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Meissner-Effect London-Equation

Meissner-Effect

Superconductivity is the consequence of an electron-phonon
interaction.

One of the most striking features of a superconductor is the
Meissner effect.
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Meissner-Effect London-Equation

Meissner-Effect and London-Equation

For the equation of motion for an electron a filed E is:

d d
mav = eIE
d ne? d



Meissner-Effect London-Equation

Meissner-Effect and London-Equation

For the equation of motion for an electron a filed E is:
d d

mav = eIE

Because of:

London-ansatz

with ns the density of superconducting electrons.
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Meissner-Effect and London-Equation

Take the rotation:

nse?
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Oxj = — = oxA = —
mc mc



Meissner-Effect London-Equation

Meissner-Effect and London-Equation

Take the rotation:

nse?

B

2
Oxj = — = oxA = —
mc mc

Because of Maxwell equation 0xB = %j and 0B =0:

4 A7 nge?
0x0xB = l@xj = ﬂnsze B
c mc

— —AB+9(0B) = —AB

it follows:




Meissner-Effect London-Equation

Meissner-Effect and London-Equation

Inspect this equation in the case of:
@ No superconductor at z<0
@ A superconductor at z>0

H? 47 nge?

@B(z) = B(z)

mc?




Meissner-Effect London-Equation

Meissner-Effect and London-Equation

Inspect this equation in the case of:
@ No superconductor at z<0

@ A superconductor at z>0

H? 47 nge?
@B(Z)_ mc? B(2)

Solution
B(z) = Boe
me2
)\ —
L 47rnge?

Ar: London penetration depth.



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

Hubbard Stratonovich transformation maps interacting fermion
systems to non-interacting fermions moving in an effective field.
— Interacting has to contain fermion bilinears

H=H,+H  with H=-g / d®xAT (x)A(x)

examples A(x) =V (x)V1(x) or A(x) = 57 (x)



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

Hubbard Stratonovich transformation maps interacting fermion
systems to non-interacting fermions moving in an effective field.
— Interacting has to contain fermion bilinears

H=H,+H  with H=-g / d®xAT (x)A(x)
examples A(x) =V (x)V1(x) or A(x) = 57 (x)
Replacement:

—gaA ()A(x) — AT()A() + BAG) + APIAR)

Like in mean field theories.



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

A=N+il A=A — il
(82+n3)
/dAldAze_ e =g
/dAdA 9N
27ig N




Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

A=N+il A=A — il

(82+n3)
/dAldAze_ e =g
/dAdA an
—e & =1
2rig

Generalize to A(x, t):

/D[A,A] exp(—/d3x/ﬂd7'A(;’ T;A(X’T)) =1
0

PlA, A] _ H dA()g,Tj)\?A()g,T)

7




Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

fﬁdT[E(&,—-i-h)C-i-H/]
h=¢,

Z= /D[c,c‘:]e_0

By introducing a 1 we obtain:

’8 /
__ — [dr[e(0-+h)c+H,]
Z:/D[C,E]/D[A,A]e ! ’

Hy = / d3x[AgA — gA(X)AX)]

We now shift the A-field:

5ab



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

fd'r[?:(&r—i-h)c—i-H,]
h=¢,

Z= /D[c,c‘:]e_0

By introducing a 1 we obtain:

’8 /
__ — [dr[e(0-+h)c+H,]
Z:/D[C,E]/D[A,A]e ! ’

Hy = / d3x[AgA — gA(X)AX)]

We now shift the A-field:

5ab

A(x) — A(x) + gA(x) A(x) — A(x) + gA(x)
A(

= H; = /d3X[/z\(X)A(X) + AA(X) + A(x)gx)]



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

We have absorbed the interaction, replacing it by an effective
action which couples to the fermion bilinear A.




Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

We have absorbed the interaction, replacing it by an effective
action which couples to the fermion bilinear A.

Z= /D[A,A]e‘fdz’xdfaf /D[c, cle=S

8
S= / dred,c + Het[A\, Al
0

HorlD, A] = H, + / PrIA)A(K) + AAK)]

Please note that S is quadratic in the fermion operators.



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

/D[c, cleS = det[0, + her[A, Al

with hes the matrix representation of Hes.



Hubbard Stratonovich transformation

Hubbard Stratonovich transformation

/D[c, cleS = det[0, + her[A, Al

with hes the matrix representation of Hes.
This leads to:

Z = / D[A, Ale~SrAAl
Serr[A, A] = / d3xd7'AgA — Indet[0; + hegr[A, A]]

AA _
- /d3xdTg — Trin[0; + herr[A, A]]



Application to BCS-Hamiltonian

BCS-Hamiltonian

H= Zek(,c;;ckg - %A+A
ko

A= Z C—k| k7 A+ = Z Ci—chi_kl

k|ex|<wp k,|ex|<wp



Application to BCS-Hamiltonian

BCS-Hamiltonian

H= Zekacljgckg - %A+A

ko
_ + _ § + +
A= Z C—k| k7 AT = C—ch—kl
k,|ex|<wp k,|ex|<wp

By using the results of the previous section wse obtain:

= /D[A,A,C,E]e_S

AA
S= /dT [chg (0r + ex ckU+AA+AA+?]



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

Introduce a Nambu notation:

B —
- AA
k

0
-
V= ( Tk )



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

Introduce a Nambu notation:

AA
/dT Zwk -+ hy \IJk—i——]

CkT
V=1 _
()

= ( 2 )

Again we can integrate out the fermionic contribution:

Z= / D[A, Ale~SrlAA]

B _
- AN
Seff[A7 A] = /dTg + Z TrIn(c’)T + hk)
k

0



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

To proceed we must invoke some approximation, we expect that
fluctuations will be small

— integral will be dominated by minimal value of Seg

— saddlepoint approximation Z = e~ S [80,80]

Expect that A, is independent of 7 because of translational
invariance.



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

To proceed we must invoke some approximation, we expect that
fluctuations will be small

— integral will be dominated by minimal value of Seg

— saddlepoint approximation Z = e~ S [80,80]

Expect that A, is independent of 7 because of translational
invariance.

V(1) = \/IB Z Wye T

with the Matsubara frequencies w, = (2n + 1)

det[0, + m] = [ [ det[—iwn + hd = [ [[w3 + ek + |A]7]



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

Inserting this into Seg yields:

A2
= —TZIn[w% + e+ |AP] + z = Ferr
kn

Sefr

g




Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

Inserting this into Seg yields:

S A?
S= =Ty Inld 4 AP+ - = Far
B ” g
Minimizing wrt A:
OF A A
0A Z w2 + E? * g



Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

Inserting this into Seg yields:

S A?
=Ty Il G AP+ T = Fur
6, ” g
Minimizing wrt A:
OFer A A
=T gt

BCS Gap equation




Application to BCS-Hamiltonian

Application to BCS-Hamiltonian

From this follows (after some work):

Equations for A and T,

1
A =2wpe &NO)

e_\II(%) 1

T.= wpe O

27

With N: density of states and W(z) = % InT(z) the digamma
function.



Ginzburg-Landau theory

Ginzburg-Landau theory

Since transition is continuous close to T, expand Ses for small A.

with Oy + he =

A(r) O —e )
(8 gyt a5 9)]
1



Ginzburg-Landau theory

Ginzburg-Landau theory

Tr(GEAGEA) = G < KAk > Gh < K'|Ak >
kk'

= 2.4 A-qmd zgp(k)g (k+q)

qkk/q

N(q)pairing susceptibility



Ginzburg-Landau theory

Ginzburg-Landau theory

Tr(GEAGEA) = G < KAk > Gh < K'|Ak >
kk'

= 2.4 A-qmd ng(k)g (k+q)

qkk/q

N(q)pairing susceptibility

Apart from the term Trln g;l Sefr contains:

2 + @(A4)

1
Ser D Z[E + ”(wmq)”AWmQ

wnq



Ginzburg-Landau theory

Ginzburg-Landau theory

Approximate 1

N(wn, q) = M(0,0) + faf,rl(o, 0) + B(wn, q*)



Ginzburg-Landau theory

Ginzburg-Landau theory

Approximate 1

2
N(wn: @) = N(0,0) + -02M(0,0) + P(wn. 4*)
Transform to position representation (and include a term of order
AY):
d [tiae, K 2 4
Setr DB | dr §|A| +E|6A| + ulA|

t 1
§:§+”(0’0) K=0,1(0,00>0 u>0



Ginzburg-Landau theory

Ginzburg-Landau theory

Approximate 1

N(wn, q) = M(0,0) + fagn(o, 0) + B(wn, q*)

Transform to position representation (and include a term of order

AY):
d [tiae, K 2 4
Serr DB | d §|A| +E|6A| + ulA|
t 1
§:§+n(0’0) K = 0401(0,0) >0 u>0
We again assume that Z will be dominated by the minimal action:

0A =0

|

556#/’.\ 4 2 4
-~ A A

3|4 0= 51A\(2‘ "+ ulA)




Ginzburg-Landau theory

Ginzburg-Landau theory

Al(t+4ulaP)=0 |A r o0
= = =

Bl(eraud®) =0 jal=3 o
For t < 0 U(1) symmetry is spontaneously broken.
A = |Ale® — o field remains massless/gapless.



Ginzburg-Landau theory

Ginzburg-Landau theory

Al(t+4ulaP)=0 |A r o0
= = =

Bl(eraud®) =0 jal=3 o
For t < 0 U(1) symmetry is spontaneously broken.
A = |Ale® — o field remains massless/gapless.

Goldstone theorem
Every time a continous global symmetry gets spontaneous broken
there exists a gapless exitation — Goldstone mode.




Ginzburg-Landau theory

Ginzburg-Landau theory

By calculating (0, 0) we can relate t with T:

1
T. = mwp exp(————
( N(O)g)
t T-T.
—=~N
2 (0) T




Ginzburg-Landau theory

Ginzburg-Landau theory

By calculating (0, 0) we can relate t with T:

T, ( S )
c = Twp exp(—
N(O)g
t T—- T,
— =~ N
2 0) T.

The Ginzburg-Landau theory of superconductors was known (1956)
before BCS-theory (1957) and predicted the right results.
Parameters are unknown if you start with a GL theory but
meaningfull predictions are possible.



Anderson-Higgs effect

Inclusion of em fields via minimal coupling:
0— 0+ ieA
-1
4

HZ—/DA/D[A,A]e_ eff

Lem = Fu F* Fu = 0,Ahu—0,A,

Where S.¢ gets modified:

K 1
Sefr = ﬂ/ dr [;Alz + 510+ i2eA)A]* + ul A" + Z(OxA)?

where we used Ao =0 =0



Anderson-Higgs effect

All terms in this Lagrangian are gauge invariant under local gauge
transformations:

A A~ 90(r)
A — ef2ie¢(r)A



Anderson-Higgs effect

All terms in this Lagrangian are gauge invariant under local gauge
transformations:

A A~ 90(r)
A — ef2ie¢(r)A

Write:
A(r) = |A(r)]e 20
and choose a gauge (unitary gauge):

A— A—90d(r) A~ |A|



Anderson-Higgs effect

this results in the action:

462’;|A‘2A2

t K 1
seff:/;/dr [2A|2+2(8\A])2— +u]A\4+2(8xA)2]



Anderson-Higgs effect

this results in the action:

2 4e2g|A\2A2

t K 1
Seff:[;/dr [2A|2+2(8\A]) +u]A\4+2(8xA)2]

below T, A #0 = m3 = 4e’K|A|? #= 0.

Anderson-Higgs effect

The goldstone mode gets eaten by the gauge field which aquires a
mass.




Anderson-Higgs effect

The mf\—term is responsible for London equation, because
minimisation wrt A:

Ox (OxA) +m3A =0
B



Anderson-Higgs effect

The mf\—term is responsible for London equation, because
minimisation wrt A:

Ox (OxA) +m3A =0
B

With the help of Maxwell equation 0xB = 47”j we obtain:

2
_cmA

1= 47

This was the basis for the London equation.



Conclusions

We saw how a interacting fermionic system can be rewritten
as a system noninteracting fermions in a bosonic field

We could compute several important quantities like T, or the
gap A

A Ginzburg-Landau ansatz with in orderparameter < WV,
showed how symmetry breaking occurs

We saw an example of Goldstones theorem

By gauging the symmetry we obtained an example of
Anderson-Higgs mechanism which is also important in high
energy physics
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