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Motivation: One-Particle-Propagator could be written as an
integral over the eigenvalues of the operators inside the
Hamiltonian.
(sztf)
Gl tr:xi, ) = / D[x(£)] D[p(#)] &’SC(8)-2(0).1)

(xiti)

Many-particle physics: One is interested in calculating
expectation values of observables, for instance
A A T
= tr = —
W) = twoA)  p = ol

Question: Is it possible to express the trace in a similar manner as
the propagator in the one-particle case?
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A typical many-particle Hamiltonian H consists of creation and
annihilation operators, for instance

_ § : T § : oo'Tr! Jt T
H = Eka'akoaka + Vk/mn akoalo’anT’amT
ko klmn

oo’ 7!

We have to construct eigenstates of the annihilation operators:
coherent states alg) = o|o)

Bosonic case: In occupation number representation |¢) must
consist of a linear combination of states of every occupation
number n. Ansatz:

)
|¢> = Z ¢na1”a2.4. ‘na17na27"‘> ’¢”01”0¢2<~ eC
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Let a act on this state:

o
aai|¢> = Z ¢"a1n042.4. aOéi|n0417 Nay s >
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Iteration of this relation yields

¢ — (¢a1)na1 '(925042)"&2 T (b
Naq Nay... m \/@' 000...

Usual convention: ¢ggo... = 1

nal na2
a1 " Pan

(e.e]
= |¢> = Z | ] ’nOﬂ?nOéQJ"
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As a last step one can insert

al )" (ah,)
O SR
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Bosonic Coherent States have got the following representation:

Na Na
s (Qbalajxl) ' . <¢O¢2a(‘22) 2 S eee

¢ = Z NV Nt e 10)
(o)™ f
15> 0) = [Le=0)
i Na; =0 i

Remark: This last relation could also be deduced from canonical
commutation relation

{aai,afxi} =1=[%1i-p]
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In the case of fermions the creation and annihilation operator
anticommute. Suppose [¢)) denotes a fermionic coherent state
now. Then:

a1alY) = —aailyy) — P12 =~y

The eigenvalues of the fermionic annihilation operator must be
Grassmann variables (Grassmann numbers)

Grassmann Algebra (Exterior AIggbra):_Let V be a complex
vector space with basis {11, ...,%n, 11, ...,%n}. Then the
Grassmann algebra is defined as:

g = ®x AV
Multiplication is defined by using the wedge product:
-y =AY
Vi = YAy = =Y = o9
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Since Y2 = —4? =0 all Grassmann variables (i.e.
elements from the Grassmann algebra) are monomials of the
Vi, i, for example:

Y =a+ b-Yo+c-Ysbss ab,ceC

We finish this section with the definition of derivatives and
integrals with respect to Grassmann variables:

O; ;i 50 Oy O

o; o o ol
8 n

e 3%")
— Vi ... = -1 1 i Wim_1 imt1 - Win
5 Vi mzzjl( )" iy (8% Pimya

The integral is defined as the same mapping, i.e.

/ g 3?/1:'
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Now extend usual Fock space by allowing coefficients from the
Grassmann algebra. Furthermore:

{30, ¥i} = {30, ¥i} = {al,¥i} = {al, i} =0
(Wiaa)! = alh;  (ial)! = aui

Fermionic Coherent States have got the following representation:

¥ = I« verthijo) = H(1 — o2l ) 10)

Proof:
2 ¥) = TT(t - vasal,) 2, (1 = vl ) 10)
JF#i
= TI(1 - voaly) vail0)
JF#i

= TI(1 - u2ly) s (1 = ¥l ) 10) = wlt)
JF#i

Summar
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As a last step we need completeness relations.
For Bosons:

dpo dpg -3 bata B
JI 5 =" ol = 1
For Fermions:

[T dta dvae = il = 1

Convention: In the following we will use

_ 1 bosons - 2mwi  bosons
¢ = {—1 fermions €= { 1 fermions
C bosons
¢ € { G fermions
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Now we can use the coherent states to express the many-body
partition function:

zZ = tr(e*BH> = Z<n|e7ﬁH|n>
= 2 [TT2 e =" (g ol i)
- Z/ [T #2202 & (e ) nle)

dpo dpo —X Pada _
~ 7 = [ e e M

Summar
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With the Hamiltonian

Zsaaa + V(a a, a,)

and repeating the procedure from the talk before (with 7 = §/N),
we get:

T l+1a Pia wbirte
7 = /HHd¢la dqb,a ZE¢:a[ +eaditl, ]+V

i=0 «

o - -
= [ d7 3 6a(7)(0r+ea)da(r) + V(6(T) ,6(7))

- / Dlo(r), d(r)] e b @

»(8)=¢4(0)
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Partition Function:

B
- — [dT 3 ¢a(T)(Or+€a)da(T) + V(S(T) ,0(T))
7 = / Dl§(r), B(r)e b =

Let us continue with imaginary time-ordered Green's functions
(Matsubara functions): (0 < 7; < [5)

G = %tr [e—ﬂHTT (Al(Tl)...A,,(Tn))} . A(r) = eHaeTH

Assume 1; > 7, > ... > 7; . Then:

: CZPtr [efﬂHAh(T,-l)...A,-n(Tin)}

P
_ CZ [ B A, o= (a =TI A, o= in s =Ti)H g =M
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1P
¢ —(B—Tiy )H —(7i, =iy )H —(7ip_y —7in)H —Ti,H
G = 7tr e B=mH A e=(T=R)H A, e (Tip 1 =Tin) A;, e Tin
B Til T]
CP — [ dTtH — [ drH _ fndTH
= 7tr e 1 Aje "2 Ap,.. A e ©

Now with the same insertions as before:

8
P - _de Z‘Ea(T)aTqﬁa(T)"’H((ﬁqu)
G - 7 /D[(ZS’ (Zs] € ’ : A(Tll)“A(T’n)
B
1 -, — [ dT 3 a(T)0rda(r)+H(,9)
= Z/D[¢,¢] @ 0 “ A(11)...A(Th)

—  The functional integral is automatically time-ordered!
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Definition of the one-particle Green’s function:
(0r + €a)GAU(T—7") = —6(r—1')- So 0!

(real) Gaussian integral

o
1/d2§2 -
= X X° - e 2a

vV?2ma

— 00

It can be shown that the functional integral converges to a
Grassmann-Gaussian (fermions) or complex Gaussian (bosons)
integral with covariance G°.
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As in the lecture we can Fourier transform to discrete Matsubara
frequencies:

B B
B(wn) = / dremo(r)  B(wn) = / dr e 3(r)
0 0

1

iw, — Eq

Go(T) — Guoliwn) =

—. 2 falwn)(iwn—ea)palwn) = V($(wn) ,¢(wn))
z — [o@.den
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Expanding the potential term eV(®®) in a power series leads to the
usual perturbation theory

Wick’s Theorem: (bosons)

(4, A9) Z<z> qua wn)(iwn — €a)Pa(wn)

A= (60" - ZG“(x,z>A(z,y> = 3(x~)
s p(x) e(®A9) 25 X — ) e(:42)
ZGO x,2) Az, y) 6(y) e(#49)

0(x 710 o(59)
2 k) g5y



Wick’s Theorem: (bosons)

o(x) 49) = 37 GO(x, 7) 2 e(5:49)

yields

/ D[o, 3e(®A) $(r1)...(7n) B(Tat1)--B(72n)

9e(8.A9)

= /D[¢, &]ZGO(TLZ) qﬁ(Tz)...qf_)(Tzn)T(z)

- _ / D[¢’ &]e(‘g’Ad)) Z GO(Tl, Z) . (5(2 = 7’,')

z

-@(72)--(Tn)D(Tn41) - D(Ti-1)A(Tis1) .- B(T2n)

Wick:  (¢(71)...0(72n))0 = sum over all contractions
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n-particle Green’s Function:

G(T1,Q1; oi Thy Q| 1, O ooy Ty )
= ("(Tr (20, (71)- 30, (Fn)al, (72)...ak, (7))
= ("(¢ay(11)--Ban(Tn)Pa (7)o (T1))

Generating Functionals:
Wip,p) = % / D¢, §le(#49) +V(9:9) g=(6:0) = (79)

We(p,p) = IOg% / D[, §|e(8:49) + V(¢3) ¢=(3.0) = (5:9)
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Why are these functionals called generating?

OW(p.p) _ =< 710(8.40) + V(0.8) 3
St = 2 [ Dl dlelEA) Ve, ()

p=p=0

—  Derivatives of W generate expectation values of the fields,
i.e. Green’s functions.

—  The derivatives of W, generate connected Green’s
functions, for example

0*We(p, p)
0Py (11 )apaz (72) p=p=0

9 - 71 (3A6) + V(6:3) o—(30) = (50) 7
S| Do dle ‘ Foal(2)

= (($oa(11)Pax(72)) — (P (71)) - (dar(72))




Summary
°

Summary and Overview

@ Coherent states are the eigenstates of the annihilation
operators of a many-body system

@ The functional integral formalism is the counterpart of the
single-particle path integral

@ The functional integral formalism produces automatically
imaginary time-ordered products

@ Once established it is a very powerful, elegant and general
tool kit

@ Most of the current (analytical) publications in condensed
matter theory use this formalism
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