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Appendix B

Theory of complex functions

(essentials)

1. Definition

Let z =z + iy € C and
f: z— f(z) =u(z,y) +iv(z,y) €C (B.1)

a complex function of z, with real part u(z,y) and imaginary part v(z,y).

The function f is called analytic in a region A C C, if the partial derivatives %, g—;‘, %, g—Z

exist, and
o _ o
z ) f%_v (B.2)
oy ox
forz=ax+iye ACC.
QM.pdf Examples:
(a) f(z)=2",n=0,1,2,...is analytic in C.
Proof:  Complete induction
1. n=1: flz) = z4+iy=u+iv (B.3)
o _ oo "
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2. fn(z) = 2™ is analytic

3. fn+1 (Z) = "= fn(z) Tz (B6)
= (UpT — vpY) +i (Va2 + Uny) (B.7)
Un+1 Un4+1
3un+1 81)77, 8un
pu— —_— n B-
B oy T+ Un + 5 Y (B.8)
8anrl
_ B.
- (8.9
Upng1 vy, ou B
oy~ or 57~ Un (B.10)
8’Un+1
= — B.11
B (B.11)

(b) Any complex function f(z) which has a Taylor expansion around 2z, € C with a

finite radius of convergence in the complex plane is analytic in zp.
- 1 n n
fl)=>" Hf( )(20)(2 — 20) (B.12)
n=0

Counter examples:

(¢) f(z) =z* =x — iy is not analytic for z # 0.
(d) Functions with discontinuities:

— f(2) = 2% is not analytic for y = 0,z < 0.

2
712
Z /
branch cut/ o
2 S|
2,12

Remark:
A continuous line of analytic points zg of a function f is called branch cut)
of f.

— f(2) = |z| = /2% + 42 is not analytic in z = 0.

— f(2) = Ret is not analytic for any z € C.

— f(z) = f(2)0(y) is not analytic for Im z = 0.
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(e) Functions with point singularities:
() = (= 20) "n=1,2,3,... (B.13)

has pole of order n in z = zy € C.

(f) f(2) =20, anlz = 20)",n0 € Z
- has poles of order ng,ng — 1,...,—1, if ng < 0.

- has essential singularity, if ng — —oo.

2. Contour integrals

A contour in the complex plane is a continuous mapping

cC: R — C (B.14)

s —— C(s), s¢€[s1,sa)

C(s)

S1
s parametrizes the line C(s) in the complex plane. The integral along the contour C

[azr= [ " ds 1(C(s) (B.15)

S1

is called contour integral.

z f(C(s))
ds

3. Theorem:

The closed contour integral of a function f(z) enclosing a region A in C, where f(z)

is analytic, is zero.

$dzf(z) =0, fanalyticinA (B.16)

Proof: f(#) analytic in a region A

(a) Consider closed, rectangular contour in A with infinitesimal extension in y-coordinate:
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y
A
Xq+i(y+dy) Xo+i(y+dy)
‘ A
—idy idy
Y -
X, Hy c Xo+iy
- X
j{dzﬂz) - / dalf(z,y) — f(z,y + dy) (B.17)
xry %/_/

(%)
+idy[f (x2,y) — f(z1,y)]

_ / dz | 202, Ou@Y) (B.18)
- Ox Ox

+dy(—v(z2,y) + v(z1,9))
Fidy(u(x2,y) — u(z1,y))
-0 (B.19)

0 Sewrd) = S+ Ly (B.20)
- f(g:,y)—i—{g—z—l-ig—z] dy (B.21)

(b) Since f is analytic in A, any contour A can be composed of infinitesimal contours

considered in (a).

4. Cauchy theorem:

a_

f(z) = - + Z an(z — 2z0)" (B.22)

z —

n=0

f is a complex function with a pole of first order in z, and analytic everywhere else. C
is an arbitrary contour encircling zy counter clockwise.

Then:

$odz f(z) = 2mia_, | Cauchy theorem (Residue theorem) (B.23)

The coefficient a_; of the first order pole is called residue of f in zg.

Proof:
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A C A
y y z-%
c
L /)
>X |
(o

4

Pole

According to 4., the contour C' can be deformed to a circle 6 without changing the

f dz f(z), such that z € C differs from zp only by an infinitesimal number .
|z — 20| on contour C (B.24)
> an(z — zo)" !
jé dz f(z) gy Zon==1 n(z ~ 20) (B.25)
C zZ— 20

© z/o ﬂdw( > an (2= z20)" ) (B.26)

n=—1 ) L
ret¥ =r(cos p+isin @)

2mian, (B.27)

(%) parametrization of the circular contour C, (B.28)

dz =i(z — z0)dy

z = 29+ |z— zle™ (B.29)

|z— 2| = &=const. onC (B.30)
Remark:

For f(z) = is independent of

the radius of the circle.
Corollary:

b
jl{dzik:O for k=2,3,4,..., be Cconst. (B.31)
o (#—20)
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Proof:
Parametrization:
22—z = 1€ (B.32)
dz = ire®dy (B.33)
= i(z — 20)dp (B.34)
b b
7{ dom——p = / dp—2 (B.35)
o (z—20) 0 ret®
b 27 ]
_ w dy e~ (B.36)
cos ¢(—1) sin g
= 0 (B.37)

Independent of r > 0!

5. Treatment of poles on the integration contour

A

The integral along a contour containing a pole is a priory not well-defined. Such an
integral must be treated as the limit of a well-defined contour integral, where the pole is
"shifted" away from the contour by an infinitesimal amount. The manner, in which the

pole is shifted, is usually imposed by the physical boundary conditions.

Example: Pole on the real axis

Gilz) = — (2) (B.38)

The integral

/ e 1 (B.39)

oo 2T W — €y




181

is interpreted as the ¢ — 0 limit of a Fourier transform of G (2):

+o0 v
Gk(t):/ dw 1 (B.40)

2T w — €

We want to use contour integration so we need a closed contour.

— 00

Evaluation of Gj(t) using contour integration:

1. t>0:
dz e—izt _ /*Tr d iz exp (—ir(cos p + isinp)t) o, (B.A41)
C2ﬂ-2_8k 0 2m A r—00
where C' is the contour of the lower complex half plane and
z=re"?, r—o00, —-T<p<0 (p#0,7), (B.42)

since the real part of the exponent, rt sin ¢, is —oo for any ¢ €]—m,0[, 7 — oo, t > 0.

[Order of limits ¢ — —m, 0,7 — oo is essential: r — oo first.]

2. 1<0:
/ dz o—izt _ /w dp izexp (—ir(cosp +isinp)t) _0, (BA3)
oo 2T 2 — €k 0 27 Z—Ek oo
since Re (rtsin @) — —oo for any ¢ €]0,7[,t < 0,7 — oo.

= t>0: (B.44)

d —izt
G(t) = j{ @z (B.45)

Clower half plane 21 2 — €y
1<0: (B.46)

dz e—izt
Gr(t) = — B.47
k() /C 2Tz — g ( )

upper half plane
From Cauchy’s theorem, these integrals are given by the residues of the pole(s)
inside the contour. In particular, f dz ... =0, if there is no pole inside.

To obtain a t-dependent Gy (t) with Gr(t < 0) = 0 (retarded G-function), shift
pole at z = g outside of the upper complex half plane, i.e. define:

+oo dw e iwt
GEt) = e B.48
e () [m 2mw — e +1n ( )

B {—i exp (—iext), t>0 (B.49)
o, t<0 '
+oo dw e—iwt
GA(t) = _ B.50
R B T (B.50)

0, £>0
= . . (B.51)
—iexp(—iext), t<0
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LN

Conversely, the Fourier transform of the retarded and advanced Green’s functions

from ¢ to w space are defined such that the t-integral converges for ¢ > 0 or ¢ < 0,

respectively:
GRw) = / dt (—i)e~ioRt  gilwrimt o o (B.52)
0 — W —¢E+1in
convergence factor
0 o 1
Glw) = / dt e et =~ (B.53)
oo W —ER —1in

6. Kramers-Kroenig relation
Let Gf(2) be an analytic function in the upper complex half plane (e.g. G¥(z) is retarded
Green’s function: no pole in upper half plane = GF(t) = 0 for t < 0.).

G%(2) has the integral representation:

GR(z) = — [ de A0 (B.54)

where A(e) = Im G (e) € R.
Proof:

1. GE(z) defined by (A.54) is analytic for z > 0, since, by construction, it has no
pole in the upper half plane (A(g) is real function).

2. From (A.54) we have for w € R:

Im GR(w) = — / e o | 4 — aw) (B.55)

—0o0 ™ (W - 5)2 + 772 n—0

=—7md(w—e)

The function A(¢) € R,e € R determines the imaginary part of G on the real
axis as Im GF(w) = u(x,y = 0) = A(w).

3. Since Im G (w) uniquely determines G?(z) in the complete domain of analyticity
via the differential equations, and since (A.54) is analytic in upper half plane,
(A.54) determines the complete G?(z), and in particular, the real part on the real

axis:

Re GR(w) = —Re /+0° ﬁw (B.56)

o Tw—€e41in

Re GR(w) = —P [ 4 mGTE) (B.57)

w—eg




183

This is the Kramers-Kroenig relation. (A.54) is called analytic continuation.

p/“"%& ~ lim /m % Re (;> A) (B.58)

oo T W—E n—0t J_o T w—€+1in
tode w-—e

= 1 — A B.
ni%ﬂ e T (w—e)2+n? ©) (B-59)

“TNd T de] A
— lim [/ & +/ —E} (&) (B.60)
n—0t T wtn TlW—E€

— 00




