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Introduction and Motivation



• In Q.M. – a probability amplitude 
associated with every method whereby an 
event in Nature can take place.

• Also associate an amplitude with the 
overall event by adding together the 
amplitudes of each alternative method.

• Can be seen via the famous double-slit 
experiment



The Double Slit Experiment



•
1φ Amplitude for reaching the 

detector while passing through 
hole 1

2φ Amplitude for reaching the 
detector while passing through 
hole 2

21 φφφ +=Total amplitude of 
reaching detector



since
2Amplitudey ProbabilityProbabilit =

Total Probability of 
Electron Reaching 
Detector

2
21 φφ +=P

But – many ways to analyze concept of amplitude.

In this example – associate amplitude with each 
possible motion of electron from A to B .

Hence – total amplitude = sum of a contribution 
from each of the paths



A Thought Experiment



Each alternative path has own amplitude –
Complete amplitude is sum of all possible 
paths.

Now suppose: More and more holes are 
drilled – till nothing more is left of the 
screens…

At each screen, path of electron specified 
by heights             at which the electron 
passes positions  
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A Thought Experiment II



A Thought Experiment III



• To each pair of heights corresponds an 
amplitude.

• Need to take integral of the amplitudes 
over all possible values of             .

• Also, the time at which the electron passes 
each point in space – .

• Thus – a path is defined through          
• Total amplitude = sum over the amplitude 

for source – detector travel following all 
possible paths. 
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• But how does one define a sum over a 
path?

• One way is to approximate it by line 
segments + let segments 0



• Unitarity of Q.M.: Amplitude of the whole 
path is product of the amplitudes of each 
infinitesimal path

• Amplitude to propagate from      to       in 
time     is given in terms of the unitary 
operator such that
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• Dividing time       into      infinitesimal 
segments each of length                 , one 
has

Completeness of        means that
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• And thus 

• Taking a look at one individual factor
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• for free particle case,                  along with 
the completeness of         gives
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• The integral over     yields, noting that it is 
Gaussian and employing the relation
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• Substituting the integrated expression into 
the expression for the product of              
yields

• Taking the continuum limit             one 
replaces and 
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• One has then the path integral 
representation: 

• To obtain                , one simply integrates 
over all possible paths       such that  

and 
• Hamiltonian for a particle in a potential 
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• But , and in general

• As , and restoring the 
Planck’s constant, the final expression is 
then 
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Some Examples in Calculating 
Path Integrals



I. The Free Particle



• The Lagrangian for a free particle 
is noted to be

• The full amplitude (or kernel) is then 
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• The full expression can be  obtained by 
substituting the Lagrangian into the action 

and performing the time 
integration.

• Alternatively, one can also apply the action 
principle along with the Hamilton 
equations for the free particle.

)(),(
0

qSqqdtL
T

=∫ &



• Taking note of the identity

one first considers the first integral over 
in the sum of terms in the exponent.
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• Including two of the               terms one 
has

according to the integral identity displayed 
in the previous slide
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• It can be seen that the effect of integration 
on the      is the replacements
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• Grouping and integrating N times, one 
finally has

• The final expression of the integral is
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II. The Harmonic Oscillator



• The harmonic oscillator Lagrangian
special case of the quadratic Lagrangian

• For the harmonic oscillator (replacing :
)
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• The action of the Lagrangian is of course

• In general, quadratic Lagrangians (such as 
har. osc.) can be solved by introducing

where                                    , i.e., where 
the action is an extremum (S unchanged 
in the 1st order if         is modified slightly.)

)()()( τττ yxx +=

y trajectorclassical)( =τx

)(τx

∫= LdtxS ))(( τ



• Difference between 
classical path 
and a possible 
alternative path
is         .

• Evidently 

• Classical path is 
constant
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• Setting a new “integration variable”

• the  Lagrangian can be Taylor-expanded 
around              as 
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• The Taylor expansion terminates after the 
second term since is a quadratic 
functional. 

• Substituting the Lagrangian for the 
harmonic oscillator yields for the action:
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• Performing integration by parts and using
from the definition of the classical

path yields the expression

Which gives for the amplitude

as the path integral only depends on time
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• Employing the usual definitions of the path 
integral one writes

• To deal with the multitude of integrals, one 
resorts to a method introduced by Gelfand
and Yaglom
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Gelfand-Yaglom Method
• The expression

can be written in terms of matrix elements 
such that

and thus
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• Here     is the matrix defined by

and thus the amplitude can be written
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• is of the form      with     real and 
Hermitian diagonalizable by a unitary 
matrix

where      is the diagonal matrix of 
eigenvalues of     . For real eigenvectors  
is also real; one can set            . Since 

it is true that                             
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• The amplitude is then written as
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• The factor

• The determinant can be calculated by 
considering truncated         matrices from   
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• By expanding        in minors, it can be 
seen that they obey the recursion formula

, where

and                            ,

• Rewriting yields
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• If one writes                 for                 , then 
in the limit of           ,         satisfies

with initial values
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• Thus

is obtained by solving the differential 
equation

with initial conditions 
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• And thus, one arrives at the amplitude for 
the harmonic oscillator
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Perturbation Expansions



• On general quadratic actions are relatively 
easy to solve using the path integral 
method.

• For general class of potentials 
perturbation expansion of path integral.

• Start with a general expression for the 
potential specialize to scattering 
problem.



• a particle moving in a potential           has 
the kernel  

where          is as previously defined. 
• If the potential is small, then the potential 

part is:
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• Substituting into the original expression:

where:
K+++= ),(),(),(),( )2()1(

0 ifKifKifKifKV

[ ]

[ ]

[ ] )(''),'(

)(
2

exp
2
1),(

)(),(
2

exp),(

)(
2

exp),(

2

2
)2(

2
)1(

2

0

tDxdsssxV

dssxVdtxmiifK

tdsDxssxVdtxmiiifK

tDxdtxmiifK

f

i

f

i

b

a

b

a

b

a

f

i

t

t

t

t

f

i

t

t

t

t

f

i

t

t

f

i

t

t

∫

∫∫ ∫

∫∫ ∫

∫ ∫

×

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

&

hh

&

hh

&

h



• Interchanging integration order and writing

• is the sum over all paths of the free-
particle amplitude; potential term can be 
additionally interpreted.
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• However –
weighted at time s 
by 

• Before and after s 
– free particle.

• Unitarity of 
propagators sum 
over all paths 
between i to c & c
to f can be written 
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• Thus, for         ,                    can be written 
as  

• Substituting into the expression for

• Can be interpreted as a free particle 
propagating from i to c, is scattered, and 
finally propagates freely to f
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• Thus,              can be written as ),( ifKV
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• Thus, one can also write

• An integral equation describing       if
is known.  
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• Operating             on a wavefunction yields

• Substituting the series expansion of  
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• The first term gives the unperturbed 
wavefunction at time    . Calling this term    
one has

which yields 

ft φ

idxififKf )(),()( 0∫=φ

∫ ∫

∫

++

−=

K
h

h

dc

c

ddddVdcKcVcfKi

dccVcfKibb

ττφ

τφφψ

)()(),()(),(

)()(),()()(

002

0



Thank You for Your Patience


	The Single Particle Path Integral and Its Calculations
	Summary Of Contents
	Introduction and Motivation
	The Double Slit Experiment
	A Thought Experiment
	A Thought Experiment II
	A Thought Experiment III
	Some Examples in Calculating Path Integrals
	I. The Free Particle
	II. The Harmonic Oscillator
	Gelfand-Yaglom Method
	Perturbation Expansions
	Thank You for Your Patience

