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Introduction and Motivation



e In Q.M. — a probability amplitude
associated with every method whereby an
event in Nature can take place.

» Also associate an amplitude with the
overall event by adding together the
amplitudes of each alternative method.

e Can be seen via the famous double-slit
experiment



The Double Slit Experiment
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Amplitude for reaching the
¢1 detector while passing through
hole 1

Amplitude for reaching the
¢2 detector while passing through
hole 2

Total amplitude of ¢ = ¢ af ¢
reaching detector 1 2



since Probability = |Probability Amplitudg’

Total Probability of 2

Electron Reaching P e ¢1 e ¢2

Detector

*But — many ways to analyze concept of amplitude.

=|n this example — associate amplitude with each
possible motion of electron from Ato B .

*Hence — total amplitude = sum of a contribution
from each of the paths



A Thought Experiment
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= Each alternative path has own amplitude —
Complete amplitude is sum of all possible
paths.

= Now suppose: More and more holes are
drilled — till nothing more is left of the
screens...

= At each screen, path of electron specified
by heights X5, Xc at which the electron
passes positions Y., Y



A Thought Experiment Il
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A Thought Experiment Il
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To each pair of heights corresponds an
amplitude.

Need to take integral of the amplitudes
over all possible values of Xy, Xc .

Also, the time at which the electron passes
each point in space — y(t) .
Thus — a path is defined through X(t), y(t)

"otal amplitude = sum over the amplitude
for source — detector travel following all
possible paths.




e But how does one define a sum over a
path?

 One way Is to approximate it by line
segments + let segments - 0




o Unitarity of Q.M.: Amplitude of the whole
path is product of the amplitudes of each
Infinitesimal path

« Amplitude to propagate from G, to g; In
time T is given in terms of the unitary
operator such that

Amplitude= <qf ‘e i)



 Dividing time T Into N Infinitesimal
segments each of length & =T /N, one
has

—iHT

<Qf ‘e ‘qi>: <qf ‘e_iH& "'e_iH&‘Qi>

Completeness of \q} means that

J dela)(al=1



 And thus
<qf ‘e IHT‘ql

:(Jnljdqj j<Qf ‘e_iH&‘ QN—1><CIN—1‘e_iH&‘CIN—2>"'

fimjer oye i)

e Taking a look at one individual factor

—|H&‘qj>

<qj+l



» for free particle case, V(q) =0, along with
the completeness of ‘ p> gives

<CIj+1 e—i&(ﬁZIZm)‘qj> _[ dp <qj+l

= [ R earzmiq, | p)pla,)

_J‘ dp aid(p?/2m) JP(d;a0))

|é’[(p /2m)‘ <p‘qj>




* The integral over p yields, noting that it is
Gaussian and employing the relation

<CI e—iH&(pZIZm)‘q >: (—izmjze[im(qj+1qj)2]/2&
j+1 j
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e Substituting the integrated expression Iinto
the expression for the product of <qj+l e“H&‘qj>

yields

N

|12 2 N-1 i(m = -0/ &J°
(G 6™ ) ( &ﬂmj IR s o
i

« Taking the continuum limit & — O one
replaces[(q;,,—a;)/&]° = 4° and 3" & | d

N

[Da(t) = Iim(_i;ﬂmjz J_Nr:ijjdqj

N—co



* One has then the path integral
representation:

Spr L ol

|j thmq

(9, || g} = | Dg(t)e™

iHT

. To obtain (a:[¢""|a), one simply integrates
over all possible paths q(t) such that

d(0)=q and a(T)=q;
« Hamiltonian for a particle in a potential V(q)

[z mez-v @)

(a;]e""|q) = | Da(t)e”



e But %qu -V(g)=L(q,q) , and In general

[t (a,0)

(a;/e""|q)= | Dg(t)e*

x

e As L dtL(g.q)=S(a) , and restoring the
Planck’s constant, the final expression Is
then

(a \e_;'lHT\q, = D™



Some Examples in Calculating
Path Integrals



|. The Free Particle



» The Lagrangian L(d,q) for a free particle

IS hoted to be !

L(d,0) = m;'

e The full amplitude (or kernel) is then

N

m )2
K(d;.,q) = |lm(2 h&j

he Im
X jlgojdqj exp(h& > (X —X;4) ]

j=0

Z



« The full expression can be obtained by
substltutlng the Lagrangian into the action

I dtL(9,9) =S(a) and performing the time
integration.

o Alternatively, one can also apply the action
principle along with the Hamilton
eguations for the free particle.



e Taking note of the identity

Iduf ( Ak

:\/ (a+b) p““’ﬁ -y

one first considers the first integral over g,
In the sum of terms In the exponent.



%
 Including two of the (%j terms one
has E

im im A
d S fis 2
(mm&jj e 2h&(q1 %)+ o e !

: \/ 27 hTz&) i 2h|(r;&) (6~ )

according to the integral identity displayed
In the previous slide




It can be seen that the effect of integration
on the G Is the replacements

g, integration: 2& — 3&
(both In the sguare root and in the exponential)

(% _q2)2 +(q2 _QO)Z e (qs _QO)2

g, integration : 3& — 4
(both In the sguare root and in the exponential)

(A=) + (04— )" = (A —G)°



 Grouping and Integrating N times, one
finally has

& - (N+)&=T
Distance sguared — (O|N+1 —q0)2 = (le —q )2

* The final expression of the integral Is

(@, -qf

im
onT

Im
K(qf ’qj):\/ZﬂihT eXP




Il. The Harmonic Oscillator



e The harmonic oscillator Lagrangian -
special case of the quadratic Lagrangian

L =—mX
2

-2

b(t)xX—%c(t)xz —e(t)x

e For the harmonic oscillator (replacing :
O — X(ty/a))

L
2 2

Cmw?Xx?



e The action of the Lagrangian is of course
S(X(7)) = j | dt

* In general, quadratic Lagrangians (such as
har. 0sc.) can be solved by introducing

X(7) = X(7) + y(7)

where X(7) = classical trgjectory | i.e., where
the action Is an extremum (S unchanged
in the 18t order if X(z) is modified slightly.)



» Difference between
classical path X(t)

and a possible
alternative path X(t)

IS y(t) .
e Evidently

y(t,) = y(t,)=0

e Classical path is
constant

/

¥
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e Seftting a new “integration variable”

y(t) = X(t) - X(t)
y(t) = X(t) - X(t)

« the Lagrangian can be Taylor-expanded
around X(t), X(t) as

L(x,x:t) = L(X,X:t) +—
(X, X;t) (X, X )+8x_ il
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 The Taylor expansion terminates after the
second term since L(x, X;7)Is a quadratic
functional.

e Substituting the Lagrangian for the
harmonic oscillator yields for the action:

Szj‘dtL(x,X;t)zj‘: L(X, t)+j dt(—XY+—y

|
XI-

+£f dt%m(yz—a)zyz)



 Performing integration by parts and using

oS

—| =0 from the definition of the classical

OX

X

path yields the expression

St +£f dt%m(yz—a)zyz)

Which gives for the amplitude

K(X¢ 15X, 1) =exp

h

IS e k)

K(O,t,;0,t)

as the path integral only depends on time



 Employing the usual definitions of the path
Integral one writes

K(0,t,;:0,t.) = lim

N —oo

X EXP

m

28

N

x m )2
] dyl"'dy'\'(znih&j

(yj e yj—1)2 _%&wzyjz

* To deal with the multitude of integrals, one
resorts to a method introduced by Gelfand

and Yaglom
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Gelfand-Yaglom Method

he expression

28

exW%ZN: . (yj_yj_l)z_%&wzyjz :
j=0

can be written in terms of matrix elements

such that
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 Here o Is the matrix defined by
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and thus the amplitude can be written

N

j jd nexp( n 077)



e o is of the form i o with O real and
Hermitian - diagonalizable by a unitary

matrix
c=U"o,U

where o}, Is the diagonal matrix of
eigenvalues of o . For real eigenvectors U
is also real; one can set ¢ =U7 . Since

detU|=1 it is true that

N/2

IdNﬂe_"Tan :IdNé:e—f%(f :ﬁ Alsg il
=1 00, \/ deto



e The amplitude is then written as

i —1/2

4 N+1 N
K(Ot;;0,t)=lim (2 T;&j d’;
jrs 7l 0]

. m 1 1
"N 260 & T Ana )
( I j deto
m




e The factor

(Zihé’[

5] 2 _(&)2

N
j det o = det !

frelhes L4 -

=det o'y = Py

 The determinant can be calculated by
considering truncated | X ] matrices from

N




e By expanding o ;.;in minors, it can be
seen that they obey the recursion formula

() .
Pja=| 2 = @ \P;— Pj1 , where j=1...,N
and p, =2-(&)’w/m,

 Rewriting yields P =1

pj+1_2pj + pj—l :_m_pj
(&)° m




» If one writes @(t) =a&p; for t=t,+ A& | then
in the limit of & > 0, ¢(t) satisfies
d’p _Q¢
dt’ m

with initial values

@(0) = dp, — 0

dg(0) _ &( p, - pojzz_(&)z
dt i m

w—1—>1 asN —



Thus

! N
f(t,,t)=lim 5(2'2‘5") deto | = ot )

IS obtained by s_olving the differential

eguation
0°f (t,,t)

m = +af (t,,t)=0

with initial conditions

i af =
f(t,t)=0 () =1

t=t,




 And thus, one arrives at the amplitude for
the harmonic oscillator

K(Xf ’tf;XHti) =

m B :
exp —S.(X;,t:; %X,t
\/27Z|hf(tf,tl) p h c( fr-f X| )—




Perturbation Expansions



 On general quadratic actions are relatively
easy to solve using the path integral
method.

* For general class of potentials =
perturbation expansion of path integral.

o Start with a general expression for the
potential = specialize to scattering
problem.



e a particle moving in a potential V(x,t) has
the kernel

Kv(f,i)zjif(exp{i%ff %xz -V (X,t) dtlij(t)

where DX(t) is as previously defined.

 If the potential is small, then the potential
part Is:

exp[—% j V (X, t)dt} 1—% J:fV(x,t)dt +%('%ﬂ EfV(x,t)T...



Substituting into the original expression:
K, (f,i)=K,(f,))+KD(f,D)+KD(f,i)+...

where:

Ko(f’i):_';f

@rf iy _ L[
K®O(f,i)= hj

K (f,i) =

1

2h° Y

ox p(

n

l

2

tr MX

2

.

2

X jt ff V|x(s'), s ds Dx(t)

Dx(t)

L "V[x(s), sHsDx(t)

dtj

jt :f V|x(s)ds



 Interchanging integration order and writing

KO (f ,i):—%f F(s)ds

where

F(s) = I. f exp(l% jt Tf m;(Z dtj V [x(s), s|Dx(t)

e F(s)is the sum over all paths of the free-
particle amplitude; potential term can be
additionally interpreted.



e However —
weighted at time s ’

by V[x(s),s]

e Before and after s
— free particle.

o Unitarity of

propagators ->sum —
over all paths
betweenitoc &cC

to f can be written K,(f,c)K,(c,i)



e Thus, for s=t, , F(s)=F(t.) can be written
as

F(t)= | Ko(f, 0V (x,)Ko(c,i)dx,
e Substituting into the expression for K (f,i)
KO (F i) =_'%ff K, (f,0V(C)K,(c,i)dx.dt.

e Can be interpreted as a free particle
propagating from i to c, Is scattered, and
finally propagates freely to f
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e Thus, K, (f,i) can be written as

K(f)=
Kol )= [Ko( L OVIOK (G +

(lhj [ [Ko(F MK, (G AV (A)K,(i)dzdr, +...

=Ky(f.)
— [ ,c>V(c>[Ko<c,i)—ih [Ko(F AV DK,(di)dz, + }



e Thus, one can also write

K, (f,i)=K,(f ,i)—i%jKo(f OV (O)K, (c,i)dr.

* An integral equation describing K, if K,
IS known.

G

0
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e Operating K, (f,i) on a wavefunction yields

w(b) = [ Ky(f,i)f (i)dx

e Substituting the series expansion of K,

w(0) = [ Ko(f i) f(i)ax

_'%” Ko (f, OV (Q)K,(c,i)dr, f(i)dx +...



e The first term gives the unperturbed
wavefunction at time t; . Calling this term ¢
one has

#(f) = | Ko(F.0)F ()X
which yields
(6 =0(6) [ Ko(1 OV (©9(0)dr,

+# [[Ko( .0V (©K,(c. )V (d)p(d)dz,dz, +...
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