Chapter 2

Scattering Theory

2.1 Definition of the scattering problem

Physical importance of scattering experiments:

Probing the interactions of the scattered particles with the scattering
center, i.e. the microscopic properties (scattering potential) of the

scatterer.

We will consider only potential scattering in the non-relativistic case, i.e. the

spin is conserved, and particle-antiparticle pair creation does not occur.

Scattering experiment and definition of parameters

detecto

\d opening angl
(solid angle)

Pmax .
scattering anglé

T rap Z

scattering potential,
finite extension J

Figure 2.1: Scattering problem
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e incident plane wave: kol|2Z for distance from scatterer r > rq,

finite extension pp., in direction perpendicular to EO; 7 >> Pmax > 10
e outgoing plane wave: k for distance from scatterer r > ro

e impact parameter b: distance from scattering center in direction perpen-

dicular to lgo

Physically, one is interested in the fraction of the incoming particles that are

scattered into a solid angle €2 centered around a scattering angle (6, ¢).

Definition: Differential scattering cross section
number of particles scattered into df2
da(@, ¢) dQ L time interval At (2 1)
a0 T number of incident particles ’
times interval At - cross sectional area AA

Calculation of do/d:

1. The scattering problem is the solution of the stationary Schrodinger equa-
tion (stationary incoming current) with special boundary conditions. For
a sufficient strongly localized scattering potential (e.g. V(7) ~ e™"/") the

ingoing and the outgoing waves are solutions of the Schrodinger equation.

Total solution of H = Hy;, + V:

Q/Jk = 7pin + djsc (22)
with

E 7 Bt hk2
d win(ﬂ:ez e ’E:2_rr(1),
centered perpendicular to ky around mean impact parameter (b).

e 1..(7) has only outgoing components, and is for r > r¢ solution of the

free Schrodinger equation.

kol|2, ko =

U = % 4 h(r,0,0) (2.3)

- ﬁQwSC(f’) = Eis (1), r — 00 (2.4)

“2m
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Using F = % one obtains:

(V2 + kg)hse = 0 (2.5)

\i

A

refl. trans.

Figure 2.2: Analogous to 1 dimension

Since we are interested in the angle dependence of . for r — 0o, and since
equation (2.5) is radially symmetric around the scattering center 7= 0, it

is useful to expand 1) in terms of spherical harmonics Y, ™ (6, ¢).

Yoo (r = 00,0,0) = Y _[Aij-(kor) + Bimu(kor)]Y; (6, 6) (2.6)

Lm

where j;(kor) (Bessel functions) and n;(kor) (von Neumann functions) are

the solutions of the free radial Schrodinger equation.

10 50 WADN ([ alker) | _ e [ Gilkor)
( r2or 8r+ r? )(nl(kor)> ko(n;(lmr)) (27)

where

2mE
B=22

(2.8)

The asymptotic behavior of the Bessel and von Neumann functions read:

. . T\ 1
Ji(kor) — sin <k:0r — ZE) o (2.9)
™\ 1
ny(kor) — cos (k:or - l§> o (2.10)

both nonsingular for r — co.

s consists of only outgoing waves:

Ayji(kor) + By (kor) ~ e™" (r — o0) (2.11)
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With the asymptotic forms of j;(kor) and n;(ker) one finds:

! A+ }.Bl eilbor=15) 4 (4, — }.Bl ¢ i(kor—15) L (2.12)
2 1 ) kor
=0
= A = —iB, e 1% = (—i)! (2.13)
7 — S BY"0.0) .14
wsc r oo k’o’l“ - ? 1y ) .
eik‘oT’
- =160 (2.15)
) eik‘o?“
U — 0.0 (216)
f(0,¢) is called scattering amplitude:
(2.17)
F(0.0) = 35 Xpm(=0) BY,™(0, 0)

The coefficients B; are to be determined such that ¢ is a solution of the
Schrodinger Gleichung in the region of the scattering potential (= matching

boundary conditions for a given potential).

Note:
The r-dependence in (2.16) is expected, since it leads to a radial component

of the current density

h 0 0 1
.r:—. y A Wse | — | & y sc| ™~ 5 2.18
o= o |15 () = (o) o] ~ 5 (2.18)
i.e. to an overall current conservation
/ dSyy Jro =1 = /dQ 24, = const.(rg). (2.19)
o

2. Computing do/dS) from f(6,¢):

Incoming and scattered current density:

]—{n — e—zkozvezkoz o ezkozve—zkoz) — _éz (220)

g (
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~

. = 10 ~ 1 0.
with V =¢,5 + €55 + €67 5in(0) 96"

L orooo 1 hk 1
Jsc = _2|f(9>¢)|2 6r+0(—)
T m

73

number of particles scattered into direction df2/sec.:

no= Ju-er2dQ
do 9
2a0 = |7(6,0) a0
do 9

81

(2.21)

(2.22)
(2.23)

(2.24)
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2.2 Propagator theory and the Lippmann-Schwinger

equation

As discussed in section 2.1, the scattering problem amounts to the solution of the
Schrédinger equation with special, non-trivial boundary conditions for » — oo
(namely a plane incoming wave and an angle dependent scattered wave which is

solution of the free Schrodinger equation for r — oo; ¥ = Wy, + ¥g.).
Therefore, it is useful to separate the problem into

1. a general solution of the Schrodinger equation with open boundary condi-

tions

2. a special solution specifying the appropriate boundary conditions.
This is achieved systematically by the propagator theory.

1. General solution
Since we are interested in a stationary scattering problem, we consider the
Schrodinger equation fixed energy E. The resolvent operator (Green’s oper-
ator) G ("inverse operator") of the Schrédinger operator is defined as the

solution of the inhomogeneous Schrodinger equation

(E—H)G =1 (representation-free form) (2.25)
with
P
H=Hy+V, Hy = o free Hamiltonian (2.26)
m
and

V' scattering potential, 1 unit operator in Hilbert space. (2.27)
Resolvent of the free system @0:

(E— Hy)Go =1 (2.28)
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The full resolvent G can be expressed in terms of the free resolvent @0 as
follows, separating the perturbation. By multiplying equation (2.25) with
éo from the left side we get:

é = @0 + @QVé\ (2'29)

2. Specific solution [¢)) for the scattering boundary problem:
(a) (E—Ho)lv) =VI[¥)
(b) (E — Hy)|¢po) =0 solution of free problem
Subtracting (b) from (a) one obtains:
(E — Ho)l¢) — (E — Ho)lgo) = VI|¢) (2.30)

Multiplying with @0 from the left side we get:

W) = o) + GoV]¥) (2.31)

1
= lo0) + =7 VI¥) (232

This is the Lippmann-Schwinger equation.

Note:

e The free solution |¢p) is added in order to account for the plane in-

coming wave ¥y,.

e This equation is very similar to the one describing the time evolution
of a state in the context of time-dependent perturbation theory. The
only difference is that here we consider the stationary case only. Both

are called Lippmann-Schwinger equation.

The equation (2.31) differs from equation (2.29) in that the boundary con-
ditions are implemented via [ig). Equation (2.31) or (2.29) generates a

perturbation series for G and |1), respectively, via iteration:
= Go+ GoVGo+ GoVGoVGy + ... = (2.33)

= GoSG, (2.35)

Q) D
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with
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V4 VGV + VG VGV + ...
Gy '+ T
E—Hy+T S-matrix

Similarly with boundary conditions:

[¥)
[¥)

|60) + GoV|do) + GovGoV|d) + . ..

|po) + a0T|€250>

T-matrix (2.36)
(2.37)

(2.38)

(2.40)

The usefulness of this approach becomes clear when one uses specific rep-

resentations:

(a) Momentum representation

Momentum basis:

{@:

1=Z|ﬁ><ﬂ

s

i
enP

V2m

g

=
|

< @y =

5pp’ -
~—~

diagonal

= Goy, =

(2.41)
Ep i i
VY —ipE  4ipE 249
| e 242
(E — Ho)Go 2.43)
(1(E — Ho) Y 19" )| Goli) (2.44)
ﬁll
P
ﬁ// N — -, \i_/
diagonal in p-repr. :<ﬁ”|G0 ")
1
S, (2.46)
2 . pp
E—2-+in

Since @0 is diagonal in p-representation, it is often identified simply

with its diagonal element:

1
jid

2m

£

(2.47)
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The Lippmann-Schwinger equation becomes in p-representation:

(1) = (Fléo) + / (;lTp;gGoﬁV(ﬁ—ﬁ)@'W) (2.48)
with
V(- §) = / Bz DT () (2.49)

Retarded and advanced Green’s functions
From the definition of the resolvent or equation (2.47) it is clear that

it has poles as function of E, which require special treatment.
Physical significance of the poles in G:

The position of the poles as function of energy is ' = ¢,, = energy eigenvalues of H.
To treat the poles, e.g. in intergrations over E or p they are shifted
in the complex E plane away from the real axis by an inifinitesimal

positive or negative imaginary part £in, as indicated above.
AImE

for +in >0

) =e >ReE
Iy
°

Figure 2.3: Shift of the pole into the complex plane

The relevance of 4in becomes clear by transforming to the time do-

main:

Lippmann-Schwinger in time domain

1000 = g0+ [t [ TG, 1~V =) o0 (250
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with the Fourier transform

d , ,
Go,(t—1) = /%e—“’(t—t )Gy, (Iw) (2.51)
_ / dw e (2.52)
N 2 hw — € =i '

—if(t—t)e n ) iy
- (2.53)

iB(t—t")e 7= iy

w’ 1

; : ; ; ;
t-t'<0 W= 4 o
Imw <0 required | 7
for convergence t=t'<0
of contour integral 1
/4\ >
—
L ° |
4 t=t'>0
Im w <0 requirec
| L

‘ ‘ for convergence

N

Figure 2.4: Contour integration

Goio) = o)+ [ v [ SE G- o= 1))

(2.54)

G"/%is called the retarded /advanced propagator, because it propagates
the wave function ¢’ to ¢ with ¢t > ¢’ (retarded, causal), t < t’ (advanced,

acausal).

(b) Position representation

Y(x) = (z|v) etc. fixed energy E (2.55)

(2) = dolz) + / & Go(Z, 7YV (@ )(@) (2.56)
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3 3 1./ o i
Gi'@.7) = [ G [ G Gar Bt 50

(2m)? ) (2m)?
= (Z|Gr ) k= % (2.58)

s 1 2m e:l:z'lg\f—f’\
Gy(7,7) = TR -7 (2.59)
with & = 7;; (2.60)

Interpretation of the Lippmann-Schwinger equation and its expansion

in terms of Feynman diagrams:

G = Go—|—/dx”Go(x,:c”)V(:c”)GO(:c”,:c’) (2.61)
= ... (2.62)

Figure 2.5: L-S equation in terms of Feynman diagrams

The scattering amplitude f(0, ¢):

From (2.56) in the limit |Z] > |2’| we can now identify the scattering

amplitude.

Choose:

2mE

= (2.63)

¢0($) = Yin = €ikza k=

Since the potential V' (2”) is localized in space, the 2’ integral in (2.56)

runs over a region || < rg, i.e. we can take the limit |Z] > |2’| with
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r = |Z] and K =k = kyy:

1 2m €(i)ikr g
(i — ~ - 20 (Fik'z 2.64
0 (T T) F—oo 4w h? r c ( )
only outgoing parts
- ikz 1 2m 3,1 —ikd' (=
W@ = et g [_Zﬁ &' e Y (F)(2.65)
s
ikr
x (& }e
0@ =
. 1 2 A=
— ety [— 4_71_7? B’ e Fous (2.66)
s
I 6ikr
<T(, 7) ¢ |
~—1 r
$o(2")
1 2m (K — ke VR VI
f0.0) = — 55 | dal e (o iT (T ) (2.67)
- o 1 2m - o
f(kouta kin) - _EF(QW)ST(]{:OU‘D’ kin) (268)

Born approximation:

—

[terate the Lippmann-Schwinger equation only once. Replace T'(koyu, Ein)

— —

by V(kout — kin) in all expressions above.

Expansion:
k|Z—Z| 2 ki— kT - (2.69)
El:kout

2.3 The optical theorem

Relation between the imaginary part of the forward scattering amplitude Im f (6 =
0) and the total cross section oy = [ ng—g.

k 2mE

Im f(e = 0) = E(Ttot k= FL2

(2.70)
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Proof: G*=(G")*
- o 1 2m 3,7 T

[0 =0)=f(kk) = — ——5n)"KTIk) (2.71)
Im (BT|F) = Im (k|V]®) (2.72)

= Im[((¢] = (WVGHV[4)] (2.73)

= Im [(QWADY —in(|VE(E — Ho)V |1h)] (2.74)

1

= —a(W|VS(E — Ho)V|1) (2.75)

= —n(k|T*6(E — Ho)T|k) (2.76)

- _ﬁ/d% (B|T*|EY (KT |k)é (E — %) (2.77)

_ _ﬁ/dg”;—f\u?m/aﬁ (2.78)

2.3.1 Partial wave expansion: scattering phase shift

In section 2.1 we had seen that in the far-field region, |7] > ry (where ry = extension
of the potential V' (7) = 0, |] > rq), the scattered wave is a radially outgoing wave,
with an angle-dependent outgoing current density:

62kr

() = My f(6,0)

= Uin + VYse (2.79)

r

. hk e, 1
0.0) = Zi0.0pG o) (280

For |7] > rg, s (7) is a solution of the free Schrodinger equation, which seperates
into angular momentum and radial parts. We could, therefore, write . as an

expansion in the complete set of spherical harmonics
Yoo (r — 00,0,0) = > _[Aji(kor) + By (kor)]Y;™ (0, ¢) (2.81)

Lm

where the expansion coefficients [A;j;(kor) + Bini(kor)] are the general solution

of the radial Schrodinger equation

(‘%%7“2(9% T l(l; 1)) R(r) = koR(7), ko =+/2mE/h? (2.82)
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and the coefficients A;, B, are to be determined such that 1 (r) equation (2.67)
crosses over smoothly to the solution in the near-field region of the potential,
r < rg. The coefficients C) of the expansion do not depend on m, since the
radial Schrodinger equation does not for a spherical potential. From the require-
ment that 1y conatins only outgoing waves (and the asymptotic behavior of

Jilkor), ny(kor) for r — 0o) we obtained A; = —iB; and

FO.6) = 3 (=) Bilko)Y,(60,9) (2.83)
[ 0

= Y (20 + 1) fi(ko)Pi(cos(6)). (2.84)

l

The expansion coefficients f; of the expansion of f(0,¢) are called partial wave
amplitudes fi(ko) (independent of m). In order to get a complete understanding
of the scattering process in terms of the partial waves Y;™, i.e. angular momen-
tum channels [, m, it is also useful to expand the incoming plane wave ), in

terms of spherical harmonics and Bessel functions. This can be done, because
h2k2

Uin (7)) = efo7 is a solution of the free Schrodinger equation for energy £ = <

and {j;(kor)Y;™(0, qﬁ),nl(kor)Ylm(Q,gb)}l =0,1,...,m = —l,...,+l} is a com-

plete basis set of solutions of the free Schrédinger equation for energy E = Fi:ﬁ
as well.
One obtains:
e = N2+ 1)ji(kor)Y; (8, 0) (2.85)
= > (2l + 1)ji(kor) Py (ko - 7) (2.86)
———

=1 cos(6)

e Only the m = 0 component contributes, because eifoT jg cylindrically sym-

metric about kq axis.

e The von Neumann functions n;(kor) do not contribute, because they are

singular for 7= 0.
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e Expansion coefficients (with proper normalization):

R2k?
<E_ P k> ~ [
- / 3 kg (kor) (Y,°(0,9))" - ™7 (2.88)

h2k2

L Lm | ko) (2.87)
——

=1

dr7’2k53 / do / +1dcos (0) ji(K2:89)

_’5m0

Xe—imqﬁpl(cos(9>>eiko cos(0)
= ‘(20 + 1) (2.90)

Hence, we have for the complete solution of the scattering problem of a

spherically symmetric potential:

scattering amplitude f(0,¢) = f(6) independent of ¢ and

iko?

(2.91)
i(kor—13) _ p—ilkor—1%)

2il€0’f’

W) T dRT o f(0)
'lﬁe

Y@ = {(21 +1)P(cos(f))e'3

(2.92)

ikr

(20 + 1) (ko) Pr(cos(0)) =

The first summand is a plane wave and the second one is the scattered wave

Vse-

Interpretation:

e The incoming plane wave consists of incoming and outgoing spherical har-

. e*iko’r' e+ik0’r‘
monics = , =
T r

e The effect of the scattering potential is to change the amplitude of the

outgoing wave.
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Figure 2.6:

Figure 2.7: Change of the amplitude

e The incoming plane wave consists of many different angular momentum
contributions, like in the classical case |L| = b- |p] (arbitrary impact pa-
rameter b), but |[_;|2 quantized in quantum case. Each [ channel has different

scattering amplitude f;.

e The current conservation (in the case of scattering without absorption or

emission) implies:
= ntinui 8
Ve gt =0 (2.94)
ot
(no current source or sink; inward/outward going currents are equal)

Hence the incoming and outgoing currents must be equal and opposite.

Orthogonality of the partial waves =
Sy = (1 + 2iko fi (ko)) (2.95)
with

1S)12 =1 (2.96)
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3(x) [

/\ A\
AVIAVEY

Figure 2.8:

e Scattering phase shift:

The imaginary part in .S; implies that the scattered outgoing wave acquires

a phase shift 20, compared to the incoming wave (with |S;| = 1):

Sy = ¥ =1+ 2iko f; (2.97)
or
e —1 1
= = g 2.98
fi i koe sin(d;) ( )
Im Kof; [

N

Figure 2.9:

Hence, the total scattering amplitude can be expressed in terms of the
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partial scattering phase shifts:

1

F(o) = k02(2l+1) € sin(8,) Py(cos(6)) (2.99)
= > (21 +1) fy(ko) Pi(cos(6)) (2.100)

2.3.2 The optical theorem

This result confirms the optical theorem:

Im f(0 = 0) — Zzltl () -sin(8) (1) (2.101)
D SEL ) (2102
l
(2.103)
S /dQ|f(9)\2 (2.104)
T +1 )
= i—g y dcos(0) Y (20 + 1)(20 + 1)e’Cror) (2.105)

x sin(0;) sin(dy ) |
x P(cos(0)) Py (cos())

© Z]l; Z(2l + 1) sin?(6)) (2.106)

(%) /_Jlr dcos(8) (20 + 1) Pi(cos(0)) Py (cos(9)) = oy (2.107)

ko

——Otot
A7

—  |Imfe=0)= (2.108)

It is seen from the above considerations, that the scattering problem is solved,

once the phase shifts are known.
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2.3.3 Determining the scattering phase shifts for an arbi-

trary potential

The coefficients of the partial wave expansion in the outside region (|r] > rg) are

determined by matching the outside solution of the radial Schrodinger equation

for given [ to the inside solution. Therefore, we seek an explicit expression of the

0; in terms of the radial solutions:

Total wave function at any |7] > r¢ (spherical potential):

Y(7) = i (2L + 1) Ay(r) Pi(cos(6))
A;(r) solution of the radial Schrédinger equation with potential:

10 ,0 I1+1)  2m
[ﬂ&f%ﬂ 2 +gﬂwﬂ&ﬁz%&®

or with u; = rA;(r):

: 2 1
dw+@ﬁ_ﬁwm—W+))m:0

dr? h? 72

A; with boundary condition u;(r = 0) = 0 as in hydrogen problem.

outside -

o
/ 4
inside 4

Figure 2.10:

ah

(2.109)

(2.110)

(2.111)

Matching (2.80) with (2.72) and (2.78) for r > rg yields with A;(r) = a17;+ asny:

Ay(r) = ™ [cos(0;) 71 (kor) — sin(0;)ny (kor)]

(2.112)
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Solution by logarithmic derivative:

rod4

Al d’/’ r=rg

- [jl’(koro) cos(6;) — nj(koro) sin(;)
Jilkoro) cos(6;) — ny(koro) sin(d;)

krojj(koro) — Biji(koro)

" ) 2.11
an(d;) kronj(koro) — Bimu(koro) ( ’

B condition on ro: V(rg) =~ 0 (2.113)

(2.114)

Solve for A;(ro) by integrating radial Schrédinger equation.

L matching boundary condition
B =8 |

inside outside
| I | I |

Figure 2.11:

2.3.4 Scattering at low energies and bound states

ro =range of the scattering potential

At low energies, i.e. for A = i—g > 1o, partial waves with [ > 0 are in gen-

eral unimportant:

Total potential in angular momentum channel [:

R (1 +1)

Ve = P
m=V(r)+ 2m 1?2

N——

Ver1(r)

(2.116)
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e Classically for [ > 0 the particle cannot penetrate the centrifugal potential,

so that it does not "feel" the potential V' (r) inside the centrifugal barrier.

Classical estimate:

V(r)

Figure 2.12:

In order to feel the potential of range r( inside, it must penetrate the barrier

at least down to rg, i.e. it must have at least the energy

G R Gl (U

E = — 2.117
2m  — 2m 1 ( )

I L (2.118)
ko (l+1)

where A is the wave length of the incident particle.

e Quantum mechanically, the scattering phase d; and, hence, f;(ky) vanishes

as:

6 ~ k2t (2.119)
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The scattering length a

Rectangular potential well, to be specific:

Vir) = Vb = const. r <ro Vo>0 repulsi\‘/e (2.120)
0 r>0 Vo < 0 attractive
ko: incident wave number
We consider s-wave scattering only (low energy):
o>
Al:O(T) — ei‘sl [Cos((sl)jl(k‘o?“) — sin(él)nl(k:or)] (2.121)
1=0
~ b sin(kor — Im + &;) (2.122)
r—00 ]{}07‘
1=0
]{507’
Here we have used:
, sin(kor — Im
Ji=o(kor) = % (2.124)
ol
kor — 1
(ko) = Stkor = 1m) (2.125)
k’o’l“
sin(a £b) = sin(a) cos(b) = cos(a) sin(b) (2.126)
e 1 < 7o
u(r) = rAi—o(r) ~ sin(k'r) (2.127)
with £ — 1V = h;’;f for V =const.
Radial Schrodinger equation
d2u ) 2m

and boundary condition u(r = 0) = 0.
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For £ — V, > 0 inside solution has same form as outside solution, but

for
Vo<0 K >k attractive (2.129)
V>0 kK <ky  repulsive (2.130)
\%

free incident  _|
wave

V(<0

Figure 2.13: V, attractive

Figure 2.14: Vj repulsive
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Ramsauer-Townsend effect

2T

(1.) Vo < 0 such that (k'rg) = 7, do

12
I

— marginal cross section in [ = 0 channel:

N 1 .
00,tot — |fl‘2 = _31n2(50) =

= 2.132

k3
(2.) Vo < 0 such that (k'rg) = m,dy = m but total cross section oo = 0!

The scattering length

outward shifted
wave function i

Figure 2.15: The scattering length

a: scattering length: x-axis intercept of the linear extrapolation of the outside

wave function to ¢ =0
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\Y,
strong potential
|
r
Figure 2.16:
\Y

a<0 o

weak potential

Figure 2.17:

Relation between binding energy and a when there is a bound state

1 2m(Vo — E
R n:\/——( %2 L) (2.133)

This result can be obtained in a pure fundamental way from the analytical struc-

ture of Sj(ko) in the complex kg plane.
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2.3.5 Bound states as poles of S;(ky) at low energies

Si(ko) = 1 + 2iko fi(ko) = e* (2.134)

s-wave scattering only, V, <0

>
eikor e—ikor
Ap(r) ~ | Si=o(ko) - (2.135)
r r

Bound state wave function:
r> To -

Ao(r) ~ & with E <0 (2.136)

r

with imaginary wave number ky = ix ("outward going")

Consider S)—q(ko) as function of compler ko and investigate analytical structure
(if we have no further information then bound states). For bound state wave
function no ingoing wave (~ e™*") possible. For normalized bound state wave

function, S is the ratio between outward and inward going contributions.

— Si—o(ko = iKk) — 0 must have pole.

Im Ko

real scattering

Re k,
Figure 2.18:

General properties of Sy(ko):
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(1.) Pole at k = ix (bound state)
(2.) |Si=o| = 1,k > 0 (unitarity)

(3.) Sj=p = ¥ =1 for k — 0 (since dy — 0)

Construct analytical function everywhere except ky = ik.

—/{50 — 1K

Si—o(ko) = (Pade approximation) (2.137)

k‘() — 1K
(may be generalized for more bound states: poles in upper half complex plane)
Sl:O -1 Pade 1
I ad 2.138
fi0 = =5 —k — ik (2.138)

ko — 0 :

1
— = fizo=—a (2.139)

2.3.6 Resonance scattering

Resonant effects occur (like in any physical system) if the energy (frequency) of

21.2
the incoming wave coincides with the energy Ey = % of a (discrete) bound

state of the scattering potential. Since Ey > 0, this is possible, if the "bound

state" energy is positive, i.e. the potential must have the form:

quasibound state: tunneling to the outside region possible

Figure 2.19:
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The potential must have an attractive inside region and a confining, repulsive
well in some finite range for 7 > 0. Since V (r) —= 0, tunneling from the discrete
state at Fj > 0 inside the potential to the free outside states at the same energy
is possible — quasibound state.

This situation is generically realized by a sufficiently strong, nondivergent, at-

tractive potential V(r) in angular momentum channels [ > 1, because of the

RISV

centrifugal potential 5=

EV(r)

VgV

,,,,,,,, ' bare potential V(r)
. | . | . |

Figure 2.20:

Energy dependence of the scattering cross section

(in angular momentum channel [)

In general the scattering phase shift 0;(F) has a smooth energy dependence
(B =50

2m

— The scattering cross section in channel [

o= \fil>- 4n(20+1) fi= eiél(ko)% (2.140)

[ d§2, prefactor 21+1

varies smoothly with energy.

From the expression for f; it follows that o; has a maximum for ; = §+nm,n € Z.

— resonant, behavior for £ = E,, kg = k,
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The resonant energy F, ~ E,

Shape of the scattering amplitude f;(ky) near ky = k,:

d1(ko) continuous near ky = k;, 0y(k,) = 3.

Expand f; about k., E,:

h(E) = 62?_1 (2.141)
4 iko

_ 65%:(51) (2.142)

- kiocos(éls)m—(iliin(él) (2.143)

_ %W (2.144)

2 m

Figure 2.21:
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(E—E,)+ O|(E - E,){.145)

d cot(d
cot(8) = cot(8,(E)) + dE( )
o E:EL E=E,
0
~ 2 2 dcot()
B F(E Er) [F_ dE ]
1 r/2
E) = —
FE) J2mEJI2 (E — E,) + ik
k
o(E) = 4r- 20+ 1)|fi?
_ Ar (U/2)?
- kK (E-E)?+T1?2/4
Scattering amplitude:
fl = fl/ +if1,/
frof o]
I | Re f{

Figure 2.22:

L T/2(E —~ B)) —i(D/2)

MWE) = = =B+ T 2r

['-full width at half maximum (FWHM)

Cross section:

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)
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okZAT R T T T T T
1

Figure 2.23:

from f; = ™ —Sir;(jl):
. I B
tan(&l) _ Sln<5l) o m(fl) F/2

cos(9;)  Re(f) T E-L,

§E) [

/2

Figure 2.24:

2.3.7 The Friedel sum rule

107

(2.152)

Scattering potential (charge Ze) immersed into an electron sea, filled up to Fermi

wave number kr due to Pauli principle.
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— Complete screening of the charge by the surrounding electrons.
The charge Ze can be expressed in terms of the scattering phase shifts of the
electron wave functions in the presence of the potential. We assume a spherical

electron sea with charge in the center and radius R.

Without charge:

Figure 2.25:

The radial wave functions without the scattering potential are the Bessel functions

(regular for r — 0)

r—00 1 .
gilkr) = o sin(kr — lg) (2.153)

with boundary condition j;(kR) = 0 at r = R, i.e. quantized wave numbers:

k,R = n—g T 2.154
(n-3) (2154)

For R — oo k, becomes quasi-continuous.

In the presence of the charge Ze the solutions are for r — oo:

1. I
CIH sin </<:r + 0 — 5) (2.155)
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because of the scattering amplitude f; = 1 e sin(8;), and scattered wave func-

i(kr—lm/2)
tion ~ f;< .

Quantized momenta:

knR+ 0 = (n + é) ™ (2.156)

For each n, there is a particle state k,, which is filled with electron up to
E(k,) = Er (Fermi). Thus, the presence of the potential changes the num-
ber of occupied electron states because of the phase shifts d;, i.e. the number of
electrons in the volume R.

This change of e~ number must be equal to An = Z, the charge number of the

imparity (charge neutrality).
We count this change of particle number:

Number of states in [k, k + dk| (with charge)

Cdn, (R 105
dn = —rdk = <—+W8k)dk (2.157)

Number of states in [k, k + dk) (without charge)

dn R

dng = d—kodk——dk: (2.158)
1

A(dn) = dn—dng= ;%dk‘ (2.159)

— Total change in number of states in [k, k+dk] for all channels (including spin):

d 1 06,(k)
T AN) = ;; o (2.160)

— Total change in particle number=screening change number

AN = /kF dk —(A(dN)) = > uhkr) _ (2.161)

™
l,o

o(kp
7 =
%: ™ Friedel sum rule (2.162)
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