Time reversal (inversion of motion) T

The time reversal transformation T is defined by

T: t+— —t (1.311)
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i.e. reversal of the motion in all quantities:

T P — —p  (momentum) (1.312)
L=[Fxp] — ~—L (angular momentum) (1.313)

S — =S (spin analogous to L) (1.314)

O(Z,t) —  O(Z, —t) = D(Z, 1) (1.315)

A@Z ) —  AE —t) = —A(T,1) (1.316)

e — e (same for ¢ in operators) (1.317)

(1.264),(1-265) AMZ ) —  AL(Z 1) (el.-magn. 4-potential)  (1.318)

We construct the time reversal transformation from the form invariance of the

Dirac equation:

V(i — eAy) —m] b =0 (1.319)
Time reversed Dirac equation:

V(=10 — eg" Ay) —m]pr =0 (1.320)

with ¢»p = T¢  the time reversed spinor.

One can chose:

0 1 0 0
_ 2
with %% = R 0 (1.322)
0 0 0 1 0 o?
0 0 —-10

Note: For scalar particles is C =T !
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Parity (space inversion) P

P: ¥ +— -7 t—t, E— F (1.323)
P — —p (1.324)
I —s +IL (1.325)
S — +8 (1.326)
P P
At — A, S (1.327)
A — —A
Parity transformation of the Dirac spinor
The phase factor e=##*" remains invariant, since
p: po— po , x° +—s 2° (1.328)
pi — —pi , T — —a ,1=1,2,3. (1.329)

From the parity symmetry of the Dirac equation one obtains, in a way analogous
to C, T:

: 1 0
Py(Z,t) = 0 (—,t) with 7% = < 0 —1 ) : (1.330)

1.3.10 Separation of Spinor components into spin and particle-
antiparticle degrees of freedom: The Foldy-Wouthuysen

transformation

Problem: Physical meaning of the Dirac spinor components

g 0
ol
particle- antiparticle degree of freedom, we are now able to discuss the meaning

NS

Having derived the spin operator > = and having introduced the

of the 4-spinor degrees of freedom for the general case, i.e. not only in the non-
relativistic limits. This will ultimately lead to the systematic treatment of the

relativistic corrections to the Schrédinger dynamics.
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For particles at rest the Dirac spinors are in the standard representation:

1 0
0 —im 1 —im
0 0
0 0
- 0 m - 0 im
Uy, = Ll Wiy = o | E=m<0(1332)
0 1

1 0 0 O

. . 0 -1 0 0 .

These are eigenstates of the spin operator X, = 3 00 1 0 as indi-
0 0 0 -1

cated, i.e. the upper two components describe the spin of particles, the lower two
components the spin of antiparticles, in accordance to the Pauli equation.
However, for free, moving particles one obtains after a Lorentz boost in the stan-

dard representation:
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e For motion in z-direction (|| spin quantization axis 2)

1
(+) E +m 0 —ipyat
e = » 1.333
¢m\z,T(£) o - € ( )
0
E >0
0
E+m 1 ——
Yil (z) = o e (1.334)
Pz
E+m
Pz
E+m
_ E+m 0 ip gk
Uik = e | ™ (1.335)
0
E<O0
0
_ E+m L= P
Uk = (e | R e (1.336)
1

2|p

ty =

Figure 1.10: Motion in z-direction

These are eigenstates of the spin X, with eigenvalues s = :i:%h, as for

particles at rest.
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e For motion in x-direction (L spin quantization axis 2)

1
E+m 0 it
U@ = 5 o ™ (1.337)
Dz
E+m
E>0
0
E+m 1 in, oH
vil (@) = e (1.338)
o 2m EI—)i-m
0
0
_ E+m | 2= P
bppa@) = (=g [ et (1.339)
0
E<O0
Dz
E+m
. E+m 0 inogh
Uata@ =\ |, (™ (1.340)
2

X|fp

Figure 1.11: Motion in x-direction

The mixing of upper and lower components occurs because in the standard rep-

resentation the Dirac equation has off-diagonal blocks:

/
0 (m—i—efb a-mw

ﬂla'@bz

- =

a-7 —m-+ed
/

Since the representation of the y* matrices is unique only up to an arbitrary

)w = Hi. (1.341)

similarity transformation

A= Ayt AT (1.342)
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it is possible to find a representation such that £ < 0 solutions have only upper
components and E < 0 solutions have only lower components, i.e. a seperation

of particle and antiparticle solutions in upper and lower components is possible.

The unitarity transformation separating particle and antiparticle components is
defined such that it brings the Dirac equation to block diagonal form.
In general, this transformation is difficult and time dependent, since it requires

transforming the exact, time dependent, solutions ).

Definition:
e Operator with only diagonal blocks: even operator
e Operator with only off-diagonal blocks: odd operator

These spinors are not eigenstates of X, and have a reduced o, expectation value:

mh
2=+ ! 1.343
(o) =+ (1.343)
For velocity [0| — ¢, i.e. E = 4/p?>+m? — oo:
(02)p, 00 =0 similarly: <O-y>px—>oo =0. (1.344)

The spin polarization of particles moving at the speed of light, || — ¢, is either

parallel or antiparallel to the direction of motion, what leads to helicity.

Sa
X
% -
V=C

Figure 1.12: Helicity

From this example we see that, in the standard representation of the v* matrices,
for general, moving particles the spin and particle-antiparticle degrees of freedom
are mized among the 4-spinor components (i.e. 1*) has both upper and lower
components, and has, in general, no definite z-component of spin).

Only in the non-relativistic limit the upper two components correspond to parti-

cles (spin T, |) and the lower two components to antiparticles (spin T, |).
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Let us now have a closer look on equation (1.289):

For the normalization we calculate:

1
@t e EAm . 0
Yoz, Yaer = o, (1 00 Eﬁ-m) 0 (1.345)
Pz
E+m
E2_m2
E E?> +m?+2E 2
_ +m (E*+m”*+2Em)+ p (1.346)
2m (E +m)?
E 2F% +2F E
_ phmeRiAcEmo 2 (1.347)
2m  (E+m)? m

which cancels with the invariant measure in [ d*z for total laprobability.
Therefore we get:

normalization

g ()1 (+)
(0.) = ol @bﬁ“gn X, @bﬁ“gn (1.348)
_ m E+m (E*+m’+2Em) — p? (1.349)
E 2m (E +m)? '
m E+m 2m? +2Em m
= F 2n (E+m? . E (1.350)
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Finally the general spinor is given by:

E+m 0 -
(+) — —ippxh
Yy () = 5 2 e (1.351)

Pa+ipy
E+m

E>0

E+m 1 i I3
Upi(a) = i, | € (1.352)
! 2m |

Dz
E+m

Dz

_ E+m Erm -
e = |k | (1.333)

E <0

Pa+ipy
E+m

_ E Dz )
vy l(@) = R R e (1.354)

The Foldy-Wouthuysen transformation

E—m

m

The separating transformation can be found systematically in powers of

which, hence, leads to systematic relativistic corrections.

In general:

A7l =: e | S hermitean, time dependent; e~* decouples the upper and lower
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components.
Y = e (1.355)
0 s s, —iS _+iS . .
i & Il6 v = He Ile Y Dirac equation (1.356)
0 . . .
imr (e®¢) = He ™y et (1.357)
N——_———
i(%e—is)wq_ia—is %w/
0 . ) .
ZEW = ¢t <H — z§> e S (1.358)
H
wherein H’ is block-diagonal.
a) The Foldy-Wouthuysen transformation for free particles
Lo Im a-p
H=a -p+pm=\{ _ =pm+ _O (1.359)
a-p —1m ~—
odd
For B = 0 in the x-z plane analogous to diagonalizing H = 0, B, + 0. B,

B.

Z A

X

(4

Figure 1.13: Rotation by an angle 9y about the y-axis

(_) e%ayﬁo _ 6—%0'z0'm19()).
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For the transformation we chose the following Ansatz:

| Oz _‘O'z/\
S = ot B (@ D)0 — q cog9+ (- ) sind (1.360)
= 0w (time independent) (1.361)
with p = L= (1.362)
7]
where in (1.308) we used a Taylor expansion. Furthermore:
H = 5He™ (1.363)
= PO 54 Bm)(1cos? — B(A - p)sind) (1.364)
= PEP (1 cost) + B(a - p)sind)(d-p+ Bm) (1.365)
eB(E7)
= (cos20U+ B(a-p)sin29)(a-p+ fm) (1.366)
= 0_2~]§'<cos 29 — 2) +0Bm (cos 29 + 7] sin 219) (1.367)
avs m
<0
— tan2y = 7] (1.368)
m
: p p m m
sin2) = ——L P g9 (1369
/m2 +p2 E /m2 +p2 E ( )
in (1.313) we used the anti-commutator |a, §]+ = 0.
We now put (1.317) into (1.315) to get the final result for H':
W= gm (T4 PR 2L (IF]? + m?) (1.370)
E'"me)” "B |

which is block diagonal and wherein E' is the energy eigenvalue and p'is an oper-
ator.

For small momenta: |p'| < m

iS = ﬁoi ~ 50i (1.371)
7| 2m
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L <1 A - 1 Lo
s ;@[ﬁw >]2’“+,§m B -p*tt (1.372)
@-p)? = a'paip = %{ai,aj}pipj = |p)? (1.373)

—_——
5

Foldy-Wouthuysen transformation in an electromagnetic field

H:&-(ﬁ—eﬁ)+ﬁm+e¢:ﬁm+s+o (1.374)
with e = leg fe=¢ (1.375)
O = aF—eA) BO =-0p (1.376)

where in (1.322) the Sm-term is the O(m)-term explicitly written in order to

generate an % expansion.

As in the field-free case we expect that in the non-relativistic limit the proper

Foldy-Wouthuysen transformation is given by:

S= 50 nowwith 0=a (ﬁ— e[f) . (1.377)
2m

The relativistic case can then be treated by repeating this transformation suffi-

) . .. |p-ed
ciently often, leading to an expansion in i ‘
m
/ [N : 9 —1iS
H =e"H- i ) € (1.378)
wherein % only acts on e,

With the Baker-Campbell-Hausdorff identity:

e Be ™ = B+[A,B]+%[A, [A, B]]+.. .+% [A[A, . [AB]L )] 4. (1.379)

k commutators
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one finds:
H—H + i[S,H]+§[S,[S,H]] (1.380)
., , contains O(#) terms
+ %[S,[S,[S,H]]]+;—4 S.[S,[S.[S, H]]] (1.381)
- S—%[S,S]—%[S,[S,S]]Jr... (1.382)

With the commutation relations for 3 and @ the term of first order in % is given
by:

g

ifS.H = -0+ =

1

(O, e] + —BO? (1.383)
m

wherein the first @ cancels the odd term to O (#)

Computing all commutators, disregarding the time dependence of the fields
(S = —z%(’) = 0), we obtain:

, 02 ot
H = ﬁm+ﬁ<%—w)+€ (1.384)
1 15} 03
_W[Ov[ov ]]_'_%[Ov ]—3724
o
= fm+e+0 (1.385)

with O ~ O (%) only.

The odd terms can be determined to O (%) by another Foldy-Wouthuysen trans-
formation, defined by

s=2o ~ o (i) | (1.386)

- 2m

1
H" = fBm+¢< + ﬁ[@’,e'] + (even and odd terms of O [ — )(1.387)
2m m?

= fm+<+ 0" (1.388)
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A third Foldy-Wouthuysen transformation ¢S = %O” ~ O (#) blockdiagonal-
izes H to O (#)

2 4
15 (e &~ O

1 . 1
5 8m +€——[(9,[(’),€]+z(’)}+(9<ﬁ) (1.389)

8m?

with only even powers of @ — H" is even up to O (%)

Evaluating the powers of O in H” one obtains finally

. N\ 2
H" = ﬁ<m+<p_€A) _ [(ﬁ—e[f)z—ei-gr)—l—eqﬁ (1.390)
X

2m 8m3
(& — — (& — — —
- Z-B——Z-[V E}
2mﬁ 8m?2
e — — - — e — —
s [Ex (- ed)] - g5V B

For particle solutions (£ > 0): ) = (’é)
090 1 -\ 2 e —
o = >— (= A) - —d-B 1.391
“ot {m+6¢+ om <p ¢ om’ (1.391)
(7?2 e _ 12 (- 5 e = =
Temd am2’ [EX (p_eAﬂ Tamy By

wherein up to the third term in order of their appearance one recognizes the
particle’s rest energy, its kinetic energy and furthermore the spin and Landé
factor.

This Hamiltonian also contains the relativistic corrections:

1. Relativistic mass correction H; = —('5,';)2
From expansion:
LA 2 (7] (1.392)

24/m? + p? - 2m 8m3
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2. Spin-orbit coupling

for central symmetric potential:

196 .

E=-V = -7 A=0 1.393
o) = — 207 (1.39)
10¢ 10¢ -
7. |- Ly = —2Z *-L) 1.394
7 [ r@erp] r@r(a ( )
e 10¢ -
He = 20 (3 L) 1.395
? am?r or \7 ( )
what means that the Spin-orbit coupling is strongest for % large, i.e. in
heavy elements or near surfaces of metals.
3. Darwin term
(& — —
Hy=—=V.-FE (1.396)

8m?

Hj is sensitive to local variations of the electric field, and can, therefore, be

interpreted as due to the Zitterbewegung with an amplitude ~ Acompton =
h

mc”

1.4 Further representations of the Dirac equation

1.4.1 Massless fermions (neutrinos)

For massless particles (m = 0) the Dirac equation reads

Yo, = 0 or (1.397)
1p°y = ca-p (1.398)

It is seen that for m = 0 only three matrices obeying the Dirac equation appear,
{af, o’} = 2ie*ak, Therefore a 2-dimensional representation of the Dirac equa-
tion in terms of Pauli matrices is possible.

In the following we investigate what these two components correspond to physi-
cally, and why in the massless case the number of degrees of freedom is reduced

from four to two.
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From E = \/p?c? + (mc?)? for free particles, it follows thatfor m = 0 the group
velocity is (E > 0 solutions):

iy = 22 =0 0 510y = o L
V=== = = (Ple) = ci=
i

= 1.399
i.e. massless particles move at the speed of light.

But, as we have seen in section 1.3.10.1, particles moving at the speed of light
<%| = 1) cannot have a non-zero expectation value of spin components perpen-
dicular to p*  (0,) =0 for m = 0.

It should be mentioned that the perpendicular components can fluctuate about
their vanishing expectation value: (7%) > 0 in general, just like a o, eigenstate

has fluctuating o, 0, components.

As will be seen, the reduction of degrees of freedom from four to two corresponds
to the absence of perpendicular (transversal) spin components in the massless
case.

Because of the longitudinal! nature of spin for m = 0, it is useful to consider the

projection of the spin operator 5 along the direction of p:

ﬂ(ﬁ) =5. helicity operator (1.400)

— 2
S 4 Pip;
(2~|4‘2) = E Eizjmg (1.401)

p Py p
3 2
=Y o By (1.402)
P
=1
because for plane waves:
0 , 1#y
piPj = 5 T (1.403)
pi s t=1

!'Note: For general, non-plane wave states the longitudinality holds for such components of

their Fourier decomposition into momentum eigenstate.
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Le. E(ﬁ) has the eigenvalues helicity h = +1.

>
—
Q > p helicity h=+1
24—
‘e - icity h=—
\! =D helicity h=-1

Figure 1.14: Eigenvalues of the helicity operator
As easily be verified (i ﬁ) commutes with the Dirac Hamiltonian H:
[i F, (e P+ mc2)] ~0 (1.404)
—_——
H

so that (% -p) and H can be diagonalized simultaneously.

Therefore we seek a representation of the massless Dirac equation in terms of

(iﬁ):

Ypup = 0 or (1.405)
0 —
¥ope = A%’y with 7=< . ") (1.406)
-0 0
— X and X = ( _)) (1.407)
0 o

= 0
Therefore 7 is transformed into ¥ by multiplying with < 1 ) which can be

represented as

0 —1 5,0 5 01,23 0 1
= , =1 = 1.408
< Lo ) 7y Y=Yy L0 (1.408)
in general \ ,
standard representation

Multiplying the Dirac equation, m = 0, with 4°7° from left delivers finally:
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Since [i -]7,75] = 0 these operators can be diagonalized simultaneously, which

leads to the following

Definition:

7P = iy0y1A243 is called the chirality operator. (1.410)

Equation (1.355) is brought to block diagonal form by applying the unitary

transformation

" = Uy with U=-—=(1++") (1.411)

Sl -

A = Uy U ete., (1.412)

leading to two independent 2-component equations, the Weyl equations:

(po— & -p)Ys™ = 0 (1.413)
(po+3-p)us" = 0 (1.414)
with the 2-component helicity operator 7 - ‘%.

Y = %(]l + 75) is called the chiral representation.

The Weyl equations are, each one by itself, not parity invariant (E-ﬁ»i —7-p),
but transform mutually into each other. The consequence is, that if a particle is
described by one of the Weyl equations, parity is not an allowed transformation,
i.e. the particle occurs either with helicity A = +1 or h = —1 in nature, but can-
not occur with either one. For this reason, the Weyl equations were historically
not considered further at first.

However, experiments showed that the only known massless fermion, the neu-
trino, does indeed occur in nature only with helicity h = —1 and are called
lefthanded. With the same background antineutrinos with h = +1 are called
righthanded. This shows that neutrinos are indeed described by the simplest pos-

sible, 2-dimensional representation of massless fermions.

Outlook:
Experiments by Wu et al. showed that parity is not conserved by the weak inter-

action (SU(2) gauge interaction), i.e. the weak interaction couples the two Weyl
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equations. It is believed that this interaction also generates the small, but finite

mass? of neutrinos via vacuum fluctuations.

Zobserved first time in 2002; Kamiokande, Japan
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1.4.2 Majorana representation

Definition: Majorana representation of the v matrices:

0

° v°  imaginary, antisymmetric
° ~*  imaginary, symmetric
Example:

0 o2 T 0
0o _ 2 = 1.415
gl ( 2 ) gl Z< 0 1 ) (1.415)
0 ot 0 o3
1 3.
vo= 1 ( SRR ) , o’ = 1 ( . ) (1.416)

It follows that in Majorana representation the free Dirac equation is real:
[0, —m]y = 0. (1.417)

The charge conjugation is in Majorana representation:

Yo =19° , since (1.418)
[7”(@'8” —eA,) — m}@b =0 | * (1.419)

[ —*(—i0, — eA,) —m]y* = 0 (1.420)
[VM(Z@# +eA,) — m}q/;* =0 Y =1c (1.421)

While the Majorana representation is completely general, it is especially useful
for neutral fermions:
1 can be chosen real (¢* = 1) in this case and is called Majorana spinor. There-

fore a Majorana spinor has half as many degrees of freedom than a Dirac spinor.
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