Kondo Effect in Quantum Dots

Outline

1. What is the Kondo effect?

 $\begin{array}{c} 26.9 \\ \hline 10^{1}R(T) \\ \hline R(273) \\ 26.8 \\ 26.7 \\ 26.6 \\ 26.5 \\ 26.4 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{array}$

2. Calculation for a single local magnetic impurity

Hamiltonian

Perturbative approach

Pseudo fermion method

Evaluation of Wick's theorem

Diagrams

Evaluation of the diagrams

Simplifications

Further simplifications

Second order term of the scattering matrix

Scattering matrix and resistivity

3. "Poor Man's Scaling" - A renormalization group approach

Renormalization

Physical consequences

Tr.

4. Investigation of the Kondo effect in quantum dots

Quantum Dot

Transport in detail

Why is a quantum dot a Kondo system?

Minimum in the conductance

5. Conclusion

Advantages of investigating Kondo physics in quantum dots

References