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Chapter 1

Introduction

1.1 Developing theories in natural sciences and

the significance of quantum mechanics

Quantum mechanics, together with the theory of relativity, represents one of the
two great revolutions in physics marking the beginning of "modern physics”, in
contrast to the period of classical physics of the 19th century and the time before.
Both theories form the basis of today’s understanding of nature: The theory of
relativity, in general, with its only relevance under extreme conditions (high ve-
locities, huge masses, cosmology, particle collider) and quantum mechanics, which
determines numerous phenomena of our daily environment. One important ex-
ample of relativity, even at everyday available energy levels, is the magnetic spin,
which can only be understood by means of quantum mechanics in combination
with relativity.

Until the end of the 19th century the world view of natural sciences was based
on (Newton’s) classical mechanics and (Maxwell’s) electrodynamics; that is: It

was mechanistic, deterministic. However, unsolved problems existed:

e What is the source of the sun’s energy?
e Why are atoms solid? (Radiation decay)

e Why does hot atomic gas have a discrete spectrum?

At first, one didn’t consider these problems as urgent and expected them to be
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solved soon within the theory of classical physics. From what we know today,
this was a fallacy. Only by remodeling the physical theory completely, under-
standing could be achieved. At the beginning of the 20th century, new improved
experiments developed, pushing towards a solution of these unsolved problems
and proved not only that these experiments were difficult to understand within
the theory of classical physics, but that their explanation was inconsistent with

classical physics. Some of these mostly in microcosm tested experiments were:

e Spectroscopy of atoms

e Scattering experiments between particles (electron) and light (photon):
Compton-effect, photoelectric effect

e Interference of light-/particle radiation: Double slit experiment

These and other experiments demonstrated, that on the level of elementary par-
ticles (where the scale yet has to be defined), these small elements behaved like
waves as well as particles (wave-particle-dualism). Furthermore, some physical
quantities proved to be only of quantized values and causality was given only
by its mean. Astonishingly, within 20 years the works of only a few people
(Planck, Einstein, Heisenberg, Schrédinger, Dirac, Pauli, Born) let to a complete
new theory, the Quantum Theory, which allowed correct specifications of these
microscopic phenomena from then on. Therefore, we refer to this development

as a revolution.

From this example we can now derive (see figure 1.3), how a physical theory

arises in general.

One observes four substantial properties of the process of discovery:

1. Once experiments reach so far unknown territory, results are difficult to

understand and tend to be misinterpreted.

Reason: In the process of evolution our brains adjusted to everyday life
(antropic principle); Phenomena out of human’s experiential

range of knowledge remain inaccessible.
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Hypothesis

Capturing nature
in a mathematical
way — intuition!

Testing
Repitition

Observing nature

in contradiction ‘0 recent ﬁelds)

to previous concepts

Intuition Y

Testing,
describing

Theory

Figure 1.1: Development of a theory

2. Concerning the description of new phenomena, mathematics is an essential

complementary science.

3. In contrast to mathematics, mapping nature onto mathematical formalism
is never rigorous, but always requires intuition. On the other hand, the
interpretation of a mathematical theory’s results in order to describe nature

asks for adjustment.

4. A theory has to be tested continuously by comparing it to the experimental

results.

Particularly point three can be understood in terms of the quantum mechanical

evolution:

e The fundamental equation of motion of quantum mechanics (Schrédinger
equation) can not be derived from other theories, for its experiential sphere
goes beyond the previous boundaries. Merely, its plausibility is only derived

from intuition.

e The interpretation of results and predictions asks for adjustment; "Kopen-

hagener prediction” (took decades). This process of discovery and revolu-
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tion is undergone by the student, while studying the Quantum Theory, as
well.

e Studying the mathematical formalism

e Only by adjustment and intuition understanding is possible.

1.2 Historical fundamental experiments and con-
sequences

The basic principles of classical physics are Newton’s mechanics and Maxwell’s

electrodynamics, describing matter as particles and electromagnetic fields as

waves:

e Classical mechanics: Movement of matter

Particles = Idealized point-shaped accumulation of mass m at posi-

tion Z and of momentum p.

Equation of motion:

mi = F = -VV (@) Newton, Euler-Lagrange (1.1)
)
@ _ om
di: op > Hamiltonian (1.2)
dp  OH
dt — OF
Vs
P
T
m

Figure 1.2: Quantities describing a single particle
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e Classical electrodynamics: Dynamics of electromagnetic fields
Light = wave (spatial, time extended disturbance)

Wave-equation of frequency w and wavelength \ :

L B — B4 = 0 (1.3)

cor =\ 't = |

E(&,t) = By e'Fi=n) (1.4)
A (E)

VvV VY

Figure 1.3: Visualization of a propagating wave

In this section we will discuss the key experiments, which let at the beginning
of the 20th century to the realization, that previous ideas lost its validity once
atomic quantities are reached. In the following section, we will note in each
case the key ideas that contributed to the establishment of the Quantum Theory.
Historically, the property of light, to show wave and particle characteristics at
the same time, was detected first. Only after a while the wave characteristic of

matter under certain circumstances was observed as well.
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1.2.1 The photoelectric effect

Figure 1.4 shows the radiation of light on a metal surface.

>
>
>
>

{c

c- At

d
Yyvyyvy \ﬂ

Light with frequency w = c¢- 27w/

~

Figure 1.4: The photoelectric effect

e Expectations according to classical electrodynamics and mechan-

ics:

The energy density of the electromagnetic wave is independent of w

1
8—(E2 + H?) ~ I  intensity (1.5)
m

The energy is continuously transmitted onto the electrons in the metal

= For arbitrarily small frequencies the work W, is transmitted after

the time sequence At , that is for each electron:

W, = (cAt)- A-W, A= Efficiency of energy transmission  (1.6)

e Experimental findings, as shown in figure 1.5:

1. Electrons are released only when the frequency of light w exceeds the

threshold value wyy, -
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Ee- )
E.- =hw
P >
- /wmin w
—W, =< .

Figure 1.5: Transmitted energy

2. Electrons are released immediately, if w > wy,;, (not after a time At )

3. Their energy is given by F.- = hw+ W, , while the proportional con-
stant A was determined numerically as the so called "Planck constant”
(Planck, 1900; Cavity radiation):

h=1,055-10"3Js (1.7)

4. The number of released electrons per time unit (not the energy of one

electron) is proportional to the intensity of light.

The wave property of light, the wavelength A\ and frequency w = ¢ 27” , as well as
- 2

the particle character of electrons, the energy .- = 7- and momentum p could

be determined experimentally. Moreover, a direct relation between E,- and w

could be established.
Einstein’s Interpretation (1905) (Nobel price 1921)
1. Particle hypothesis and enerqy-frequency relation

The energy of light is transferred directly in packages of energy propor-

tional to the frequency, such that:

E,, = hw (photons) (1.8)

The threshold frequency wpin corresponds to the work function:

Wa = hwmin (19)
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This direct transmission and the constant energy at stationary frequency
are characteristic of particles.

Einstein was the first to define these energy packages as particles and called
them ”photons” (a revolutionary step, Planck did not dare to take). If Ein-
stein’s particle hypothesis was true the proportional constant between en-
ergy and frequency had to be equal to the Planck constant A4 , which related
Planck’s energy-quantums of light to the frequency. This equivalence was

confirmed numerically.

2. Momentum-wavelength relation

While the energy-frequency relation was derived directly from the quan-
tities F.- and w , the relation between momentum and wavelength \ (wave
number k, respectively) was established numerically, since the momentum

of the photo effect is not accessible experimentally:

As particles of light, photons have to move at light-velocity v = ¢
and their mass at rest vanishes my, = 0 . With the relativistic

energy-momentum relation we obtain:

E = /m2ct+pP?=pc (1.10)

for my, =0, v=rc (particles)
2
- hw:hck:hCTW (wave) (1.11)
2
h

& p=hk= 3

(photons) (1.12)

Mathematical supplementation 1: Fourier transformation

Representation of vectors in orthonormal basis

e In general:
B = {|n)|neM} basis of space V (1.13)

Arbitrary vector of V:

la) = Zan|n> (completeness) (1.14)
neM



1.2. FUNDAMENTAL EXPERIMENTS 17
Scalar product:
(b|a) (1.15)
B is orthonormal basis:
(m|n) =0mn Yn,meM (1.16)

Coefficients of orthonormal basis representation:

(m|a) = 7;&”(77;|n>:am (1.17)
a, = (nl|a) (1.18)
ja) = Y In)(n]a) (1.19)

e Specifically: V space of infinite differential square-integrable functions

Basis:
1 .
B = {|k) = — e*"| kR 1.20
{Ik) N | keR} (1.20)
Arbitrary function of V :
dk ,
= | — f(k) e** 1.21
f@) = [ = gy e (1.21)
Scalar product of V :
(91 ) = [ deg @@ ec (1.22)

B is orthonormal basis:
/ dx —i(k' —k)z /
(K'| k) = 5. © =0(k'—k) (orthogonal) (1.23)
T

Coefficients of orthonormal representation:

1) = (k1) = [ = e o) (120

(1.21) and (1.24) form the Fourier transformation!
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Mathematical supplementation 2: Group velocity

Velocity of wave packets ("wave group”) (see figure 1.6).

P(x,t) Y

Figure 1.6: Velocity of a wave packet

Fourier representation of wave packets (superposition of plane waves):

dk
V2T

To each wave number k corresponds the frequency wy (in general, function of k

Y(z,t) = (k) eilke—wnt) (1.25)

or vice versa)
Example: Wave of light in a particular medium
Expectation value of the wave packet’s state in space:

) = /dm\ o, D)2 (1.26)

_ dk’ z(km wyrt) i(kr—wgt)
- a2 m W)U (127

dk/ / 1 8 8(.4)
_ z(k T—wpst) ) * ]{3/ k |: 4 —kt:| 1.28
/ /\/27? \/271' VIR v (k) iok Ok ( )
z(k:c wit)
o / ]‘ a awk i(wyr —wg)

&uk

= /dl{:|w(k)|2 o (1.30)
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12

o
ok

t/dk: [v(k)|?, (k) centered at k = ko (1.31)
ko

=1

Normalized wave function:

/ ak (k) = (1.32)
/ ak [b(k)? = / / - m (o) ) K ) (1.33)
_ / i’ / dz 8z — 2') (') (z) (1.34)
= /d;)j [(z)? =1 (1.35)

0T Owy,
and v = E:%k (1.36)

1.2.2 Interference experiment (double slit experiment)

Historically: Interference phenomena of e~ and n-beams were observed first scat-
tering them at crystalline structures. But the direct double slit ex-
periment was possible only at a later time. However, crystals show
the same interference effects as grids do. Therefore, we take a closer
look at the double slit set up:

(a) Figure 1.7 shows the experiment with classical particles

X X X

Detector P1o=P1+P2
— P1
- g p p

Source 2
P2

Figure 1.7: Double slit experiment with particles
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No evidence of interference. The pattern of intensity on the screen is the

sum of intensities P;, i = 1,2 of each of these 2 beams.

(b) Figure 1.8 shows the experiment with classical waves (water, light,

)

X Detector X X
hoto plate
e S
b- P1 P12
ad 1] L z
I o p p
J P2 ?

Figure 1.8: Double slit experiment with waves

Calculation of interference pattern (distribution of intensity on
the screen)

Wave coming from first or second slit at position z on the screen:

- 2
Yy o(x,t) = ahy eFh2@—t) = — 77? wave number (1.37)

Possible paths:

di(x) = VI?+a22=~L, L>=x (1.38)

do(x) = dy +dsin(a) (1.39)
~ dy+ % z, x=0Ltan(a) =~ L sin(a), a<1 (1.40)

Total intensity at position x on the screen (Linear superposition of ampli-
tudes):

I(z) = |¢i(z,t) + ol 1)) (1.41)
— |¢0|2 . ‘ ei(kdl—wt)|2 . ‘1 + eik%m‘2 (1_42)
= 21> [1 + cos(ELz)] (1.43)
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|
l I 1

. 0«—»«
Distance of the
maxima x=L/d-A

Xy

Figure 1.9: Expected amplitude of intensity pattern

(In contrast to figure 1.9 we have a subsiding modulated amplitude with

increasing x. In the experiment: Result of finite coherence length)

Double slit experiment with microscopic particles of matter (elec-

trons)

The pattern of interference is equivalent to waves of light.

= Matter shows wave properties (1.44)

Energy E = % , momentum p and wavelength A\ directly measurable in

the double slit experiment (from distance of maxima):

p="h2 =nhk| (de Broglie-wavelength) (1.45)
Energy-frequency-relation needs correlation of wave number k£ and frequency
w of e” . Integration of group velocity and the particle velocity v = %

results in the desired equation:

0
m op m
p?
hw = — + EO = Ekin -+ mc2 (147)
2m
= hw=F (1.48)

The constant of integration is defined as the energy of electrons at rest,

Ey = mc?
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Annotations: The reference point of energy (E - origin) as well as the fre-
quency w of particles can be chosen at will. This arbitrariness
is expressed in the integration constant Ey . Therefore, within
non-relativistic calculations, the resting energy can be omit-
ted.

If the intensity of the incoming beam at the double slit experiment (light

or matter) is chosen sufficiently small, the continuous intensity distribution

on the screen turns into a discrete accumulation of points (on the detector);

see figure 1.10.

B3 X bl
1 ne R nl
> b i B #®
(Y Y ‘e
> £ > *%
i i i
o o
i o
u. X .o ) -..'
> *% *% o5 *% b3 »

Figure 1.10: Intensity distribution of the double slit experiment

That is, light and electrons on the detector are realized as particles (a chem-

ical reaction of a single molecule, similar to the photo effect)

= Intensity |¢)|? of interference pattern returns the probability
of a photon or electron to be measured at position x on the

SCreen.

1.2.3 Further experiments

(a) Compton effect (see figure 1.11)

Non-elastic scattering of light at (resting) electrons.

The wavelength of light encounters a change through the scattering process

which can be understood as a reduction of the photo-momentum because of
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the recoil. A direct relation between the photo-momentum and wavelength

can be derived from this.

(b) Cavity radiation (see figure 1.11)

Radiation in thermodynamical equilibrium with its environment (tempera-
ture T).

Figure 1.11: Compton scattering / Radiation in thermodynamical equilibrium

u4 | Rayleigh-Jeans
[h 2
Planck
T>T,
Tl

€

Figure 1.12: Spectral energy desnity

Raleigh-Jeans:

Ulw) = kB—Tw2 (1.49)

w23

Eiw = /dw U— oo UV-disaster (1.50)
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Planck (1900):

Postulated quantized energy of radiation for given energy F = nhw (avoids

particle - interpretation).

Substitute:

kT — — @ i (151)

exp (,ﬂ%) -1

(c) Modern experiments:

— Interference of atomic beams

— Direct measurement of the wave function with STM

1.2.4 Conclusions

(1) Light and matter show particle as well as wave properties (wave-particle
dualism). Depending on the experiment, one or the other property can be

observed.

For example:

Experiment light matter

Photo-effect | particle | particle

Double slit wave wave

Table 1.1: The wave-particle dualism

In general, the following applies to light and matter:

p = hk= 2;71 A = de Broglie wavelength (1.52)

E = ho, (1.53)
where

E = pc (light) (1.54)

= p_2 + Ey (matter). (1.55)

2m
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(Energy-momentum relation — frequency-wavelength relation, dispersion)

The theoretical consequences will be discussed in detail:

- Quantum physical reality depends on the experiment (observer).

- Causality and determinism (why does e~ propagating through slit 1

"know” whether slit 2 is open or closed?).

- Quantum mechanical objects are neither particles nor waves, but higher
objects to show under certain circumstances either the one or the other
property. The paradox (dualism) is not the object itself, but arises
from the fact, that we (as observer) conclude with our measurements
a particle or wave state (collaps of wave function). Since our brains
can only grasp and interpret the classical terms, the paradox develops

in us.

- Observer becomes part of observed world.

(2) Statistical interpretation:

Once the particle property is proved in an experiment, the intensity |¢(z)|?
of the respective wave function (z,t) reveals the probability density to
measure the particle at x. ¥ (z,t) is therefore called the wave function of

the particle.

Figure 1.13: Left side: Electron wave packets on a metal surface. Right side:

Electron wave in a ferroatomic ring on top of a copper layer.

(3) The intensity ( = probability density) has to be normalized:

/dx|@/)(x,t)|2 =1, WVt (1.56)
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i

3
-

Intensity [ counts / sec ]

1.+1-I lassatssnolanss 8o saslessasd
4 4 2 8 2 & &8

Deflection Angle [ mrad ]

Figure 1.15: Helium atomic beam diffraction by a 100 nm-period transmission

grating

Calculation of the mean for many measurements:

- /dxa:|z/)(x)|2 (1.57)

(4) Principle of superposition:
If ¢1(z,t), ¥o(x,t) are two wave functions (and let marginal terms for
slit 1/2 open/closed be given), then also ¢n(z,t) + a(x,t) = ¥(x,t) is a
possible wave function. The equation of motion for the wave function has

to be linear.
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1.2.5 Schrodinger equation, energy, momentum operator

We approach now the question, how the energy, the momentum and the equa-
tion of motion can be determined mathematically, if the wave function is given

(heuristic approach).

Plane wave (has defined p, F):
We look for the differential equation

Y(E, 1) = iy R, (1.58)

Which "operator” has to be applied on 1 such that the energy hw and the mo-

mentum are received as pre-factors?

0

0 o
ih = V(7 t) = ih 5 Yo e KTt — ) ) (Z, 1) (1.59)
—iAVP(Z,t) = —ih Vi P70 = hk(Z, ) (1.60)
Energy-operator:
~ 0
E =1ih — 1.61
ih o (1.61)
Momentum-operator:
p=—ihV (1.62)
For free matter particles, we have:
)
p
E=— 1.63
o (1.63)

As a result, the plane matter-wave of a free particle with mass m has to follow

the equation of motion:

L0 . (=ihV)*
Zha?ﬂ(l",t) = Tw(x,t) (1.64)
~2
By = §—m¢ (1.65)

In case the particle is moving within a potential V(Z) , we postulate that the

total energy is the sum of the kinetic and the potential energy (Schrédinger) and
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we get:
~2
- p —
(1.66)
n 2wy = |- v v v@
ih = ¥(&, = o x z,
Remarks:

(1) Schrodinger equation has to be homogenous, because of probability conser-
vation. This equation is the most simplest including also the special case

of free particles.

(2) Schrédinger equation has to be linear — Principle of superposition.



Chapter 2

The Postulates of Quantum Theory

2.1 Mathematical basics

Chapter one introduced the wave function ¥ (x,t), which forms a vector space
according to the principle of superposition (to add another wave function or mul-
tiply with numbers). Furthermore, it proved to be useful to define a mapping
through so called “operators”, who act on the vector space. Now, we will discuss
several mathematical structures and define the postulates of quantum mathemat-

ics afterwards.

2.1.1 Vector space (of finite dimension)

Definition: The vector space V is the number of vectors V = {|v)} , which obey

the vector-addition and scalar multiplication, such that:

[v) +w) = |u), V]|v),|w) eV (2.1)
alv) = |w), Vae R or C (2.2)

For the axioms follows:

1. Completeness:
lv) +|w) € V  and  alv) €V (2.3)

29
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2. Commutation relation:

[v) + [w) = [w) +[v) (2.4)
3. Compatibility of addition:

[v) + (w) +w) = ([v) + [w)) + | u) (2.5)
4. Distributivity of scalar-multiplication:

(a+b)|v)y = a|lv)+0b|v) (2.6)
a(lv)+|w)) = a|v)+alw) (2.7)

5. Compatibility of multiplication:
a (b v)) = (ab) | v) (2.8)

6. Zero-vector:

3 0) : |v)+|0) =|v) (2.9)

7. Inverse element of addition:

Vivy e VIa|—v)eV: |v)+]|—v)=]0) (2.10)
V is real (complex), if the scalar a € R (a € C).

Expansion in basis, coordinate representation

A Basis B = {|k)| k£ = 1,..., N} is the number of vectors | k) € V with the

properties:
1. Every vector |v) € V represents a linear combination of | k) :

N
o) => wlk), V[v) €V, v eRC (2.11)
k=1
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2. Uniqueness:

flaw € R,C|K #k} suchthat |k)= > ay|k) (2.12)

K'=1,..,N
K/ £k

= We have a unique basis-expansion. The number of basis vectors N is

characteristic of V and is called dimension (proof by inconsistency).

Coordinate-representation:

Let a basis B be given. Hence, to every vector |v) € V we can assign (con-

sidering equation (2.11)) an array of N numbers (coordinates):
|v) "I G = (v, )T (2.13)

Regulations for vector-addition and multiplication are valid for array components

7= (v1,...,on)T as well,

= Vector space of N-arrays is isomorphic to the vector space V = {|v)}.
= All properties of V can be demonstrated with N-arrays as shown in

figure 2.1 and then transferred onto the abstract space V.

1) vi[1)

Figure 2.1: Correlation of V and N-array



32 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY
2.1.2 Linear operators on V

First of all we consider a mapping A: V — V such that A|v) = |w). Further

more we claim that A is linear, i.e.:

A(lvy+ |w)) = Alv)+ Alw) (2.14)
Afalv)) = a(Alv)) (2.15)

In coordinate representation with chosen basis, the linear map is given by:

N
ALk = u)ye = |1) an, (2.16)
1=1
with the matrix entries
a1y .. QN
A= (ay) = : : : (2.17)
aNi ... QNN

Because of linearity, we can apply the common rules of matrix-multiplication and
-addition.

2.1.3 Scalar-product and dual space

Definition: Scalar-product (Inner product)

Let a bilinear map

(V)V) — R,C (2.18)
(|v),|w)) — a € R,C (2.19)
be given for which the following notation will be used:
(v|jw) —a € R,C (2.20)
This map has the following properties:
(v]w) = (wlv)® (2.21)

(vjv) > 0 (positive semi-definite) (2.22)
(v](alw)+0blu)) = a{v|w)+b{v|u) (2.23)
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(Property 1 is a consequence of the linearity in the first argument (bilinear))

Definition: Norm
lv| = v/ {(v]|v) is length of  |v)

Expansion in orthonormal-basis B = {| %)} :

Choose a basis such that
(k| E) = o

and

o) = 3wl &),
k=1

where the coefficients are given by

N

(klv) =Y vp(k|K) = v

k'=1

Matrix elements of an operator A with orthonormal-basis B = {| k)} :

N
Alk) = > apll)
=1

N
(KAlK) = Y an(K|l) = ap
=1

Hermitian conjugate operator

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

If A is defined by (ay), the hermitian conjugate operator for A is defined by

At = (AT = (ay) and (AT)T = A,

(2.30)

For an arbitrary orthonormal-basis the scalar-product of two vectors reads:

o) = DY wlk), |w)=) wlk)

N
= (wlw) = > vwpk|F) = viwy

(2.31)

(2.32)
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This is the well-known cartesian scalar-product:

w1 N
Wlw) = (], .03 [ | =D viwk (2.33)
wy k=1
T
U1
The line-vectors (v§,...,vx) = : are hermitian conjugate vectors to the
UN

column vectors (hermitian conjugate = transpose + complex conjugate). There-

fore, (v| = |v)T can be identified with the hermitian conjugate vector to | v).

Definition: The space of hermitian conjugate vectors {(v|} = V (line-

vectors) is the dual space to the vector-space V = {|v)}.

Why is useful to make this distinction?

Here we want to find out what the effect of the linear operator (v|(A|w)). Let

| v), |w) be arbitrary vectors:

jw) = > wl k) (2.34)

Alw) = Y wiAlk) =Y |1) agwy (2.3)
k=1 l

k=1
Or in detail:
N
a1 -+ Q1IN w1y Zkzl Q15 Wg
Alw) =1 5 = : (2.36)
N
ani -+ QNN W Zk:l ANEWE

It follows:

Wl Alw) = > vhagwe (m|l) =Y vjagw (2.37)

m,k,l k,l
= (lA)|w) =) ((af) v) w (2.38)
k,l
= (ATv|w) = (v|A]w) (2.39)
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= If A operates in the direct space, A' has an effect in the dual space.

In detail:
a1 -+ QiN wq
(v, ) | : : (2.40)
ani -*+ QNN WN
Dirac-notation:
(v]Alw) (2.41)
N—_— —

bra - ¢ - ket

2.1.4 Schwarz- and triangle-inequality

1. Schwarz-inequality

[{v]w)| < o] - |w] (2.42)

The value of the scalar-product of two vectors can not be greater than the

product of their lengths, as it is shown in figure 2.2.

Figure 2.2: Vector representation of the Schwarz-inequality

Cwho) = Juyl- el (2.43)
< Jol - Jw (2.44)

The equality holds if and only if

[v) = A+ |w). (2.45)
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Usage of bra-c-ket-notation: bra: (v| ket: |v)

Let |n) be an arbitrary normalized vector, i.e. (n|n) = 1. |n) is an
element of the orthonormal basis B = {|n)} (if not, choose |n) = %,

which is a normalized vector).

Then, P, = |n)(n| is the projector on | n) with the projection property
Py =[n){n|n){n|=n)(n|, (2.46)

n

such that | n)(n| projects each vector |v) on its component along | n), i.e.:

n = n n 2.47

|n) (n]v) vl | 7) (2.47)
Un n-th
component

In detail: Coordinate-representation with basis {| n)}

0

In)(n| = | 0,...,1,...,0) and (2.48)

(%1

vy = | o, (2.49)

UN

|y = [ 1 ]©,....1.....00| v, (2.50)

= v, | 1 | =vn) (2.51)
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Sum over all projectors on orthonormal basis vector:

Z|n)(n| = 1 (completeness)
(n|n) = 1 (normalization)

J

Expansion in orthonormal basis: "Insertion of basis’

(o) =1jv) = |n) {n]v),

matrix elements of an operator A in orthonormal basis.

Proof: Split |v) into components parallel and perpendicular to |w).

o e
NI
lv) = [vi) + 1oy,

|w) |w)(w|

37

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
(2.57)

where Ty is a unit vector parallel to | w) and T w) is the projector on

| w). Then one yields

(v]w) = (v |w) + (v |w) = (v |w)
with
—vw—ww<w|v>:
(01 ) = (v]) = ) 27 =0,
One the other hand one finds
el wle)
(wly)wlv)  (w|v)(w]|v)”
W Ty (wlw)

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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and therefore gets

(v|v) wlw) (2.63)
Vvl (wlw) > [w]v)]. (2.64)

2. Triangle-inequality
|0} + | w)| < Jol + Ju (2.65)

The equality is given, if | v) = A|w), i.e. if the vectors are parallel.

Figure 2.3: Vector representation of the triangle-inequality

2.1.5 Hermitian, anti-hermitian and unitary operators

H hermitian:
H' =H (2.66)
A anti-hermitian:
Al=—-A4 (if A real=1=T) (2.67)
Every operator € can be split up into a hermitian and anti-hermitian part:
H = 1(Q+Qf) hermitian (2.68)
(Q

A = — Q") anti-hermitian (2.69)
with Q = H+A (2.70)
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U unitary:

|U|v)| = |v], Y|v) mnorm invariant (2.71)
U is unitary if and only if

Uv=1, (2.72)

i.e. that UTU is the unit operator (identity).

Proof:
Ulv)? = |v]*=(v]v) (2.73)
s (Uv|Uv) = (v|UTU]v), V| v) (2.74)
s Uu=1 (2.75)

2.1.6 The eigenvalue problem

Let €2 be a linear operator in an N-dimensional space
Qlv)y = A|v), (2.76)

where |v) is the eigenvector and A the eigenvalue belonging to |v). Equation
(2.76) always has N solutions for A and | v), where two or more values of A may

be degenerated.

Proof:

(Q=A)|v)=0 (2.77)
has solutions, if (2 — A1) is singulary, i.e.

D = det(Q — A1). (2.78)

D is a polynomial of order N and consequently has N complex solutions.

The hermitian operators H = H' are of exceptional importance:
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1. All eigenvalues \ are real.

Proof:

Hlv) = Aw)
(v[H|v) = Aov|v)
(W|H o) = A{v|v)

S\ = )\ real

2.79
2.80
2.81
2.82

/_\ﬁﬁ/_\
~— O~ ~— ~—

2. Eigenvectors |vy), | vy) for different eigenvalues A;, Ay are orthogonal.

Proof:

Hlvi) = Mfvi) (2.83)
Hlvy) = Xo|vy) (2.84)

(va [H[v1) = Ai(vz|v1) (2.85)
(H'wy|v1) = M(va|v1) = Ao(vs | 01) (2.86)
(2.87)

)\17&)\2 = <'U2|’Ul>:0

Hence, an orthonormal eigenvector basis for H = H' can always be found.
If there are degenerate eigenvectors, the orthonormal basis can be chosen

in the subspace of the degenerate eigenvectors.

3. Transformation to an eigenvector basis: Diagonal structure
We look for a transformation, such that H has diagonal structure.
Let B = |v,) be an arbitrary orthonormal basis and let {|n)} be an or-

thonormal eigenvector basis. One then obtains.

H|n) = X\.n) (2.88)
UHU 'Uln) = M\U|n) (2.89)

U transforms to this basis, such that one finds in coordinate representation:

Uln)=(0,...,1,...,0)" (2.90)
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For the original basis one gets:

ny
U 'UIn) = | =U0,..,1,..,0)T (2.91)
ny
Uip
= : n-th column vector of U™ (2.92)
UnNn

Because of the unitarity of U, from U~! = UT follows the relation
U= (299)

The column vectors of U~! are the orthonormal eigenvectors.

2.1.7 Generalization onto infinite dimensions: The Hilbert

space

The amount S of complex functions of a support S forms a vector space due to

vector addition and scalar multiplication with a complex number:
|f) :x— f(zx), VzeS (2.94)

For example:
S = finite constant interval (see figure 2.4), S =R , S =R"

0/\/\96

—o0 «— —L/2 L/2 — o

Figure 2.4: Function of support S
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Scalar product: Componentwise multiplication

Integral:
+L/2
(| f) = / g @)1(e) (2.95)

Operators on function-space:

Position operator z:  f(x) — zf(z)
Momentum operator pf(x) — pf(z) = —ih a%f(x)

Functions f(x) can in every x be interpreted as vector components of f in coor-

dinate representation, where z is the vector index of the z-th component:

f(x1)
| )= : (2.96)
f(zN)

For continuous z:

xo = LJ2 (2.99)

Position representation: J-function
What are the basis functions {|b,)| x € S} in this representation?

The arbitrary functions f € V have to obey

f= /dx' f(")]byr). (2.100)

The only function to fulfill this requirement is the ”"Dirac-Delta-function” (see
figure 2.5)

Sz —a') = { 0. e7d (2.101)

00, T =ua,

which has the following properties:
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1. [dzé(z—2a')=1

2. §(z —2') =6(x' — x)
Since oo ¢ C, 6 has to be defined as limit of a series of functions:

1. Lorentz-functions

One definition of the d-function is the limit

d(x—1') = lii%fﬁ,(x—x’), (2.102)

where f.(z — 2') is the Lorentz-function

~
/
fy(z—2a') = | PR (2.103)
fr—oo(x) fulfills the properties:
Figure 2.5: Delta-function for different
o [dxf(z)=1 V~,alsoy—0
1 /
1 0 —
. fy(x_z/): P — 00, vy —U, z l’,
e 0 720 rA
2. Gauli-functions
, ) 1 _@=a)?
go(x — ') :g'EI%) —3¢ a2 (2.104)

Also this defintion, using the limit of the Gaufs-functions, fulfills the prop-

erties of the /-function.
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The Dirac-d-functions form per definition an orthonormal basis.

Notation:
| 1) = §(z — x1), (2.105)

where z is the variable and z; is an index.

X1 x

Figure 2.6: Peak at z; as a function of x

e Orthonormality:

(x1|x0) = _+OO dzx §(x — 1) 0(x — 9) (2.106)
= d(z1 — x2) (2.107)

e Completeness:

/dxl o)z | = /dxl 5z — 21) 0z — o) (2.108)
drz—a2")=1 (2.109)

The Dirac-d-functions are the eigenfunctions of the position operator Z.

Matrix elements of z with respect to 6(z — 2’).
(21 |Z] 22) = /dm 0z —x)xd(x — x0) = 21 0(17 — X2) (2.110)

The basis representation of the function space S regarding the delta functions is

called position representation.



2.1. MATHEMATICAL BASICS 45

Momentum representation (Fourier representation)

We choose a basis {| k) = \/%—W e**| k € R}.

e Orthonormality:

dr
ey | o) = / L etk = (1, — k) (2.111)

e Completeness:

/dkl | k1) (k| = / % ef@=a) — §(z —2') =1 (2.112)

e An arbitrary function |f) € S can be represented in the basis {|k)} :

|f>=/dk fel k), (2.113)

or componentwise

= —— e .
or [

Convention: f, = f(k) Fourier-transformed

/(@) (2.114)

e The components f; of the expansion can, because | k) is orthonormalized,

be written as

fo=flk) = j—% . TTZ k| f) (2.115)

the so called Fourier-transformation. The | k) are eigenfunctions of the

momentum operator:
ikx eikx

e
—thV = hk
V2T V2T

Hence, the Fourier-representation is called momentum-representation.

(2.116)
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2.2 The Postulates of Quantum Theory

From the analysis of the experiments in section 1 (and many others) the following
rules may be abstracted. They are postulated to describe the quantum world in

general. Table 2.1 summarizes these rules.

(In the following the ” ™7 will be omitted, when it is clear that the object is

an operator.)

2.3 Interpretation of Postulates: Requirements and
implications
1. The wave function ¥ (Z,t) of a particle in the abstract state [¢(t)) is the
representation of |¢)(¢)) in the orthonormal position eigenbasis {| Z)| 7 €

R3}.

() = / Bz p(7,1) | ) (basis expansion) (2.117)
(@, t) = (Z|Y(t)) (position representation) (2.118)

2. The operators &, p are hermitian operators, since all their eigenvalues are

real.
Fl@) =4 |31),  pIk) = hE|R) (2.119)

with
(| %)) = 6°(# — 1) (position representation). (2.120)
FIR) = —= (2.121)

i = e .
V2T
7 = —ihV (2.122)
B T

= —thV e = hk (2.123)
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Classical mechanics

Quantum mechanics

1. Representation of the st

ate of a particle at time t:

—

Position and momentum: (Z(t), p

(4))

Vector |¢(t)) in a multidimensional

vector space

2. Physical observables and correspondence principle

w=w(Z7p)

The independent variables Z, p’ are
represented by hermitian operators

In position representation:
(Z|7| ) =6( =) &

(FP1 &) = 6(% — &) (—ih

)

Physical observables are functions
of the operators ¥, p:
Q=07 .

Every observable is a hermitian

operator.

3. The result of a measurement: Relation of theory to the

experimental

observation

Particle in state (Z, p)
— Measurement of w yields w (Z, p)

— State (Z, p) remains unchanged

Particle in state [))

— Measurement of the (hermitian)
observable Q) yields one of the (real)
eigenvalues w of Q with probability
P(w) = |{w]|$)]*

— The state of the system changes
to the eigenstate | w) corresponding

to the eigenvalue.

4. Time evolution of a state

Hamilton equations

9% _ OH _9H

ot — op 0%

9 _
op and o =

Schrodinger equation
gl = Hlw)
with H = H (¥ — Z,p — p)

Table 2.1: Tabulated comparison of classical and quantum mechanics
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3. Probability density
Normalizability of the wave function (Hilbert space).
As a special case of postulate 3, a position measurement returns the eigen-

value ¥ with probability

(Z|)* = |w(Z,t)]* = modules ? of the wave (2.124)
function
= probability density of finding the (2.125)

particle at ¥

= (&, t) must be normalized. (2.126)

a) For a particle in a finite region of space:

(@, t) — 0 for |Z| — o0 (2.127)
and a square integrable wave function (%, ).
/dgx [(Z,t)]* =1 or abstract (¢ |¢) =1 (2.128)
ol
"

Figure 2.7: Probability density of ¢

b) For a particle distributed over infinite space (e.g. plane wave):

— ]- '(Eﬂ—ﬂt) .
Vp(Z,t) = —= """ 7Y (not square integrable) (2.129)

b V2T

We require the integrability condition
/ Py (7 1) W(F 1) = 0(F — 7). (2.130)

Interpretation: oo particle number in a plane wave (see figure
2.8)
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B L,

8y

Re%(ac, t)

Figure 2.8: Plane wave

Definition: A vector space whose vectors are either normal-
ized to 1 (2.128) or to &(¥ — ') (2.130) is called
Hilbert space.

The space of any physical states must be a Hilbert space.

4. The measurement process, quantum reality
Measurement in quantum mechanics:
The measurement apparatus is a quantum system with well defined eigen-

states.

Examples:

e Position measurement: Photo film

Figure 2.9: ¥ eigenstates on a photo film

e Velocity measurement: Wien filter

After the measurement the particle is in a well defined & or p’ eigenstate.
The measurement apparatus is a projector onto one of its eigenstates with
probability P.

Mathematical description of the measurement:
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N I
*E
®§ ‘ >ef
vt=c-FE/B
B

Figure 2.10: Wien filter

a) Construct quantum operator (observable) corresponding to the mea-

surement:
QO=Q@F—7,7—7p) (2.131)

b) Find the orthonormal eigenvectors |w;) with eigenvalues w; of €.

¢) Prior to the measurement, the system is in a general state [¢)) which

can be expanded in the orthonormal eigenbasis of Q-
) = Y [widwi| ¥) (2.132)
This means that the system is in a superposition of eigenstates |w;)

with the relative amplitudes (w; | ) .

d) The measurement apparatus projects the state [¢)) onto one of the

eigenstates | wy,) of () :

P, = |wn){wnl (2.133)
Puld) = lemﬂwmlwz-)(wih/}) (2.134)
= [wm)(wnl¥) (2.135)

”

“collapse”, "reduction” of the state

After the projection the state has a reduced amplitude (w,,|1).
The probability that the particle appears after projection in eigenstate
| w), i.e. that value w,, is measured, is given by the intensity of the

projected state,

P(wm) = [{wml) . (2.136)

The state is changed |¢)) — |w,,) by the measurement, unless it has

already been in an eigenstate of 0
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Copenhagen interpretation:

e Prior to the measurement the system is in an unknown state [1).

e The outcome of a single measurement is undeterministic. Only statis-

tical predictions about the outcome are possible.

e |¢)) cannot, by principle, be determined from a single measurement.
Many measurements on equally prepared initial state to determine
the relative weights |(w;|)|? of the expansion. Even then there is
in general no unique procedure to determine (w;|1), since it has a

complex phase.
Philosophical problems:
- How is the distinction between system and measurement apparatus to

be made?

- Is there physical reality without the observer? Causality?

(— Paradox: Schrodinger’s cat)

- How does the projection (state collapse) work microscopically? Inter-

action system <« measurement apparatus?

Expectation value:
Average value of the observable obtained in many measurements of the same

quantity.

(@) =3 Plww = 3 o] 4) o (2.137)

5. Measurement of several observables
Different observables (operators) do in general not commute. The outcome

of the measurement of 2 observables depends on the order of the projections.

Example:

Consider the operators 5’, ]A?and an ingoing plane wave [1)).

1. %]A?]@M (see figure 2.11)

PobByp| ) = Po| pY(0| ) = [ 2){z | p)(p | ) (2.138)
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2. ]A?/i\”h@ (see figure 2.12)
BpoPe|9) = Bp| D) (Z[ ) = | p)(p| ) (x| ) (2.139)

As it can be seen from the equations (2.139) and (2.138) these operators
yield different final states.

Z-measurement:
detector

y

y

photon

position undetermined

Yyvy

p-measurement: Compton

Figure 2.11: Undetermined position

Pout determined from recoil

Compton: poyt

photon

YyyvyYyYyy

momentum undetermined

Z-measurement: slit

Figure 2.12: Undetermined momentum

Definition: Commutator
[A,B] .= AB — BA (2.140)

If [A, B] = 0 and A, B are hermitian operators, then there exists a common eigen-
basis of A, B and the outcome of the measurement is not dependent on the order

of the measurements.
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Canonically conjugate operators:

—

0 0
. 0 _in 2 2141
) ih pE and t, £ =ih g ( )

One finds for the commutator of & and p:

0
0 = i (7 5 vl - o Fu@ (2142
0 0
= —ih <f Er Y(Z) — (@) - & 97 w(f)) (2.143)
= ih (@) (2.144)
Because (%) is arbitrary, the commutator reads
[Z,p] =ih1 (2.145)

and analogous to the previous calculation one can also show that
[t, E] = —ih1 (2.146)

yields.

2.4 The Heisenberg uncertainty relations

Statistical treatment: Many measurements of the same quantity QO
on an equally prepared initial state |1)).
Expectation value: The average measured eigenvalue
(Q) =32, Plwi) wi = 32, Kwilh) Pwi = Q)
Standard deviation:  AQ = /(¢] (2 — (Q))2[)

If ) is not an cigenstate of €, then AQ # 0, since there is a distribution of
measured eigenvalues w;.

If we measure another observable A with [(AZ, /A\] # 0, then [¢), in general, won't
be an eigenstate of both Q and A. This may be possible in special cases.

ikx

Example: Plane wave (x|¢) = % e
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The momentum p = hk is fixed and the position x completely undetermined.
Then € and A can not be predicted simultaneously with arbitrary precision.
Each measurement still gives a sharp value, but varies for each measurement.

This statement is made quantitatively by the Heisenberg uncertainty relations:

For a given state |¢)) one finds:

(AQ(AN)? = (D[(Q2— (D)) (] (A — (A)*[) (2.147)
= (@[ (AQ)¢) (W] (AA)[) (2.148)
- <A§¢\A§¢><AK¢\@> (2.149)

v1) [v2)

Schwarz-inequality:

(1 [va)] < [ fon)] - [ |o2)| = V/(vr [ 01) - v/ (w2 | 2) (2.150)

The equality holds exactly when

|vg) =c|v1), ¢ € C. (2.151)

lv2) #,
i : [[vz))] < [|va)]

lv2))) lv1)

Figure 2.13: Schwarz-inequality

(AQ)(AA? > [(AQ¢[AAY)? (2.152)
= [(W|AQ AP (2.153)
with
AQAR = L[(AQARA + AR AQD) (2.154)
+(AQ AN — AN AD))

[AQ, AA], + L [AQ, AA] (2.155)

1
2



2.5. SCHRODINGER EQUATION 55

one further obtains

(AQXAN? > ] (][AQ, AA] J¢)? (2.156)
>0
+1 (W [AQ, AA] )%,
——
—ihl
LHS at least > 1 (¢ [Aﬁ, A/A\] |1y for conjugated operators €2, A.
AQ-AN> 5 h (2.157)

Equation (2.157) is the uncertainty relation for conjugated variables.

Examples:
1 o .
Az -Ap > - h (position-momentum uncertainty)
% (2.158)
At-AE > 3 h  (time-energy uncertainty)
Remarks:

1. The equality holds exactly, if

o AQ =c ~A/A\w> (Schwarz inequality)
o (Y[[AQ, AR JY) =0

2. If |¢) happens to be an eigenstate of both AQ and A/A\, it follows that
AQ - AA = 0 even holds if [, A] # 0.

3. Minimum uncertainty wave packet: Az - Ap = %h

22
(@ | Yomin) = \/;7 e o2 fulfills both requirements above.

2.5 Schrodinger equation

L 0
ih = [0(t)) = H[y(t)) (2.159)

Properties:
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2)

b)

CHAPTER 2. THE POSTULATES OF QUANTUM THEORY

The Schriodinger equation is a linear (partial) differential equation. There-
fore the superposition principle holds.
If H is time independent (stationary system), then the solution is separable
in time

[¥() = [g) e~ (2.160)

and [1,) obeys the stationary Schrédinger equation, where FE is the energy
of the particle,

Ely) = H|¢) | (2.161)

2.6 Particle density, current density and par-

ticle number conservation

Consider a state 1) in position representation (7| ) = ¥(Z,1).

(2, t)|> = p(Z,t) = probability of finding a (2.162)
particle at 7't

= particle density (2.163)

We seek to derive a continuity equation for p (Z,t) and the current density

J (Z,t) (see figure 2.14).

¢ T T+ dz

Figure 2.14: Illustration of the continuity equation

% (p-dr)dA = [j. (x,1) — ju ( + da, 1)] dA (2.164)
o 9

- S J— 2.1
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In 3 dimensions one then obtains

0 >
&+ V-j=0[

Together with

+ (g v@n) v
o i RV N\
G0 = -5 (< V@) e
o ., . i h2V? N\ s
G0 = ¢ (-4 vi@) e
one further finds
0 h

— [V*0r(#,1)] ¥(.1))
_ v % [ (V) — (Vo5*)¢]

Particle current density:

2 h * *
o= 5 (VE) - (V)
p = [Pz 1)

o = -

Example:

For a wave with no amplitude modulation

b, 1) = FE-ont) — Gio@)-wrd)

one gets the current density

h

j=—Vo(&) - p(,1),
m

(2.166)

(2.167)

(2.168)

(2.169)

(2.170)

(2.171)

(2.172)

(2.173)

(2.174)



58 CHAPTER 2. THE POSTULATES OF QUANTUM THEORY

and for a plane wave
(2.175)

—

¢(T) = kT

furthermore
(2.176)

p=T-p.

SR

7=



Chapter 3

Simple Problems in 1 Dimension

3.1 Particle in a Box

o0 o0
A A
2
2
1
1
—L/2 0 L/2 v

Figure 3.1: Particle in a box with infinitly high walls

The one-dimensional stationary Schrédinger equation in position represen-

tation is given by the expression

—5— a3 V(@) v(e) = Ey(z), (3.1)

29
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CHAPTER 3. SIMPLE PROBLEMS IN 1 DIMENSION

with a potential V(x) here defined by:

+00,

Vi) = { 0,

2| < L/2
2| > L2

(3.2)

Problems with piecewise constant potential V' (x) =V}, were solved by plane

waves.

Ansatz:

Y(z) = @/)oﬁ’ikx

with

and

k- jzi—lix/2m(E—V0)

( oscillating solution
7 -\ N
1
+-/2m(E — V)
= 7;L
+—/2m(Vp — E)
A h >y
NV
\  exp. decaying solution

, B>V

Figure 3.2: Exponentially decaying solution

For Vj — oo, k — oo it follows that ¢(x) = 0 for || > L/2.

Matching the boundary conditions at the boundaries of the box:

Since the Schrodinger equation is

second order in x,
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— t(z) is continuous and

— &g—f} can have a finite jump at x = +L/2, so that 22715 ~ §(xr £ L/2),
compensating V(z)(x) ~ é(x + L/2).

The boundary condition therefore reads (xr = £L/2) = 0. Since the
stationary Schrédinger equation is real, we can choose ¢ real. The system

includes the symmetry of parity invariance, i.e.
[P,H| =0, P=4=1. (3.7)

The real wave function is chosen to be

,¢ eikm j:e—ikm , T S L/2
U(x) = ol o lels L2 (3.8)
0, |z| > L/2
There exist two families of normalized solutions:
2 cos(k°z), ko = @iy —0,1,2,
Yn(z) = A - (3.9)
2 sin(k°x), ke = 2nm n=0,1,2,

Observations:

— Quantization of the eigenenergies E:
(e/0)
The energy E, is fixed by E, = % The quantization of the
eigenenergies of bound states is induced by the boundary condition
that the wave function has to vanish for |z| — oo. This is a general
feature of bound states. The eigenenergies of extended states (scat-

tering states) are not quantized, but continuous.

— Node theorem:
The number of nodes (zeros) increases by 1 with the principal quantum
number n. This is a general feature. In 2 or 3 dimensions: node lines,

node surfaces.

3.2 Potential step: scattering

Consider the Schrodinger equation

h? o2
—5 ot V(@) | v =By (3.10)
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with a step potential (see figure 3.3)

V(z) = VoO(z).

W

II

\

Figure 3.3: Scattering at a potential step

(3.11)

Since V() is piecewise constant, one gets plane wave or exponential solu-

tions in the regions I, II.

Incident wave:
Reflected wave:

Transmitted wave:

¢z($) _ ¢06i(kx—wt)’ <0
rla) = rie BT, 5 <0

Yul) = tpe B0 s

where 9y is set as ¥y = 1/4/27 and

E = hw>0 (arbitrary, fixed)

k = %\/2mE: k,

Lo [ unyamE =) . B>V,
) ia2m(Ve—B) =ik, , E<Vy

Boundary conditions at x = 0:

(3.12)
(3.13)
(3.14)

(3.17)
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Since it is a finite potential step, ¢'(0) must exist (continuous) and " (0)

is discontinuous. One gets

0i(0) + 9 (0) = (0) & 14r=t (3.18)
i(0)+v0(0) = ¥i(0) & k(1 —r) =ikt (3.19)
and by that
_ Kok (reflecti litude) (3.20)
ro= ok reflection amplitude :
2
t = 1+r= ? +kkt (transmission amplitude). (3.21)

In the following we will consider two special cases and will investigate the

solution’s structure.

1. E>Vy: keR

Vo>0: ky <k, 7,t>0
No phase jump, scattering phase 6 =0

Vo
1/)1” L~ -~ 7 PN
N A ¢ .
NG

Figure 3.4: Potential step scattering with £ > V{ and V5 > 0

Vo<O0: ke >k, r<0,t>0
Reflected wave has scattering phase 0 = 7

Particle current:

. h * 1/ % hk 2
o= I — ) = 3.22
J 2mi (wz wz wz ,QZ) ) m |w0| ( )
‘ hk
gro= — — [r[*lvol? (3.23)
m
—~—
. hk
goo= = |tllo)? (3.24)
m

—~—

(%7
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/\/X\AAAAL
AN SANIAVAIATRIE

Vo

Figure 3.5: Potential step scattering with £ >V and Vy < 0

Current conservation:

‘ . hk ﬁ/{: 4/{:/@
iti = 1— 2= 2 3.25
. hk, 4Kk* S
Jo = t(k—i—k) hol® = ji + jr (3.26)
2E<‘/0 kt:’iﬁt,ﬁteR
Vo >0
-

Figure 3.6: Potential step scattering with £ < Vj

2 k — ilﬁlt 2
= e =1 (3.27)
I = —Ji (3.28)
Ji(x — 400) = 0 (3.29)

Equation (3.28) says that all particles are reflected and equation (3.29)
says that the wave function decays exponentially for + — oo. The
particles penetrate into the barrier, which is classical forbidden, but

do not propagate.
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3.3 Particle in a /-Potential

The Schrodinger equation with an attractive d-potential

V(z) =+Wi(z), V<0 (3.30)
is given by:
n* 92
"
Ey

Yvoo(a)

\j

(0.}

Figure 3.7: Attractive d-potential

There exist two kinds of solutions, depending on x:

1.) Plane wave or exponential solutions for x # 0:

V2mE
h

U(z) = o™ with k== (3.32)

2.) Solution for z = 0:
The potential term in the Schrédinger equation has a d-singularity,
.

which must be compensated by a singularity in 55

h2
—5,- ¢ (%) = =Vov(0)d(z) + By () (3.33)
By integrating the Schrodinger equation over an infinitesimal interval
[—e, €] one gets
h2
“2m

+e

() — v (~€)] = ~Vorp(0) + E / drg(x).  (3.34)
2
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Therefore the first derivative has a jump at the origin:

_ 2mVj

2 ¥ (0) (3.35)

¥'(01) = 4'(07)

Matching boundary conditions:

1. £ <O0:
k= iin:ii# (3.36)
B P(0)e ™™ | x>0
Y(z) = {d}(o)em <0 (3.37)
O~ w(07) = P(O)(~28) = Z0y(0) (3.38)
For
LN .30

we get a decaying solution for |z| — oo, i.e. a boundstate, which only
exists if the potential is attractive (V5 < 0). For
() mVP

E,=— S <0 3.40
0 om 2 (3.40)

the boundstate energy is discrete.

2. £ > 0: Propagating waves (scattering states)

E o= +2 2;LnE (3.41)
ikx —ikx <0
wlz) = § V@A " ) @ (3.42)
Yote™ +0 , x>0
Matching the wave functions at the position x = 0 one finds
YO =p(07) = 1+r=t, (3.43)
and for the derivatives
_ 2mV;
¢ =w'(07) = =570 (0) (3.44)
: : 2mVy
= ik(l —r) —ikt = 2 t (3.45)
2mV,
(1 —7) = i(k— i, (3.46)

h2
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With ¢ = 1 + r one finally gets

1

r = ———¢€C (3.47)

- W2k

1 _I_Zm—\/b

- B2k
b= l4r——m% g lmnE (3.48)
o ’["‘ = 5 = — m .
1+ h

7>+ t? = 1. (3.49)

Transmitted and scattered waves suffer a scattering phase shift:

2 = (1+(h_2)2k2)_1 (3.50)

mVo
B2 \? h2 -
t = [ —) K- (14 (—)%? 3.51
1 = (o) # (1 ) (351
with the phase shift
Re(r) mlj
O = ()~ 2k O (3:52)
A2, [t]?
1 ke e
It|?

-
L

E. 212

2
mV

Figure 3.8: Absolute values of the transmission and reflection amplitude

3.4 General theorems in one dimension

1. Energy levels of bound states are always quantized. Propagating states

have continuous spectrum.

2. Node theorem:
The number of zeros (nodes) of a wave function increases neccessively

with the energy quantum number.
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3. There is no degeneracy of energy eigenvalues in one dimension.

Proof:

Let 11, 15 be wave functions with the same energy eigenvalues:

W 0%y

Tom 02 Vi =Er |4 (3:53)
0%y

Tom 0a? Vipp = Ety |-t (3:54)

Deriving the difference of the equations (3.53) and (3.54) one finds:

Oy O
U 8x22 — P2 8x21 =0 (3.55)
0 0 0
N a_xf%%_%%z — 0 (3.56)

v~
=C

Because 91,199 — 0 for x — oo it follows that ¢ has to vanish, i.e. ¢ = 0.

1 1
Gl = (3.57)

& 1Py = ehpy  equivalent (3.59)



Chapter 4

The Harmonic Oscillator

The Hamiltonian operator for a particle moving in a harmonic potential is

given by the expression:

2

H=2p—m+V(x) (4.1)

with
V(z) =1/2ka® = 1/2mw?s?, (4.2)

wherein w is the eigenfrequency, w = /k/m. The importance of the har-
monic oscillator in theoretical physics comes clear considering the facts,
that

— it is one of the four ezxactly solvable systems.

— it demonstrates, how a solution in quantum mechanics is performed
by restricting wave functions to physical Hilbert space (normalizable

wave function).

— any bound problem can be represented as a harmonic oscillator for

small elongations. Deviations can be treated as perturbation.

— it is even the starting point for quantization of fields.

69



70

CHAPTER 4. THE HARMONIC OSCILLATOR

4.1 Solution in position representation

Stationary Schrodinger equation:

Hlyg) = Elyg) (4.3)
ﬁ2 82
The energy eigenvalues E of the harmonic oscillator must be strictly posi-
tive.
Proof:

Let |¢) be an arbitrary eigenstate of H.

IHIY) = 5 (IP) + 1/2ma? (6 [3210) (4.5
= S {PYIPY) +1/2m (F0170) (4.6)
> 0 (4.7)

In the second step the hermitian property of Z and P was used. |1)) cannot

be simultaneously eigenstate of p and x (uncertainty relation).

1. Dimensionless variables:

Characteristic length and energy scales

9  2m m2w?

(g + B~ ) wia) =0 (48)
/b
1/b4

with the new defined length scale b, = = by.

If the partial derivative is described by ¢/'(y) = %’ etc., one gets
V(y) + (26 — y*)id(y) = 0| (4.10)

2. Select physical solutions in Hilbert space:

Normalizable to 1 (bound states)
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— Yy — 00:
S (411)
= U(y) = Ayme v (4.12)
m is an arbitrary but finite power. In (4.12) the solution with

positive exponent was neglected, because 1(y) has to vanish ex-

ponentiallly for y — +o0.
V'(y) = Ay (Y™ + O(y™2))e (4.13)

By neglecting the second term proportional to powers m — 2 of y

we found a solution of the differential equation (4.11).

-y — 0
'+ 2ep = 0 (4.14)
= (y) = Acos(V2ey) + Bsin(v2ey) (4.15)
= A+ BV2ey+0(y) (4.16)
c

Ansatz:

U(y) = uly)e ™" (4.17)
with

wly) = A+Cy fory—0, (4.18)
u(y) = y™ for finitemandy — oc. (4.19)

u(y) must be a polynomial and of finite order in m to be normalizable.

Plugging this into (4.10) one gets:
V(y) = we V' —yue v/ (4.20)
W'(y) = ue VP —yule V) (4.21)
—ue ™V 4 yPue v/

And by that

u' —2yu' + (2e —1)u=0| (4.22)

3. Solution by a power series ansatz:

u(y) = chy" with m < oo arbitrary (4.23)
n=0
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Plugging this into equation (4.22) yields:

0 = Em: caln(n — 1)y™ ™2 — 2ny™
3—2(025 —1)y"] (4.24)
S0 = i[cn+2(n +2)(n+1)
n—:(OQn +1—2¢)e,]y" (4.25)

[t is important to say that in equation (4.24) an index shift has been
made. The sum of the second derivative of u(y) starts at n = 2.
Although it is possible to start the sum at n = 0 because the factor
n(n—1) lets the first two coefficients vanish. Equation (4.25) must be

fulfilled for all y so that we get the recursion relation

2n+1—2¢

n )t D) (4.26)

Cnt2 = Cn(

The power series u(y) breaks off at finite m, only if ¢, 2 = 0 for some

n, i.e

en=n+1/2 or |E,=(n+1/2)hw]|. (4.27)

So the energy eigenvalues are quantized due to the normalization.

Now the solutions can be determined by the recursion relation (y = z/b):

Ey=1/2hw = Hy(y)=1 (4.28)
Ey=(1+1/2w = H(y) =2y (4.29)
Ey=(02+4+1/2hw = Hy(y)=—2(1-2y% (4.30)
Es=(3+1/2hw = Hs(y)=—12(y —2/3y") (4.31)
Ey=(4+1/2)hw = Hy(y)=12(1 — 4y* + 4/3y") (4.32)

The functions H,(y) = H,(x/b) are called Hermite polynomials.

— The recursion generates only even or odd polynomials, i.e. eigenfunc-

tions of the parity operator Pz —x, which commutes with H.
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— The normalized eigenfunctions of the harmonic oscillator read

mw

1/4 5
() = (W) e~ 22 H,(/b) (4.33)

p— (4.34)

mw

The normalization constant will be determined below.

— From the algebraic solution results another recursion relation among

the Hermite polynomials:

Hi(y) = 2nH, (4.35)
Ho,1(y) = 2yH, —2nH, 4 (4.36)
— Orthonormality of eigenfunctions of H for different n #n':
+o0o
H,(y)Hy (y)e ™ dy = 8 (v/T2"0)) (4.37)
with
h
dr =/ — dy. (4.38)
mw
— Completeness:

Z Uy () (2') = 6(x — 2) (algebraic solution) (4.39)

Example:
Construction of the Hermite polynomials and energies € from the recursion

relation, which was given by

2n+1—2¢
Cria = Cn . 4.40
M+ 2)(n+ 1) (4.40)
— n—0:
From the recursion relation (4.26) we get
2-0+1-2
e = CO% =0 (4.41)

and we therefore obtain ey = 1/2. The coefficient ¢ is per convention
chosen to be 1. Altogether we yield for the first Hermite polynomial

and the ground state energy:

Holy)=1, Ey=1/2hw. (4.42)
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— n=2:
5 — 2
Cy = O 12 =0 (443)
5t
=y = 5 (4.44)
co = 1 (4.45)
1—2¢ 1-2-5/2
Co = (g B =1- 5 / =—-2 (446)
= Hy(y) = —2(1—-2y%), FE,=5/2hw (4.47)
The prefactor —2 is conventional.
- n=4:
9 —2¢
Cg = C4 30 =0 (448)
1—2¢ 1-2-9/2
Co = (g B = 5 / =—4 (451)
5 —2¢ 5—-2-9/2
= = —4 =4 4.52
D 12 /3 (4.52)
= Hy(y) = 12(1 —4y* +4/3y"), Ey=9/2hw (4.53)
Again, the prefactor 12 is conventional.
-—n=1:
3—2
¢ = o= -0 (4.54)

The coefficient ¢; is, as before for ¢y, per convention chosen to be 1,

so that we obtain

—n=3:
7 — 2¢
_ — 4.57
Cs C3 20 0 ( )
—2 —2.7/2
s = e - c_3 . EIY (4.59)
= Hs(y) = —12(y —2/3y®), FEs="7/2hw (4.60)

The prefactor —12 is at least also here conventional.
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Properties of the eigenvalue spectrum and the eigenfunctions:

1. The energy eigenvalues E,, = (n + 1/2)hw are quantized in units of

classical eigenfrequencies.

2. The eigenvalue spectrum is equidistant. This leads to the interpreta-

tion of energy quanta hw as "phonons”.

3. All eigenvalues are strictly > 0, as shown initially. The Ground state
energy, also called "zero point energy”, is given by Fy = 1/2hw. The
zero point energy greater than zero is a consequence of the fact, that
|1}, cannot simultaneously be an eigenstate of p and 7.

(ol = (o (5

T 1/2mw552) [4o) >0 (4.61)

The zero point energy has the following observable consequences:

— Vacuum fluctuations, i.e. that the oscillator even contains energy

in the ground state.

— Spontaneous emission of light from an excited atom.

4. The recursion relations generate only purely even or purely odd eigen-
functions H,(y), i.e. the eigenfunctions of H are parity eigenfunctions.
This has to be like that, since the parity operator commutes with }AI,

which means that there must exist a simultaneous eigenbasis.

5. Classical turning point of the oscillator for a given energy E, = (n +
1/2)hw:

2
20 = By =1/2m (Tyax, class) (4.62)
— (n+1/2)hw (4.63)

| h
< Tmax, class — VI T 1/2\/5 hw (4.64)
b
=v2n+1-b (4.65)

Solutions do not vanish for x > x but decay exponentially,

max, class’

1/1n(x)~exp(—x—2):exp (—(n+1/2) fz ) (4.66)

2
20 xclass.
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A
\
NV

Figure 4.1: Classical and quantum mechancial solutions of the harmonic oscillator

6. Classical limit:
For n — oo, the extension into the classically forbidden region van-
ishes. The wave function oscillates faster and faster. The average
|90, ()] corresponds to the classical expectation value. The classical

limit will be considered in a separate chapter.

classical
probabilit}‘

.
x

Figure 4.2: Probability density |¢)(z)|? of a highly excited state
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4.2 Harmonic oscillator in the energy eigenba-

sis: Algebraic solution method

1 1
H=—p* + —mw?z? (4.67)

2m 2

As will be seen below, for constructing the eigenstate basis of H it is useful,

if H can be written in the "factorized” form
H = hwa'a + ¢, (4.68)
where a,c; € R are numbers and [a, a'] = ¢, € R, with a,a’ dimensionless.

We construct the appropriate operator a and its hermitian conjugate a by

completing the square.

H = sum of squares of two operators p, = (4.69)
a = o+ ifp, a, BER (4.70)
a' = oz —ifp (4.71)
[a, aw = —2iaf[Z,p] = +2a0h (4.72)
ala = o7+ 3*p% +iaB3p — iafpT (4.73)
= 7% + 3*° +iap[7, P (4.74)
= o7 + 3% — haf3 (4.75)
hwa'a = 22 + 1mwsz2 - (4.76)
2m 2
By comparison we obtain:
’hw = %mu)2 & n;;u ﬁ (4.77)
fPhw = % & = ,/ (4.78)
haf = ¢ = (4.79)

2
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And hence:

mw_. . 1
a = 2—hx+z 72mhwp
o = S5 L5
2h 2mhw (4.80)

The term 1/2hAw in the Hamilton operator is the zero-point energy. Up
to now we have just rewritten the original harmonic oscillator hamiltonian
H in a factorized form by "completing the square”, where the "factorizing”
operators a,a! have the canonical commutation relation [a,aT] = 1. Note
that this is possible, precisely, because

— H is a quadratic form,

— in the canonically conjugate operators , p: [T, p| = ih,

— with positive coefficients,
i.e. only for the harmonic oscillator. The factorization of H in terms of

canonical operators [a,a’] = 1 (real) makes the harmonic oscillator unique

and of central importance for field quantization.

Construction of the eigenstates in terms of a, a':
However, we have not diagonalized H yet. The crucial insight is gained
by recognizing that the eigenstates |n) of the harmonic oscillator can be

constructed from a, af, using [a, a'] = 1:

Let |n) be an eigenstate of H with the energy F,, = (n + 1/2)hw:
H|n) = E,|n) (4.81)
with

H = hw(a'a +1/2). (4.82)
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Then:
hw(a'a +1/2)a’|n) = hwa'(a'a+3/2)|n) (4.83)
= hw(n+3/2)d'|n) (4.84)
= (E,+ hw)a'|n) (4.85)
& adlln) = cn+1nn +1) (4.86)

This is a not normalized eigenstate with energy

Enp1=E,+h=ho[(n+1)+1/2]. (4.87)
Analogously:

hw(ata +1/2)aln) = hwa(ala —1/2)|n) (4.88)

= hw(n—1/2)aln) (4.89)

= FE,_ia|n) (4.90)

Saln) = ¢n—1) (4.91)

This is a not normalized eigenstate with energy F,_;. Therefore af, a are
called raising and lowering operators. Since all eigenvalues of H are F,, > 0

(see section 4.1), the lowering chain must break off at some ny:

aln) = 0 (4.92)

hw(a'a +1/2)|ng) = 1/2hw|ng) (4.93)
That means:

E., = Ey (4.94)

Ino) = [n=0) (4.95)

The ground state |0) is annihilated by a. All excited states are generated
by a' acting repeatedly on |0).

Proof:
Consider any eigenstate |n) with eigenenergy Ejy, which is not necessarily
contained in the family of eigenstates B = {(a")"|0)|n = 0, 1, 2,...}. It
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can be lowered to a state of minimal energy, the ground state, by repeated

action of a. Since the ground state is unique (e.g. no degeneracy in d = 1),

|7) must be a member of B.

Computation of the matrix elements of a, o' in the energy eigen-

basis:
aln) =
(n|a'aln) =
H 1
And <n|ﬂ - §|n> =
<>n =
S, =

The annihilation condition

al0) =0-|—1)

cpln — 1)
cep{n—1n—1) = \cn|2
———

=1 (normalized)

Vne™®  (usually define ® = 0)

is fulfilled. Now consider the raising operator a'.

a'|n

< (n|]1 +a'aln
H 1
& 1+ (L~ Ly

)
(nlaal|n)
)
' )

Sn+1

< Cn+1

= Cu1|n)
= eatal?
= eatal?
= eata]?

|Cn+1 |2

= Vn+1e®

a'aln) = nln)

aln) = nln—1)
alln) = Vn+1n+1)

Rule: The factor under the square root is always the larger

quantum number appearing in the equation.

(4.98)

(4.99)
(4.100)

(4.101)

(4.108)



4.2. HARMONIC OSCILLATOR IN THE ENERGY EIGENBASIS: ALGEBRAIC SOLUTION ME'

Example:

In the energy eigenbasis

0
0
In) = X (4.109)
0
0 V1
0 V2
0 V3
a = — (4.110)
0 0
0 0
Vi 0 0
V2 0 0
- 4.111
“ V3 0 0 (4.111)
0 0

The above relations enable us to calculate any physical expectation value

of an observable € in the oscillator.

Q = Q,p) (defined as power series in 7, p) (4.112)
h

T = f 4.113

T 5 (a+a) ( )

p = i\/m;h(aT—a) (4.114)

For example
(n[@*n), (n|p*In). (4.115)

Interpretation:

The operators a, a' are due to their action called
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— ladder,
— raising and lowering or

— creation and annihilation

operators.

E/hw n
A

13/2 -+ 6 1
11/2 —+ 5 “ “
- al a

equidistant 9/2 —+ 4 ;
spectrum  7/2 3 a a
af a

5/2 — 2 ;
3/2 —+ 1 “T “
1/2 =40 @ “

Figure 4.3: Visualization of the ladder operators

a’ (a) increases (reduces) the excitation state of the system by one unit
hw. It can be seen as adding (removing) one energy quantum hw to (from)
the oscillator. Therefore a' (a) are called creation (destruction) operator of
an energy quantum hAw of the oscillator. The energy quantum hAw is often
called "phonon”, in reminiscence of the oscillation like in a sound wave. This
quantized energy packet can be interpreted as a particle - like photons in
an electromagnetic wave (oscillation). An oscillator in excitation state n is

said to contain n phonons.
N = a'a = phonon number operator (4.116)

Outlook to field quantization:
Consider a harmonic lattice like it is shown in figure 4.4:

The harmonic potential between neighboring lattice points reads

N
V(Io...l’]\[) = Zl/2mw2(aji—xi+1 —l’i_1)2, (4117)
1=0
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T Ti41

-

AVAVAVAVAVAVAVAVANY,

m 7 i1+1

Figure 4.4: Harmonic lattice

with the periodic boundary conditions
—-1=N, N+1=1 (4.118)

The kinetic term is given by

N
1
T = — p? 4.119
; 5P (4.119)
and the Hamiltonian therefore by

H=T+V. (4.120)

The system of coupled harmonic oscillators can be decoupled by a trans-
formation to normal modes. The energy quanta of the harmonic oscillators
represented by the normal modes are called phonons in solid state physics.
In this way the field of harmonic oscillators (one oscillator at each lattice

point) is quantized.

Direct computation of the harmonic oscillator eigenfunctions in

the x basis (Hermite polynomials):

1. Ground state: a|0) =0

fmw_. . [ 1

— %y—l—z’ S (-m%) (4.122)
1 (_imi> (4.123)

(4.124)

)
S o= L <y _ _) (4.125)
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In position basis one gets a differential equation for 1)y:

d
— | U =0 4.126
(v+ 25 ) o) (1.126)
d
s _ g (4.127)
Yo
& 1n¢g|$§ = —1/2? (4.128)
S doly) = Ape (4.129)
2
S ho(r) = Agexp (_m;uhx ) : (4.130)
with the normalization factor Ag of the Gaussian
1/2
mw mw\ 1/4
Ag = v (_) 4.131
0 wh wh ( )

2. All excited wave functions can be generated from y(x) by operating

(ah)" = [% ( — d%)}n on Yo(y):

=t |5 (- D) v w=2

The operator (y — %) generates the Hermite polynomials with the

above conventional prefactors.

3. Normalization factor A,:
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a) n=0:
1 = /dm/zg(x) (4.133)
12
= Ag/cixe_w;f“’2 :Ag/dze_ﬂ (4.134)
+oo h 2
= Aﬁ/ dy1/%e_y (4.135)
ho[ [t 2]
= A m—/ /dxdye_(x +y >} (4.136)
W — 0o
h r 0o ) 1/2
= A p 27?/ drre_’"] (4.137)
w | 0
nol > 1d _2\]""
= A2\ — |2 dr | —=—e™" 4.138
0 mw_W/O T( 2dr6 )] ( )
= A2 ;L—h (4.139)
w
mw 1/4
- n>0:

We know that the operator

= G - 5)] an

n
acting on |0) generates the normalized eigenstates, and that <y — d%)

by convention generates H,(y) (unnormalized).

1 1 /mw\l/4 mw 1/4
A= o Gr) = (Wh22”(n!)2) (4.142)

4. The recursion for H,(y) can be achieved from the a, a algebra in a

similar way.

4.3 Coherent states

We now construct the eigenstates of the destruction operator a. Clearly,
these states cannot be energy eigenstates, unless the eigenvalue is the trivial
one, since a changes the energy quantum number n. However, as we shall

see, the eigenstates of a are of importance, because
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— their z, p expectation values obey the classical motion.

— they form wave packets, which do not run apart as time increases (no

dispersion).

They are called "coherent states” and are important in laser physics and

quantum optics. Eigenstates of a:
alpa) = &|@a), a € C eigenvalue (a not hermitean!) (4.143)

Expansion in energy eigenstates:

|Pa) = i Pan|n), (4.144)
n=0
with:
Pan (n|ea) (4.145)
= (0la”¢) (4146)
=00 = S (4.147)
o
= |a) Pa0 ; ﬁl ) (4.148)
0 i (O‘ZP” 10) (4.149)
n=0 ’
Pa0e™® [0) (4.150)
The normalization yields:
L= (oulon) = lpanP S0 1O g et (4151)
0 n.
& |vaol = elal’/2, a € C arbitrary. (4.152)

Position representation of the coherent states; time evolution:

- Ent

Up(z,t) = (x|n) = Py (x)e™" 7, (4.153)

the t-dependent energy eigenstates with eigenvalues

E, = hw(n+1/2). (4.154)
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Position representation of the coherent states:

Pal@,t) = (z|¢a) (4.155)
_ —1/2|a2ia_nw ( ) —iw(n+l/2)t (4 156)
= € xTe .
vl "
n=0
a(t)
o0 ( —iwt)n
— [ ace —iw
= Y ety (4.157)
n=0 :

One obtains the coherent wave function

Pal(, 1) = Pag(x)e 12 (4.158)

with
a(t) = a(0)e™™,  a(0) = |ale® (4.159)
and the following properties:

wwt

— the t-dependence is that of a t-dependent «(t) and a trivial phase e~

The x expectation value of a particle in a state ¢, reads:

@) = (palt)laloalt) (4.160
~ Bt alea®) b=y (@6
) :
= E(a(t)jta(t)) (4.162)
= V/2b|a| cos(wt — 0) (4.163)
— (1)) (4.164)

— The x dependence is given by

oo, )]> = ﬁexp <— o \/ma'bbzos(wt —9) ) . (4.165)

which represents an oscillating Gaussian wave packet without disper-

sion and is therefore coherent.
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A
Y

Figure 4.5: Gaussian wave paket without dispersion



Chapter 5

Path integral formulation of

quantum theory

In this chapter we develop another formulation of the quantum theory,
which is equivalent to the Schrédinger formulation, but allows a more fun-
damental understanding of the Schrédinger equation as well as of the cor-

rection to classical mechanics.

5.1 The propagator U(Z,t;Z’,0)

Since the Schrodinger equation is of first order in time, its solution at
any instant of time ¢, (7, t), is uniquely determined once the state, in x
representation the wave function, is fixed at a time ¢, (2, ¢ = 0). Without
loss of generality we set ¢ = 0 in the following. This can be expressed

formally for H not explicitly t-dependent.
[Y(t)) = e_%Htw(O)) (basis-free representation), (5.1)
since

m%w» = He #H9)0(0)) = HJu(t))  (Schrodinger equation). (5.2)

The operator U(t) = e~#Ht depends only on the system H, not on the
initial condition [¢(0)). It is called time evolution operator or propagator

of the system.

89
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— In energy representation:

{|n)} basis of eigenstates of H with eigenvalues F,,

() = Y e n)(nly(0)) (5.3)

= > I (nlp(0))e 5 (5.4)
Uty = Y Im)(nfe i (5.5)

— In position representation:

@) = [ @ o) (56)
—_———
U(Z,t;27,0)
vt = [ @ U 0o (5.7

U(t) = e 7 obeys the differential equation

o,
iU = HU, (5.8)

i.e. the Schrodinger equation. However, it is an operator acting on Hilbertspace,
not a vector. All information about the system can be extracted from the
propagator U(t). Instead of solving the Schrodinger, one can formulate the
quantum theory based on a direct calculation of the propagator, without

resorting to the Schrédinger equation.

5.2 Formulation of the path integral

Based on very general considerations' we develop the scheme how to calcu-

late U(Z,t;£’,0) in position representation:

1. Interpretation of the propagator equation:
U(Z,t;2',0) is the amplitude for finding the particle at time t at &,

!The formulation is based on the concept of a particle which propagates from one position
to another according to probability amplitudes, i.e. is in the spirit of the Copenhagen statis-
tical interpretation of the quantum theory. However this formulation does not preassume a

Schrédinger equation or any other dynamical equation.
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provided it has been (or will be) at time ¢ = 0 at &’. Since ¥(Z’,0)
is the amplitude that at t' = 0 the particle has been at '/, one must
integrate the propagator equation over all possible Z’ in order to get
the total amplitude ¢ (Z,t) of finding the particle at (Z, ).

I I |
pal
\\\\\\U(I,t;.I/l,O)
D
rM) TR — — — _»_ ______ \_
I, T
x5 ”’/,:V/////
xag”/ //’// -
/},/’ ¢
sy

Figure 5.1: Visualization of the propagator U between two states v (z’,0) and
¥(z,t)

2. Ansatz for U(Z,t;2’,0):

How can we calculate this amplitude U(Z,t;7’,0), i.e. how does
the particle move from (Z’,0) to (#,¢)?7 Without knowing anything
about the dynamics, the minimal assumption is that the particle can
move on any path Z(t) from (Z’,0) to (Z,t) with equal probability,
[W{Z()}|> = 1. Then the only possible choice for the amplitude
W{Z(t)} is a phase factor, W{z(t)} = e~} and to get the total
amplitude U(Z,¢;Z’,0) we have to sum up all the amplitudes of paths
Z(t) which begin at (Z’,0) and end at (Z,t):

UZ 3,00 = A pf(tol;if@ e Hi{Z(B)} , (5.9)
E(t)=%

where A is a normalization factor.

3. Choice of the phase ¢{Z(t)} attributed to a path Z(t):
The only known requirement on W{Z(t)} is that for a classical par-
ticle (large mass, action S > h) only the classical path Z(t) should

contribute to U(Z, t; ¥',0). Therefore we choose

W{Z(D)} = "0, (5.10)
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x x

JJ

Figure 5.2:

i.e. the actions of the path Z(t) in units of h. The weight factor
W is oscillatory as a function of S. Contributions W from different
paths have in general an arbitrary relative phase S/h = ¢{Z(t)}. In
the summation over all paths the contributions, therefore, cancel each
other in general. However, for the classical path x.(t) the action is

stationary (stationary phase):

5S{E(t)} =0 (5.11)

Z(t)=xc(t)

S{E#) — / d?[%m#(f)—wf(t))] (5.12)

0
Hence, only the contributions from paths close to the classical path in-

terfere constructively. The range of constructive interference is roughly
|S{Z(t)} — S{Za(t)}| < (region of coherence). (5.13)

For large mass (or excitation energy), S varies rapidly as x(t) is varied
from the classical path x(t), and in the limit S > h (classical limit)

only the classical path contributes.

Example: Free particle

za(t) = vt, v= . (5.14)
i (t) = %atz, a= Qt—? (5.15)
r1(th) = za(ty) =1 (5.17)

2From equation (5.11) one can obtain the Euler-Lagrange equations (— variation principle).
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Action:
t1
Saq = / dt 1/2mi?, (5.18)
0
t1 JJ2
= / dt1/2mv2:1/2mt—1 (5.19)
1
Ot1
S; = / dt 1/2ma,? (5.20)
0
t1 1.2
= / dt1/2ma2t2:2/3mt—1>5d (5.21)
0 1
J}2
=S5 — Sy = 1/6mt—1 (5.22)
1
~ 10%h, (5.23)

which is valid for macroscopic parameters. We have deduced the
scheme to calculate the quantum mechanical time evolution operator,
which contains the classical Lagrangean formalism, 65 = 0 for z, in a
natural way for S > h. This construction also offers an approximation
scheme:

— (Quasiclassical approximation

— Expansion about x

— Stationary phase approximation

oscillatory

:Ecl(t)

™

Figure 5.3: "Tube” around z(t) within which S — S, <7

UG 5,0) = [0 D {a(H) e H5E0) (521)
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5.3 Evaluation of the path integral for a free

particle: the measure

We restrict ourselves to the one-dimensional case, i.e. d = 1. To perform
the summation over the continuous set of all paths z(t), we first discretize
the paths into (V4 1)—time slices of spacing ¢ = £ and evaluate the limits
N — oo and € — 0 at the end of the calculation.

0=t t1 to ... e

tn=1

Figure 5.4: Discretizing the paths into (/N + 1)—times slices of spacing &

Ule,t:,0) = lim Ay / diy / ds
/ dax_ 1 exp (+%S{x(t)}) (5.25)
= [Dpmperiseo (5.26)
S} = ilﬂm (u) (5.27)

where xy = 2’ and zn = x are fixed under the path of the integral. The

integrals over x; are quadratic and, hence, can be performed.
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Substitute dimensionless integration variables:

m
;= —x;, t=1,....N—1 2
y’l 2h€x1’ 1 ) ) (5 9)
2he\ N /2
. , e 3 —_—
Uz, t;2',0) = ]\}EI;OAN<m) /dyl...
N-1
X /dyN_1 exp (Z > (i — yi)2> (5.30)
=0
The integration over gy, yields:
1 2
dy, exp 3 [(v1 — y0)* + (Y2 — n1)*] (5.31)

= /dyl exp <—% [2 (yl L _g y2)2 + %(yz - y0)2]) (5.32)
() s

The Gaussian form is reproduced, with y; removed and an additional factor

%. Moreover the integration over y, gives:

(m)l/2 dyz exp < — %[1/2@2 —y0)? + (y3 — y2)2]> (5.34)

2
_ (%) (27”) exp (—%M) (5.35)
_ 3 exp ( 1 (s _;),yO) ) (5.36)

Performing all N — 1 integrals finally gives:

2h % . \N—-1 1/2
Uz,t;2',0) = lim Ay <W€) <(”) )

N—oo N

X exp (—%(yN - W/N) (5.37)

N
2mher 2 m 1/2
~— lim A ( )
Noo N( m ) 2mihNe

X exXp (12};7%(9: - xl)z) (5.38)
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To get a well-defined result for N — oo and € = t/N — 0 the N-dependence
must be canceled by the factor Ay ((t/N)" e ).

Normalization:

m >% ! (5.39)

A e =, —
N <27rhai BN

This defines the measure of the path integral, which regularizes the "volume”

associated with the infinitesimal spacing € between the time slices:

~ . 1 teo d!L’l teo dl’g +oo dl’N_l
/D{x(t)}— lim —/_ o[ /_ 52| (5.40)

N —oo
e=t/N o —o© o

with

B 27?%51. (5.41)
m

The summation over all paths yields a path integral. The summation over

functions gives, in general, a functional integral.

5.4 Equivalence to the Schrodinger equation

In this section the Schrédinger equation will be derived from the path in-

tegral formulation.

Analogies:
Classical Newton formalism < Lagrange formalism
Local in t Integral in ¢
Differential equation Least action principle

Quantum mechanical | Schréodinger formalism <« Feynman formalism
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— Schrédinger formalism:

Infinitesimal time evolution (e = dt),

6(6)) — (0) = = Hw(0)) + (e, 5.4)
and in z representation:
Boe) = 6(0) = [~ V)| (w0
+0(e%). (5.43)
_ Feynman formalism:
V(z,e) = / da' Uz, 22/, 0)b(a, 0) (5.44)

Uz, e:a',0) = / D{x(t)}exp<+% /0 ar Bm:’cz —V(x)]) (5.45)

= (o) farew ([ (227) v (5]

O(e) : No intermediate time slices (5.46)

U(r,e) = ( m )1/2 /+ood:£' exp <izﬂh€(z—:ﬂ')2)

2mhie oo

X exp (—%av (m J; x/>) W(a',0) (5.47)

= (i) " [ o e (i)

e}

X exp (—%av (m J; x/>) W(a',0) (5.48)

= (gre) " [ e i)

e e}

X exp (—%€V(ZE + y/2)) Y(xz+y,0) (5.49)

In the limit ¢ — 0 the factor exp (z%gﬂ) oscillates infinitely rapidly as a function
of y so that only the stationary point y = 0 contributes to the integral f_Jr;o dy .

All other factors vary slowly as a function of y.
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Expand around y = 0 ("infinitesimal propagation”):
o
02

e FeVty/2) %V(m) + O(ey) (5.51)

Yz +y,0) = ¥(x,0)+ v ’+0(y”) (5.50)

%
o |, +1/2

The term O(ey) is of higher order than linear in ¢ and is therefore neglected.
Then one obtains:

e = ()" [ v (- o) e

i€ o
——V(z)¥(x,0) + %'

2
7 +1/

2} (5.52)

with

e —ax? ™
/_OO dxe = \/g (5.53)

9

da

+oo > +oo |
/_OO dr 2%e™ ™ = /_OO dx e " =5 g (5.54)
it follows
m \Y2 [ [ 2rhie\? hic (2rhie\ "? 0%
Wlze) = <27rhz'5> [( m ) Pla,0) + 2m( m ) 8x2]
12 e (2rhis\"?
_<2:;Lig> [%( sz€) V(x)w(:c,O)] (5.55)
' h? o?
V(a.e) —v(@,0) = —7| = Soasu(@.0) + V(@)(a,0)] (5.56)

In the limit ¢ — 0 one finally gets

ih 2y (x,t) (5.57)

= [ 22 V()] vl

t=0 =0

Thus, the Feynman path integral formulation reproduces the Schrodinger equa-

tion. It contains naturally the classical limit for the action S > h.
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5.5 The classical limit

The path integral representation of the propagator U had been constructed such
that for macroscopic particles only the classical path Z.(¢) contributes:

#(t)=F

U #:7,0) = / D{F(t)}eh SO (5.58)
with the action functional
t 1 .
S{z(t)} :/ dt <§m:f(t')2 — V(f(t/))) ) (5.59)
0

What is the meaning of macroscopic in this context?

Let V(Z) be a potential which varies on a characteristic length scale xy. If we
vary the path & — Z(t) + 0Z(¢), and take |0Z(t)| < z for all times ¢, then the

potential term does not contribute to the variation of the action, and we have
t
IS{z(t)} = / dt' [mz(t') - 62(t') — ﬁV(i”) 0T (t))] (5.60)
0
t . N
= —/ dt' [mZ(t") + VV(2)] - 02(t') + O(62?), (5.61)
0

where in the second step a partial integration was done. The "coherence region”
is 6S/h < m, i.e. for larger variations, dS/h > m, there is for each path Z(t) a
variation Z(t) + dZ(t) such that the contributions from the two paths interfere
destructively, so that the integral over all those paths vanishes. The condition

for this to happen for a given variation 0Z(t) is
0S > mh (5.62)

or, neglecting the potential term in 0.5,
mh

m > . : (5.63)
[yt E(t) cot 67 (1)

i.e. for "large enough” mass. There is only one exception to this cancelation of
path contributions, namely when for an infinitesimal variation dZ(¢) the action

does not change at all. This means, that for
mh

- (5.64)
[ at’ Z(t)oz(t)

m >
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only that path contributes for which 65 = 0. This is the principle of stationary
action of classical mechanics, which from above yields the Euler-Lagrange (or

Newtonian) equations of motion,
mzZ=-VV(zZ)=F. (5.65)
Remarks:

1. The condition (5.63) does not set a fixed boundary on the mass m. Rather,
it depends on the motion (57’) and on the duration ¢ for which the particle
is observed! The larger ¢, the more quantum effects come into play for a
given m. For realistic t, Z and m 2 1g, quantum effects never play a role.
Note that £ = 0 is not possible for all variations of the path. After long
enough time, any particle becomes quantum mechanical (spread of wave

functions), if phase coherence is preserved for all ¢.

—

2. Does the condition 65 = 0 with given start and end points of z(t) select a
unique path?

The deterministic nature of classical mechanics tells us: in general yes!
There are, however, exceptions to this rule in quantum systems which have

no classical analogy. These are spin systems, which will be considered later.

The Ehrenfest Theorem
How does the classical motion of a particle emerge from quantum mechanics in
detail?

We expect that in the classical limit the quantum mechanical uncertainties in
measurements vanish and that each measurement of an observable € yields the
same value, which must then be equal to the quantum mechanical expectation
value. Therefore, we consider the time evolution of the quantum mechanical

expectation value:

Q) = (¥lQl) (5.66)
=) = (@1900) + @I0) + (¥IQy) (5.67)

) = —%le (5.68)
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and
(] = +%<¢IH (5.69)
it follows
10) =~ (l(QH — HOJ) + (510, (5.10)
And by that:
%(@ - —%([Q, H) + <%—?> Ehrenfest theorem (5.71)

The quantum mechanical expectation value evolves in time according to an equa-

tion of motion analogous to the classical equation of motion, with
(QHY — —%[Q,H]. (5.72)

Reminder:

1. Expectation value of () in state |¢):

() = (¥[Qly) (5.73)

Let {|n)} be an eigenbasis of €2.

Qn) = wyn) (5.74)
W) = > _anln) (5.75)
a, = cgntribution of |n) to ) (5.76)

= amplitude that a particle prepared

in state [¢) is found in an eigenstate

In) of (5.77)
= @) = Y (nllan*wnln) (5.78)
= Y e, (579

= average value of w,’s, weighted with the
probabilities |a,|? to find the particle in
state |n). (5.80)
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2. Classical motion of a variable :
Q=Q(z,p,t) (5.81)

With the Hamilton equations of motion,

OH OH

—

P=+4—") p=——u 82
one gets
d o, 0. 090
A E R = Y (5:83)
0Q0H O0Q0H 02
-~ o T o (5.84)
o
= {QO.H - 5.85
{oH}+ 7, (5.85)

where {., .} denotes the Poisson brackets.

To obtain a (classical) equation of motion for (Q2), £(Q) must be related to a
function of (Q) itself, i.e.

10) = {4, ()} + () (5.86)

4
dt

function of Q, ([2, H]), which is in general not equivalent. The classical equation

In contrast, the Ehrenfest theorem relates < (Q) to an expectation value of a

of motion for (2) will be obtained in the classical limit. To see this, we consider

) = 7 and ) = p, since any observable can be constructed from Z, p.

5 v, . p -
(# = —p(#H) with H=2- V(@ (5.87)
i P2
= —3 (@D (5.88)
With
[Z,p% = plE,p) + [, plp (5.89)
= 2inp (5.90)

one obtains

() = o _ <%—g>- (5.91)

m
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Analogous, the calculation for (ﬁ} yields:

B =~ H) = (5 V) (5.92)
::—%em%;:—<%9 (5.93)

These equations are similar to the Hamilton equations of motion, but to obtain

the classical Hamilton equations, we must have

(%) =55 ™ (5) = 5 (>:94)

If H is a quadratic form of p, Z only, then these relations hold always.

Proof: Compute 9{p*)/d(p)

We have
((p— @) = (" —2pp)+ () 5.95
= ) -’ (5.96)
oY) Aop— () , 9p)?
T om o oW (5.97)
— 2(p- G- 5 200 (5.98)
=<%ﬁ, (5.99)
and analogous
0T . 05
8<f> - 2< > - < 89? > (5.100)

In general, H is not a quadratic form of Z. In this case, we expand the expectation

value of the gradient of the potential appearing in the equation of motion around
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the expectation value of 7.

(55) = V@) =@ (5.101)
V@) = V&) + oV (@)@ - @) (5.102)
— V@3 ) et l)
(i — (@) (xj — (z;)) + ..., (5.103)
where
7= (21,20, 23)". (5.104)

Hence we obtain the equations of motion for the expectation values

0. . OH)
(@) = 5 (5.105)

which is always valid exactly, since H ~ p2, and.

%@ N _<%> (5.106)
_ V@) V(@) o=
T am aw) iLt%jB
_1 w Ti — (%)) (xj — (T,
24 a@i)a(@)(( i = (@) (@5 = (2)))- (5.107)

The second derivative appearing in equation (5.107) is the curvature of the clas-

sical force.
Discussion of the 2nd equation:

e The first term,

V(@) _  9V((@)
A R T (5.108)

is just the classical force acting on a particle at position (Z). It reproduces

the classical Newton equation of motion.
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e The second equals zero, since ((Z — (Z))) = 0.

e The third and higher terms give quantum corrections to the classical limit.

They originate from the fact that the wave function is spread out in space:

(@i = (@) (z; — (Z5))) # 0 (5.109)
This gives a criterion, when the classical approximation becomes exact:
When the spreading of the wave function is small compared to the scale

on which the force F' = —§<5>V((:Z"'>) varies, so that the quantum mechan-

ical position uncertainty becomes irrelevant (— WKB approximation).
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Chapter 6

Symmetries and Conservation Laws

Definition: Symmetry
A symmetry is a unitary transformation of the Hamilton operator H which leaves

H (or the Schrodinger equation) invariant'.

We then say, the system is symmetric or invariant under a certain transformation.

6.1 Continuous symmetries

Reminder: Classical mechanics
Let g(%,p) be a continuous function of ¥, p. It thus generates a canonical trans-
formation of H(Z, p):

An infinitesimal canonical transformation, which leaves the equations of motion

form invariant, reads:

. Og

— —/ — ag — —
p — pl=p—e5=p+p (6.2)
ox

'In classical mechanics a symmetry is a canonical transformation which leaves the Hamilton

function invariant.

107



108 CHAPTER 6. SYMMETRIES AND CONSERVATION LAWS

with € — 0. The Hamiltonian H is then invariant under this infinitesimal trans-

formation.
B _OH (0g OH (g
0 = 0H = o7 <8ﬁ 5) o7 (09? 5) (6.3)
dg  dg
= o 0 (6.5)

Since g is not explicitly time dependent, g is therefore conserved.

Quantum mechanical treatment of symmetries
General definitions:
A symmetry must be a unitary transformation acting on the states of Hilbert

space and on the Hamiltonian in order to conserve the normalization of a state

).

) — Uly) (6.6)
H — UHUY, U =1 (6.7)

Then U can be written in the form

—ix 1 . n
U=e™@=Y)" —(=iaG)", (6.8)

where G is hermitean and a € R is a continuous parameter.
The generator G of the transformation

The (infinite) set of transformations U defined in this way forms a group, called
Lie group L. This implies an algebra structure for the generators GG. The algebra
is defined by the commutators [G;, G;]. If the U’s leave the Hamilton operator

invariant, L is called a symmetry group of the Hamiltonian.

Consequences of symmetry groups
Since in quantum mechanics a physical observable G (e.g. ) does, in general,
not have a uniquely defined value, we must formulate the conservation laws in

terms of the time independence of the corresponding expectation value (¢|G|¢)
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with respect to an arbitrary state |¢).

Theorem: (Quantum analogy of Noether theorem)

If G is a generator of a symmetry group of the Hamiltonian

U= e ¢ UHU ' = H, (6.9)
then G is a conserved quantity, i.e. (¢|G|¢) is conserved for arbitrary |¢).
Proof: Let o be infinitesimal so that we can expand U as

U=1-iaG+ O0(a?). (6.10)

Since H is invariant under the transformation U (6.9), we yield

H = (1-iaG)H(1+iaG) (6.11)
= H—iaGH +iaHG (6.12)
= H —iol[G, H| (6.13)
< [G,H] = 0 (6.14)
And by that we finally get
d i
SWIG) = —+ Il Hllw) =0, V1), (6.15)

where the Ehrenfest theorem was used.

Lemma:
One can find a simultaneous eigenbasis of the Hamiltonian H and of the genera-
tor G of a symmetry of H, since [G, H] = 0.

The symmetry analysis is useful, since eigenstates of G are often easier to find
than those of H?.

Reminder: For commuting operators, [G, H] = 0, there exists a simultaneous eigenbasis,

where G and H are hermitean operators.
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Proof:

Let |¢) be an arbitrary eigenvector of G with eigenvalue A, i.e.

Gly) = Aly). (6.16)
One then obtains

GH|w) = HGIY) = \H|v), (6.17)

which means that [¢)) = H|¢)) is eigenvector of G with the same cigenvalue A,

1. If X is non-degenerate, i.e. 2 linearly independent eigenvectors of G with

the same eigenvalue A do not exist, then
) = Ely), Ee€C. (6.18)

where ) is proportional to [¢)). Furthermore |t eigenvector of H, because

Hly) = ) = Ely). (6.19)

2. If X\ is m-fold degenerate, then

e there exists a subspace V) with basis {|¢1),...,|¢m)} of eigenstates
of G with eigenvalues .

e V) is closed with respect to H, i.e.

V) eV = H[p) = [y) € Vi (6.20)

Find an eigenbasis of H in the eigenvector space V) of G.

The question now is how to obtain the conserved generator of a symmetry. Some

important examples are given in the following subsections.
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P(,1)

\j

Y(x — Az, t)

\

Figure 6.1: Propagation of a wave packet

6.1.1 Translation invariance in position space

e For simplicity we first consider the case d = 1:

Up(x,t) = ¢z — Ax,t)
1w
B Zﬁ ox"

n=0

lﬂ’L

xT

e}

-y (_Axa%)nw(x)

n=0

= exp (—ZA:L’ (—z%

U — e—iAmGz
r =

)

which is equivalent to

— _;90 _ Pz
G, = i5: =5

)) e

111

(6.21)

Therefore the momentum operator is the generator of the translation group.

e Now consider the case d = 3:

D .
G:cj = # , J=X Y, 2
[pmpk] =0

(commutative group)

The general translation operator then reads

U = UU,U. (= UU,U. etc.)

. P . Py . P
— 6—2Ax7fe—szTe—zAz?f
_ iaTf

(6.24)
(6.25)
(6.26)
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It follows from the quantum Noether theorem that in a translationally invariant
system the momentum is conserved, i.e. the momentum expectation value (p) is
conserved for any state evolving according to the (time-dependent) Schrédinger

equation.

6.1.2 Time translation invariance

Up(z,t) = P(x,t — At) (6.27)

The generator of the temporal translation is, in analogy,

G = —ie = ——. (6.28)

if H is not explicitly time dependent, the energy is conserved.

6.1.3 Internal continuous symmetries: gauge invariance

These symmetries have no analogon in classical physics! We consider first a
global (z, t independent) phase transformation of a wave function, a U(1) gauge

transformation,

U (F,t) = e (T, t) = (7, 1). (6.29)
The Hamiltonian is invariant, since ¢(Z) = const.,

e ®He" = H. (6.30)

The generator of the phase transformation is in this representation obviously

G4 = 1. Hence we have the conserved quantity

d

d d
0= St =5 / P (@ U 1) = TN (6.31)

The global U(1) gauge symmetry implies that the total particle number, i.e. the

integral of the probability density, is conserved.

Local U(1) gauge symmetry
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We postulate that the Schrodinger equation shall be form invariant under U(1)

gauge transformations (Yang-Mills).

V(1) = etP@EDY(Z 1) (6.32)
2

ih%w = —;—m§2w+V(x)¢ (6.33)

L0 r h? =12,/ /
it = =5 V"% + V() (6.34)
VY (2,1) = Vet @y (z, 1) (6.35)
= MEDVY(E, )] +i[VO(T, 1)] TG (E, 1) (6.36)

=y/(Z.1)

The V6 term breaks the form invariance of the derivative. Therefore we have to

define a covariant derivative, which compensates the V6 term.

V — V' =V- 109(8:;, t) (covariant derivative) (6.37)
p=—ihV — §=p— h% (kinetic momentum), (6.38)
T
and similarly
’ -
% — % = % - 269(8? ) (covariant derivative) (6.39)
L0 8/ o 00

In the presence of local gauge invariance, the Schrodinger equation must be gen-
eralized to

{m;ﬁmgﬂ W(F,1) = [1 ( hge) V@)

2m

(T, 1), (6.41)

i.e., gradient fields must be added to the derivatives, which does not change the
physics. The generalization to general fields yields

e - 00 00 e -
B 1
e = _ﬁéﬁ o 1P _c, (6.43)
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The electromagnetic 4-vector potential reads

e , ¢ [0}
0 — —a" = — < g) (6.44)
m%w(f, 1) = [im( E/T) Fe(T,t) + V(D) (T, b). (6.45)

6.2 Discrete Symmetries

6.2.1 Parity: Space inversion symmetry
The action of the parity operator P is defined by
P: 7— -7 (6.46)
where T is a position vector. Now we want to derive the eigenvalues of P.
First of all, the definition of P yields
P*=1. (6.47)

If [¢) is an eigenstate of P, we get

Pl) = Ap|) (6.48)
P2ly) = Aply) (6.49)
Sy = ABY), (6.50)

and therefore
A =1 (6.51)

Thus the eigenvalues of P are

(6.52)

+1 , even parity
Ap = .
—1 , odd parity

If the Hamiltonian, i.e. the potential, is invariant under space inversion (parity

symmetries), then the eigenfunctions of H in position representation must be
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either symmetric (Ap = +1) or antisymmetric (A\p = —1) with respect to space

inversion.

We have encountered this property before in problems of a particle in a one-

dimensional, symmetric potential well and the harmonic oscillator.

A IR
12) \/\ /\/ +1 2
NV

1)
0) >4 +1 0

0 T

Figure 6.2: Alternating parity, A, = (—1)", of the harmonic oscillator eigenfunc-

tions

Proof:
The ground state |0) has even parity A\p = +1. An arbitrary state |n) can be

generated by letting act a' n-times on |0), i.e.

jny = ﬁ(a*mo» (6.53)

Expressing the creation operator through the position and momentum operators,

we get in position representation for the state |n)

() = \/% ( \/%z _ Z\/QTIM (-m%)z) n%(x). (6.54)

The action of P onto the creation operator gives

Pad' = —a', (6.55)

n

and the parity of |n) is therefore given by (—1)".
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In the following we summarize the parity transformation of the operators %,;7
and E.

i — -7 (6.56)
- - - 0
7 — inc ) = —ih— 6.57
P — =P, since P thos (6.57)
E — E, since E = zh% (6.58)
6.2.2 Time reversal symmetry
The action of the time reversal operator T" is given by
t — —t (6.59)
r — T (6.60)
P — —p, (6.61)

where t is the time coordinate. The transformation of wave functions under time

reversal in a time reversal symmetric system is given by

THT' = H (6.62)

ih%¢ = Hy, (6.63)
and

T(z’h%@b) = THY (6.64)

& —ih%T@b = HTY, (6.65)

which is equivalent to

T: WY — ¥

(—ihd) — (=ihZ)" (6.66)

The time reversal symmetry is broken in an external magnetic field, which is not

time reversed.



Chapter 7

Angular momentum and rotational

invariance

Rotationally invariant problems are of great importance in physics. This class of
problems includes all systems with a central-symmetric potential, for instance the
Coulomb potential, i.e. atomic systems etc. Although being highly symmetric
and, hence, having a large number of conserved quantities, these systems are
sufficiently complex to have interesting dynamics.

In this chapter we consider rotational invariance and the conservation laws that

follow from it.

7.1 Lie Algebra, Lie group, basics of representa-

tion theory

In contrast to translations, rotations about different axes in 3-dimensional space
and, hence, their generators do not commute with each other.

Moreover, later on we will need to perform rotations of different objects, (scalar)
wave functions, vectors in 3-dimensional position space, and so-called spinors.
This means, we will need to represent the general rotation group as linear rota-
tion operators acting in different vector spaces, e.g. the space of square-integrable
functions S, 3-dimensional vector space etc. Therefore it is useful to consider con-

tinuous groups, like the rotation group, and the algebra of their generators on a

117
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more general level. Motivated by the central importance of the commutator of

two operators, we define:
Definition: Lie algebra A

1. A is a real vector space

2. Within A there exists a bilinear, scew-symmetric mapping [-, -], called "Lie

product”, which the properties

AxA — A (7.1)

(a,b) — ¢ a,b,ce A (7.2)
with

la,b] = —[b, al. (7.3)

3. This Lie product fulfills the Jacobi identity:

la, [b, c]] + [b, [c,a]] + [c, [a,b]] =0, Va,b,ce A (7.4)

One may identify the vector space of linear operators on Hilbert space with A
and the Lie product with the commutator [a,b] = ab — ba. This identification

obeys the conditions 1.-3.

Definition: Lie group G

Is A the Lie algebra spanned by a set of hermitean operators

{G,|G} =G,,n=1,... N}, (7.5)
the generators of G, then the group of unitary transformations

Upn(a) = e7Cn, aeR (7.6)

is called the Lie group belonging to A. Using the above definitions, the commu-
tator [G,, G,,] of two operators of the Lie algebra specifies the structure of the
group G in a general way by prescribing how consecutive group transformations
U,(a) have to be applied. In order to perform such a transformation acting on

a concrete vector space V (e.g. function space S, position space) the elements
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of the group, or of the generators of G, must be represented as operators in a

concrete way. This leads to the definition of a representation.

Definition: Representation D of an algebra A
Let V be a complex vector space and let L(V') be the vector space of linear trans-

formations on V. The mapping D : A — L(V) is called representation of the

algebra A in the vector space V, if D is compatible with [-, -], i.e. if

[D(a), D(b)] = D([a,b]) Va,be A (7.7)
yields with

[D(a), D(b)] := D(a)D(b) — D(b)D(a). (7.8)
This requirement ensures that the algebra structure is preserved by the represen-
tation.

Abstract algebra a, b, c la,b] = ¢
!
Linear transformations | D(a) D(b) D(c) | D([a,b]) = D(c)

Definition: Irreducible representation

The representation D in a d-dimensional vector space V' is irreducible, if there is
no vector subspace V' C Vwith dimension d’ < d, such that V' is invariant under
D,

D@v=w €V'" YweV acA. (7.9)
This can be visualized in terms of matrices:

e Vectors v € V in coordinate representation:

U1
v = : (7.10)

Ud
e Transformations D(a) on V' are matrices:
Dy 0

D(a) = (7.11)

D(a) = (Dy) (7.12)
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Equation (7.11) describes a reducible representation and equation (7.12) an

irreducible representation.

The above definitions will be filled with meaning by the example of the angular

momentum algebra.

7.2 Angular momentum algebra: generators of the
rotation group and angular momentum con-

servation

We expect that the conserved quantity connected with rotational invariance is
the angular momentum, like in classical mechanics and in analogy to the connec-
tion between translational invariance and linear momentum.

In the following we will first define and analyze the angular momentum operator
and then construct explicitly the generators of the rotation group for rotations

of scalar wave functions (7).

Angular momentum in quantum mechanics
We choose the z-representation and let L act on wave functions W(Z,t). In clas-

sical mechanics the angular momentum is given by
L—[#xf. (7.13)

The correspondence principle gives us the quantum mechanical operator which

reads

X p=7F x (—ihV)|. (7.14)

81)

L=

In the following the ~ is only used for operators if confusion with classical quan-

tities may arise.

L, =—ih y% — Za%
Ly=—ih(z25 —y& Ly, = —ihepmeiz2= (7.15)
L, = —ih xa% — y(%)
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Note here the sum convention, i.e. doubly appearing indices are summed over.

Complications of the quantum mechanical description

1. The quantum mechanical definition of L is not unique, since

~ o~

7 x pl # —[0'x 7, (7.16)

where the minus sign is the trivial sign of the classical expression. As will

become obvious below,
L=[Fxpl (7.17)

is the physically correct choice of the definition for L being the generators

of rotations.

2. Rotations in d = 3 dimensions do not commute in general, in contrast to

linear translations. Rg(y) represents a rotation around the axis @ by the

angle .
Example:
s s s
(VR (Z)e.=R-(Z)e =¢ 1
Rx<2>Rz<2>ex Rx(2>ey ‘= (7.18)
but
T 7 s
()R- (=)e.=R-(=)e. =¢,. 1
RZ<2>R9”<2>69” RZ(2>6“’C ‘v (7.19)

It will be shown below that the angular momentum operators L,, L,, L, are
the generators of the rotation group in three dimensions. Correspondingly, the
components L,, L,, L, of L do not commute. Using the definition Ly = €pmxipm

and [z}, p| = ihdy, the non-commutation can be shown explicitly.
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Figure 7.1: Example of non-commutation of rotations

Proof of commutation relation

[Lka Ll] = EkmnElim'n’ [xmpm xm’pn’] (720)
= 6l»cmnglm’n’{xm [pna xm’]pn’ + Tt [xmapn’]pn} (721)
- <C:lmnnglm’n’{_xm'éh(snm’pn’ + Im’ihdmn’pn} (722)
= Z.hgkmn{_Elnn’:l:mpn’ + Elm’ml’m’pn} (723)
= 7;h{fkrrLrLgln’n~:Cmpn’ - 7;h{fIfnmglm’mxm’pn (724)
= ih (5kl5mn’ - 5kn’5ml) TmPn!
_Zh (5k15nm’ - 5km’ nl) Tm!Pn (725)
= iﬁ{ém > TnDm — 2ok — Ok Y Tnpn + :ckpz} (7.26)
= ih(xrp — Tipr) (7.27)
In the following we summarize these really important relations.
[le Lm] = ih&klmLm
[Las Ly] = ihL. (7.29)
L,,L,] = ihL,
[L.,L) = ihL,

The non-trivial commutation rules of L., L,, L, imply
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e that not all 3 components of L can simultaneously be measured with arbi-

trary precision (uncertainty principle) and

e that the eigenstates of a rotationally invariant system are uniquely charac-

terized by less than 3 components of L!

The profound consequences of this uncertainty will be analyzed in section 7.4.

Representation in spherical coordinates

(=choice of basis of Z-space)

€e
Z A
~ é\r
e
A
- |
-7 AY
z=rcos(d) +~ '
|
I .
Ly =psin(p)
9 7
~7—p = rsin(0)
= peos(p) E

Figure 7.2: Spherical coordinates

The vectors e,,e, and ey form a local orthonormal coordinate system which is
dependent of the considered point. The components of the cartesian vector ¥

read in spherical coordinates,

x = rcos(yp)sin(f) (7.30)
y = rsin(p)sin(f) (7.31)
z = rcos(h). (7.32)

Now we want to express the components of the angular momentum operator L
in spherical coordinates. In order to do this we first have to express the gradient

in spherical coordinates, because L contains the momentum operator p'= —ihV.
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In cartesian coordinates the gradient reads

0

~ o 0 %) O

V=e a——l—eay—l—ezaz— 5 | (7.33)
9
0z

To express this in spherical coordinates we have to derive the directional deriva-

tives along the axes of the local orthonormal coordinate system e,, e, eg.

0
- %) 10 1 9 or
“or T 0 jLe%’sim(@) Do ro (7:34)
rsin(9) dp

The basis transformation from the cartesian to the spherical system is done by

0 ox; O

or N ;}Z or dz; (7.35)
10 Ox; 0O
roo N _Zy 90 Ox; (7.36)

rsin(f) dp rsin(f)

One therefore obtains

2 cos(p)sin(f) sin(yp)sin(f)  cos(6)
%% = cos(¢p) cos(0) sin(p)cos(d) —sin(6)
rsii(@) % - sm(gp) COS(SD) 0
U(r0,¢)
9
oz
<| 2 (7.38)
9
0z
N Kil
oz ar
) _ T 1.0
By = U =56 : (7.39)
9 10
0z rsin(f) O¢

where U(r, 0, ) is an orthonormal transformation. The cartesian components

of L expressed in spherical coordinates using the orthonormal transformation



7.2. ANGULAR MOMENTUM ALGEBRA: GENERATORS OF THE ROTATION GROUP AND /

U=Y(r,0,p) read

L, 0 —z wy a%
L, | = —ih| =z 0 -z > (7.40)
L, -y x 0 %
0 —z wy %
= —ih| 2z 0 —z |U" 10 (7.41)
19
-y 0 rsin(0) dp

Multiplying this products out an plugging in the spherical coordinates for z,y, 2
one finally gets

L, ih (sin(gp)% + cos(yp) cot 9%)
L, | =1 ih <— cos(p) & + sin(p) cot 9%) : (7.42)
L .

z —zh%

Generator of rotations about an arbitrary axis a: R;(Ayp)

Representation in function space S:
Ds(Ra(Ap))(T) = (Do (R; ' (Ap))7) (7.43)

Often, the shorthand notation D(R) — R is used, identifying the representation

with the transformation itself,

Ra(Ap)y (@) = v(R7 ' (Ap)T). (7.44)

Without loss of generality we choose e,||@ and then obtain

Rae:(Ap)Y(r,0,0) = (r,0,0 — Ap) (7.45)
- S L2 Ay (7.46)
neo v dp (r,0,0)
= AEY(r, 6, ) (7.47)
e TIAPTUrO0) (7.48)

Therefore %E = @ are the generators of the rotation group and the commutator
[L;, L;] = ihe;j, Ly, is the angular momentum algebra. In a rotationally invariant

system, [L;, H] = 0, the angular momentum L; is conserved, i.e.
d . .0
SWILI) =0, VIv) with iho|y) = HIY). (7.49)

Furthermore Uz = e~#L/h describes a rotation about axis @ by the angle |d.
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7.3 [Eigenstates of L,: 2-dimensional rotations

The z-component of L is given by

0
L, =—ih—. (7.50)
dp
The eigenstates of L., in Z-representation, are analogous to the p eigenstates and
read
1 imep
Um(p) = e (7.51)

V21

with the eigenvalue mh and r, 0 arbitrary. The prefactor in (7.51) arises due to
normalization. But the wave function must have a unique value by rotations by

an angle of 27, i.e.

Um(p = 2m) = Y (). (7.52)

This condition together with (7.51) immediately gives us

‘m € Z integer |, (7.53)

where m is from now on called the magnetic angular momentum quantum num-

ber. From this we see that again, boundary condition induces quantization.

7.4 The eigenvalue problem of L in 3 dimensions

Consider a rotationally invariant system,
[Li,H| =0, i=uz1y,z. (7.54)

Although all 3 components of L commute with H, they do not commute with
each other. This means that there are no simultaneous eigenstates of L,, L,, L.
The eigenstates of angular momentum must be uniquely characterized by less
than 3 (conserved) quantum numbers.

In order to characterize the eigenstates of a rotationally invariant system com-

pletely, we must find a maximal set of operators which

e are built out of L,, L,, L, and, thus, commute with H,
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e all commute among each other.

Obviously, the number of such operators is less than 3.

We can choose! the modulus squared of L (or length),
L?=L12+ 12+ L2, (7.55)
and the z-component L, since
L2 L]=0 ,i=uxuy,z2 (7.56)
Remarks:
e Once the "length” of L is fixed, i.e. [_:2, only one component of L can be
determined sharply in any given state.
e An operator which commutes with all operators of an algebra A and, hence,

with the whole group G, is called Casimir operator.

Example: L? for angular momentum algebra

7.4.1 Eigenstates and eigenvalues of L? and L,

The eigenstates and eigenvalues of L%and L, could be determined in position
representation by solving the differential equations corresponding to the eigen-
value equations with the boundary condition of uniqueness of the wave function,
analogous to the case d = 2 in section 7.3.

Instead we follow here the algebraic solution method, analogous to the harmonic
oscillator problem, since it will provide further insight into the structure of the

angular momentum algebra.

Let |af) be simultaneous eigenstates of L% and L., i.e.

L?laB) = alap) (7.57)
Lap) = BlaB), (7.58)

!This choice is not unique and in general there is no constructive way to find the correct

operators.
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where 5 = hm. Since the eigenvalue spectrum of L, is equidistant (see section
7.3), it should be possible to define raising and lowering operators L, L_, which

are independent of quantum number m.

Harmonic oscillator Angular momentum
[aTa,a'] = af L., L] =+hLy
[a’a,a) = —a

a', a result in raising/lowering n | Ly raises/lowers the quantum
number (3 by one unit of A
(see (7.59) and (7.60))

LlijaB) = (L.iL.+hL,)laB) = (3+ h)L,]aB) (7.59)
L.L-laB) = (L-L.—hL_)|aB) = (3 —h)L_|aB) (7.60)

The commutation rule

(L., L] = +hLy (7.61)

is fulfilled by the definition

Li=L,+iL,|. (7.62)

L. is called the raising/lowering operator. Since [E2, L] =0,1=zy,z yields,

the following commutation rule is valid,

L2, L] =0 (7.63)

It follows that the raising/lowering operators leave the eigenvalue o of L2 un-

changed, i.e.

L%Li|af) = ali|af) . (7.64)
Eigenvalue of L, (o, 5 € R):

Lefaf) = Ci(e, B, B £ h), (7.65)

which represents a ladder of equidistant eigenvalues.
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e Classical:

Component |L.| should not be larger than the length |L].

e Quantum mechanical:

(@B|L? = L2|aB) = (aB|(a— 57)|aB) (7.66)
(@B|(L: + Ly)|as) > 0, (7.67)

since L2, Lz are positive definite. Equation (7.67) is equivalent to

F<a  —Va<p<Va, (7.68)

like in the classical case.

Therefore there exists a maximum (minimum) eigenvalue G4y, Bmin Which cannot

be raised (lowered), i.e.
Lilofmax) =0  and  L_|afmm) = 0. (7.69)

Relations between o and (yax, Bmin

L Ly = (L,—iL,)(L,+1iLy) (7.70)
= L~ L*-hL, (7.71)
0=L_Li|aBmax) = (L*—L*—hL.)|afmax) (7.72)
= a— 3, — NBmax (7.73)
L.L. = L[*—L*+hL, (7.74)
0=LiL_|0Bmin) = a— B2, + hfmin (7.75)

From equation (7.73) we get the relation
0 = Bonae (B + 1) (7.76)

and from equation (7.75)

o= ﬂmin(ﬂmin - h) and ‘ﬁmin = _6max . (777)

Since |afmin) is obtained from |afnay) by applying L_ k-times, k € Ny integer,

we have

/Bmax - ﬁmin = 2ﬁmax = hk (778)
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and therefore

hk
/Bmax = 7 = _/Bmina ke NO
e (k | (7.79)

Remark:

The solution of the eigenvalue problem of L, in the representation of scalar wave
functions in position space (see section 7.3) has shown that § = hm can take on
only integer values of A.

Our general, representation-free discussion above shows that both integer and
half-integer values are allowed. The half-integer values correspond to different
representation of the rotation group, acting in the vector space of "spinors”, i.e.
vector spaces with even dimensionality d = 2,4. The integer values occur in
representations of the rotation group acting in vector spaces with odd dimension-
ality, scalar wave function d = 1, vector wave function, d = 3 etc. In nature, the
spinor representations are also realized and correspond to particles with spin, an
“internal” quantum degree of freedom without classical analogon (see chapter 9).
The more general generators of the rotation group with integer or half-integer

eigenvalues are usually denoted by J’s.

L — j: Ly — Jy (7.80)

Summary of results: Rename g —J

T2jm)y = j( + Dk|jm) (7.81)
J.|jm) = mh|jm),

with

Y

v (7.82)

0,1,2
1 3 5
5’5’5’...

-

m = j,7—1,...,—7+1,—5 for given j. (7.83)
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Therefore m can take (25 + 1) values. For the angular momentum representation

of scalar wave functions in position space, we identify

j = 1=0,1,2,... (integer) (7.84)
m = [,I—1,...,—1. (7.85)

These eigenstates |l m) defined in this way are the only ones possible.

Proof:
The steps of argumentation are analogous to the ones used in the harmonic oscilla-
tor problem. The states |l m,q,) and |l m,,;,) are unique, because the differential

equations in position space corresponding to

Lol mpmes) = 0 (7.86)
Ll i) = 0 (7.87)

have unique solutions, where

— ) wo ) N
Ly=L,*%1L, — +he < 0 + icot(d) ) , (7.88)

where we have used the definition of L,, L, in the z-basis.

7.4.2 Full determination of the eigenstates |j, m)

Once, for given j, the states with maximal or minimal m, |7, j) or |j, —j), are
determined, all other states with the same j-value are obtained by the action of
Jy or J_.

but the factors CL(j, m) are still unknown. Now we build the adjoint equation
of (7.89),

and by this obtain

(G, m|J_Jilg,m) = |CL(G,m)*Gm+1im+1) (7.91)
& (G, m| (S = J2=hJ)|j,m) = |Ci(j,m)|. (7.92)
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This yields

C(Gm)* = R[5 +1) —m* —m] (7.93)
= G -m)(G+m+1). (7.94)

By convention, we choose the overall phase factor of C'(j,m), ¢’* = 1 and get

=hi/(j —m)(j +m+1). (7.95)

Similarly, using (j m|JJ_|jm) = |C(j,m)[?, it can be shown that

C_(j,m) =hy/(j+m)(j —m+1) (7.96)
is valid, i.e.
Jeljm) = h/(GFm)(G £m+1)ljm+1) |, (7.97)

7.4.3 Matrix elements of the angular momentum compo-

nents: Multiplets

Jo +J_
G'm|J|gm) = <j’m’ *; ‘jm> (7.98)
hs
- 2 [mm-{—l\/]_ ]+m+1)
+omm /(G +m) (= m+ 1)) (7.99)
Gl = (5 %\y@ (7.100)
h s
- 2 |:mm+1\/]_ ]+m+1)
Srim VG ) —m—l—l)] (7.101)
(G'm/|T|gm) = 05 0mmhm (7.102)
G| THjm) = 80mmh?(j + 1) (7.103)

Matrix representation

o of J2/h2:
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il 0 1/2 1
m| 0 1/2 —-1/2 1 0 -1
7 m
0 0 0 0
/2 1/2 3/4 0
1/2 —1/2 0 3/4
1 1 2 0
1 0 0 2
1 -1 0 0 0
e of J,/h:
j 0 1/2 1/2 1 1 1
m| 0 1/2 —1/2 1 0 -1
7 m
0 0 0 0
/2 1/2 0 1/2
1/2 —1/2 /2 0
1 1 0o 1/v2 0
1 0 1/vV2 0 1/V2
1 -1 0 0 1/V/2 0

The matrix elements do not vanish only for m — m’ = +1.

o of J, /I
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il oo 12 172 1 1 1
m| 0 1/2 —1/2 1 0 -1
J m
0 0 0 0
12 1/2 0 i/2
1/2 —1/2 i/2 0

1 1 0 —i/V2 0
1 0 i/v/?2 0 —i/\/2
1 -1 0 0 i/v/?2 0

Notice:
Jy. Jy, J, acting on any state |j, m) leave j = constant. In the basis {|j, m)},

the J,, Jy,, J, matrices have block structure with blocks of j =constant.

e The finite rotation R(p) = e=%7 about the axis § by angle | 7] leaves
j =const. and the subspace V) spanned by {|j, 7),...,|j, —j)} is therefore

invariant under any rotation.

e Any basis state |j, m) can be transformed into any other basis state |j, m/)
with the same j by an appropriate rotation, because J,, J, are composed
of J., J_. Thus there is no invariant subspace of V).

e The representation of the angular momentum algebra, or the rotation group,
as linear transformations, or rotations, in the (25 4+ 1)-dimensional space of

angular momentum states V) is irreducible.
D: J,— D(J;)=JY (irreducible representation) (7.104)

The upper index (j) indicates that J; is acting on the j-subspace. The basis
set {|4, 7) --- |7, —J)} is called the j-multiplet of the representation.

The representation of the angular momentum algebra, or rotation group,
in a space with several different j (above matrices) is reducible, since it can

be decomposed into invariant subspaces.
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7.4.4 Angular momentum eigenfunctions in the position

basis

Ut (r,0, ) = R(r)Y;™ (0, ¢) (7.105)

The eigenfunctions of Ez) L. can be determined explicitly in the position basis
by
1. determining ;™= (r,0, ) = (i, 1)

2. repeatedly acting with L_ on {(r,0, ) in the z-basis.
Since L2 is in z-basis the angular part of V2, Y;™(0, ¢) are spherical harmonics.

1. Eigenfunctions for the case m =1
We have

(0 | . 0
Ly|l,l)=0 and Ly = £he*¥ (% + i cot 9%) (7.106)

and therefore get

o . 0 ; B
(% + i cot 9%) Yy (r, 0, ) =0. (7.107)

We proceed a factorization of the following form

%l(ﬁ 0, 90) = R(T)Y}l(a 90)7 (7108)

where the radial part R(r) is not determined by the L operators. It will

be fixed by the radial part of a rotational invariant Hamiltonian. Since
d
00
operators separately, the solution separates in §— and p—dependent parts,

equation (7.107) is a sum of terms containing the or % differential

Y/ (0,0) = Uj(0)e". (7.109)

The exponential factor has the given form since Y}'(6, ) is eigenfunction of
L, with eigenvalue [h. Plugging this ansatz into equation (7.107) one gets
a differential equation for U} (9),

(% - lcot(@)) Ul(6) = 0. (7.110)
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Separation of variables gives

dU  dsin(0)
U : sin(6) (7.111)
Ul®) = (sin(9)), (7.112)

up to normalization which can be absorbed in R. The normalized eigen-

functions are

Y0, 0) = (—1) (%;1)!%(%(9))1 s (7.113)
/dQ}Y/(@,gp)\Z = /_1 dcos(@)/oﬂdgp‘Y/(Q,gp)}z (7.114)
~ 1 (7.115)

2. Eigenfunctions for arbitrary [,m >0

1 1

Y0, 9) = W= @Y. (+m+ Dy (1 —m)

L="Y0,¢) (7.116)

20+ 1) 1 (I +m)!
Ar 20\ 2011 —m)!
dl—m (7.117)

e O, w0
V) = (YO

mep

Ymo,0) = (-1

X (sin(f))™™

since m occurs in €™ only. The functions Y;"(6,¢) are called spherical

harmonics which are normalized and complete by the algebraic construc-

tion.
/dQ }/}m'*(e’gp)y}m(e’gp) - 5ll’5mm’ (7118)
00 +1
SNV Y0 e) = Q-9 (7.119)
=0 m=—1

where Q = (0, ¢).
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Any wave function ¢(r, 0, ¢) can be expanded in the Y;™ with r-dependent coef-

ficients,
U(r,0,0) = Z R (r o). (7.120)
=0 m=-I

This will be used in the solution of Hamiltonian eigenvalue problems with spher-

ical symmetry. From orthonormality we get

RP(r) = / QY™ (0, ) (r,0, ). (7.121)

Some spherical harmonics

1
[=0: YY) = y (7.122)
3 )
I=1: Y = F gsin(Q)eiw (7.123)
YO = /2 cos(0 7.124
D= g cos(®) (7.124)
1=2: Y7 = 15 in2 get2ie (7.125)
' 2 321 '
1 .

;i = 8—58111(9)608(9)6:‘:“0 (7.126)

m

5
Yy = 1671'(3608(9)_1) (7.127)

The spherical harmonics are related to the associated Legendre polynomials P (cos(0))

via

Yy (6, 0) = \/EENEmE(_yymeime pn(cos(9)) |, (7.128)

where the P? = Pj(cos()) are the Legendre polynomials. Recursion relations for
Y, P/ can be proved using their algebraic structure as eigenfunctions of Ez) L,.

The following 3-dimensional plots? show the angle-dependent value of Y;"(6, ¢).

ZPlots available at http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D /java_script/

SphericalHarmonics.html
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Figure 7.3: Spherical harmonics for [ =0,m =0and [ =1,m =0

Figure 7.4: Spherical harmonics for [ =1,m =+l and [ =2,m =0
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Figure 7.5: Spherical harmonics for [ =2, m = +1 and [ = 2, m = £2
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Chapter 8

The Hydrogen Atom

8.1 Solution of rotationally invariant problems: gen-

eral properties

e Separation of center-of-mass motion
System of 2 particles my, my, moving in a potential V(r) depending only

on the distance r = |7, — 71| of the particles.

Figure 8.1: Two body problem in a radial-dependent potential

Relative and center-of-mass coordinates:

7_" = 772—7_"1, ’f’:|’f_"2—771| (81)

- my + mafs

B o= ~Atruere (8.2)
mi + Mo

141
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Separation of free COM motion:

h? 02 ﬁ .
_2(m1 n m2) 0R2 'QDCOM(R) - ECOMQ/]COM(R) (83)

Relative motion:

Particle of effective mass p in a central symmetric potential V' (r)

e Separation of angular motion: radial Schrédinger equation

Kinetic energy in spherical coordinates:
— 2
— — — — r —
p2=m2+m?=pf+[;X4, (8.4)

where the second term is the component of p" which is perpendicular to 7

and therefore unimportant for the squared absolut value.

1~
22 o2 2
with
L? = L2+ 12+12 (8.6)
1 0 0 1 02
= —R? —sin(f)— + ———— 8.7
Lm(e) a9 056+ sm29&p2] (8.7)
10 ,0
5. = W= —ri—. 8.8
P 2o or (8.8)
The Schrodinger equation in spherical coordinates therefore reads
1o ,0 L2
I V()| eun(r. 6.
2 r? ar' or 2ur? V)| Vem(r,6,¢) : (8.9)

= E¢Ezm(7¥ 0, <P)
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where the term 2’2—:2 is the centrifugal potential. Since the Hamilton oper-
ator H is a sum of purely radial and angular derivative terms, the solution
separates into radial and angular parts, with the angular part being an

eigenfunction of L2

Ve (r, 0,0) = ReY;" (0, ¢) (8.10)

Degeneracy of the solutions
Since H does not depend on L., the ¢ g, must be degenerate with respect
to m. By [H, Ly] = 0 we obtain

H¢Elm = EYpimnm (811)
< HLiYpm = ELiVpm (8.12)
© HYpmer = Evpima. (8.13)

The square of the angular momentum operator reads in spherical coordi-

nates

-

L? = L2+ L+ L2 (8.14)

= —h* || sin( )g—l—cos( )cot&3 2
- 796 LR

0 o\ o
+ <—Cos(g0)%+sin(g0) cotQ%) +8—g02 (8.15)

o2 0 0
_ 32 a2 2
= —h {sm T + cot” 6 <cos(g0)—&p cos(go)—&p)

. 0 0 J . 0
+ sm(gp)% cos(¢) cot 9% + cos(ip) cot 9% sm(gp)%

2

o 0 0
2 2 : o« -
+ cos Yog + cot” 6 <sm(go)ag0 sin(ep) &p)

0 . 0 . 0 3}

— cos(go)% sin(y) cot 9% — sin(¢p) cot 9% cos(go)%
82
— i

+8802} (8.16)

02 o2 0 0?
2 2
+ 1
0 [ 92+cot 0—— + cotd 0 2} (8.17)

1 o . 8 1
= — — . 1
h Lin(@) 005 T e a2 (8.18)
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Radial part of the Schrédinger equation

210 ,0 R1+1)

:[_g(g5§§)+ﬁ%gﬁ+wﬁ3mm (8.20)
= ERp(r), (8.21)
since
E (%U(m) (8.22)
= U+ e L) (8.23)
= —%%UjL%%UJF%j—;U. (8.24)

We define Rp(r) =: 2Ug(r) and then obtain

2 I(l+1) 2
gy )| e ==

2uE
72

Un(r) | (8.25)

This equation is similar to 1the one-dimensional Schrédinger equation, but

— repulsive centrifugal potential ~ l(lr%l),

- 0<r<om.

We therefore have to take boundary conditions for r — oo and r = 0 into

account.

e Limiting behavior of Ug(r) for r — oo
The central potential shall be localized, i.e. V(r) — 0 for the case r —
0o. We then get two types of solutions, a bound state for Ug; — 0 and
a scattering states which is unbound and asymptotically free for Ug ~
e+ The scattering states will be considered in a later chapter (Scattering

theory). Hence, we will consider only bound states.

e Boundary condition for » — 0

We assume that V'(r) is less singular than %2 for r — 0, because otherwise
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the problem would be dominated by V (r) for » — 0, and the » — 0 solution
would depend on the details of V' (r). The radial Schrédinger equation in
the limit » — 0 reads

[d2 I(1+1)

dr? r2

} Ugi(r) = 0. (8.26)

We make the ansatz

U ~r®, (8.27)
with
ala—1) = I(+1) (8.28)
a = {l__ll—l (8.29)
i) ~ { ) 8.30)
Note:

These two types of asymptotic solutions are the only ones possible, since a
differential equation of second order has two linearly independent solutions.

l

The irregular solution r~" is excluded on physical grounds, or precisely

because of normalizability.

Ro RO
/ dT 7,27,—2(14‘1) — / dfr rz‘R('r)P < 0 (831)
0 0

only for I = 0,1,... because the probability density |R(r)[> ~ |r=(+1)?

would otherwise diverge.

8.2 The hydrogen atom

8.2.1 The energy eigenvalues

The effective mass p is defined by

myMe
=P ~ =m, 8.32
1 pr—— my, =m ( )
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where m,, is the proton mass and m, the electron mass which are in the ratio
my/me ~ 2000. The radial Schrédinger equation was given by
2 I(l+1) 2u

2 V) = E) Un(r) =0, (8.33)

Vir)= -2 (8.34)

In this chapter we will only consider solutions with £/ < 0. The region with
E<V(r),ie r> _6—2E, is classically forbidden, so that we expect exponentially
decaying solutions for r — oco. In the following we want to derive the bound

states of the system.

For
e? hzl(H—l)
— E _ FE 8.35
-<lE, o < (5.3)
we have
a?  2u
UEl(T) ~ e (THOO) (8.37)
Upi(r) ~ o (r—0), (8.38)
where

K= 7”_2’”3 (8.39)

Now we introduce the natural dimensionless variable o, defined by

V24| E| (8.40)

o

Q:K’T:

The quantized binding energy |E| will be determined by the boundary conditions,

like in any bound state problem.
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We make a power series ansatz for Ug(r),

Ugi(r) = vm(o)e®

vm(e) = o) Cid
k=0
Plugging this ansatz into equation (8.33) yields

v _dv e\ I(l+1)
) S kA -
do? d9+»[9 0* ]U >

[ 2
A._,/hm.

with

147

(8.41)

(8.42)

(8.43)

(8.44)

Using the power series ansatz (8.42), analogous to the harmonic oscillator, gives

[e.e]

0 = Y {Culk+ 1+ )0k +1) -1+ 1) 0

k=0

Cr [-2(k + 1+ 1) + 2] 81}

[e.e]

_ Z{Ck+1[(k+l+2)(k+l+1)—l(l+1)]

k=0
+Cx [2(k + 1+ 1) + €] o™+

By this we get the recursion relation

—2A+2(k+1+1)

Ch+1 = Ck(

k+l+2)(k+1+1) —1(+1)

Note:

(8.45)

(8.46)

(8.47)

For the one-dimensional harmonic oscillator there is a 2-step recursion relation,

leading to a purely even or odd power series, reflecting parity eigenfunction. For

the three-dimensional problem of the H-atom, the parity operation ¢ — ¢ + 7,

0 — m — 6, is not reflected in r. Therefore, the power series in 7 has no definite

parity here.
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In the limit £ — oo we get

1
Chil = 2Ck — E(Qg)k = A+e*. (8.48)

An infinite series would lead to diverging solution, so that the series must termi-

nate at some finite k for which ¢,y = 0 is valid.

EXN=2k+1+1) (8.49)
or
4
ne
E=- 8.50
2R (k +1+1)% (8.50)
with
k= 0,1,2,... (8.51)
[ = 0,1,2,.... (8.52)

From this we can see that the energy eigenvalue is quantized. Since E depends

only on n =k + 1+ 1, we can choose n as the relevant quantum number, i.e.

4
pe® 1
E,=-"F—, 8.53
2h? n? (8:53)
where the factor ue?/2h? is known as the Rydberg-unit which has the numerical
value
1Ry = 13, 6€V. (8.54)

8.2.2 Degeneracy of the energy states n

1. The energy eigenvalue E,, does not depend on the magnetic quantum num-

ber m for the following reasons.

H,L,,. = 0 (rotational invariance) (8.55)
[H,L.] = 0 (8.56)
Hy, = Eu, (8.57)

= HL.tp, = E,Lit, . (8.58)
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Therefore we have degenerate multiplets of states, i.e. that the energy

eigenvalue F, has for given n,[ the same value for
m=10Ll-1,...,—, (8.59)
so that each state (n,l) is (20 + 1)-fold degenerate.
2. The energy eigenvalue F),, does not depend on [, although the radial Schrodinger

equation does.

There is another raising/lowering operator M. which increases/lowers [ —
[ £ 1, with [H, My] = 0, i.e. My are the generators of another, hidden,
symmetry group. It is related to the conserved Runge-Lenz vector in clas-
sical mechanics. This degeneracy is a speciality of the Coulomb %—potential
("accidental symmetry”).

For other potentials the recursion relation would be more complicated, in-

volving more than 2 ¢;’s, and E would depend on n, [.
3. For given n the angular momentum quantum number [ takes the values
l=0,1,....,n—1, (8.60)
and for fixed £k = n — [ — 1 the magnetic quantum number takes the values
m=+l,...,—L. (8.61)

Total degeneracy of an energylevel F,

n—1

> (@2+1) :2-%(n—1)n+n:n2 (8.62)

=0

Hydrogen energy spectrum and spectroscopic terms

8.2.3 The hydrogen eigenfunctions: summary

The eigenfunctions were given by

wnlm(r> 97 SO) = Rnl("ﬂ)YEm(ej So)a (863)
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E/Ry )
| = 0 1 2 3 4 5
s p d f g h
- T n=2
I - — n=1

Figure 8.3: Energy spectrum of the hydrogen atom

and the energy eigenvalues by

4
g _etl
2h2 n?

where the principal quantum number takes the values n = 1,2, 3,

solution was given by

n—I[l—1

1
Ry(r) = EUnl(Q) =0 ) e
k=0

. _ . —eAA+2(k+1+1)
MU i)kl D) — I+ 1)

(8.64)

.... The radial

(8.65)

where the starting coefficient ¢q is determined by normalization. Furthermore we

had introduced the following shorthand notations,

_[2p|E]
KR = h2

and

with

(8.66)

(8.67)

(8.68)
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which describes the Bohr radius which again is related to the characteristic "size”

of the H-atom. Another representation of the radial solution was derived as

r __r
Ry(r) = L2 (Qn—ao) e o (8.69)
with
n—Il—1
L2 (200 =0 ) et (8.70)
k=0

being the Laguerre polynomials, which are defined by a differential equation or
by a recursion relation for c;. Summarizing these results we write down some of

the eigenfunctions explicitly as follows,

Yoo = (%)26_"% (8.71)

Tag

1
1 2 r __r
= 2—— 2a 8.72
V200 (3275‘8) ( ao) e =0 ( )
Y L \ir o () (8.73)
= —e %% Cos :
210 32wad ) ag
1
Yo1x1 = F Ly LT sin(6) e (8.74)
64rad ) ag '

etc.
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Chapter 9

Spin and Magnetic Moment

9.1 Spin and SU(2)

In chapter 7 we have found the irreducible representations of the rotation group.
They correspond to the rotations R in the space spanned by the angular momen-

tum eigenstates |j, m) with fixed j, e.g. J, in the eigenbasis |7, m).

Irreducible representation of the rotation group

j 0 1/2 1/2 1 1 1
m| 0 1/2 —1/2 1 0 -1
i m
0 0 0 0
/2 1/2 0 1/2
/2 —1/2 /2 0
1 1 0 1/v2 0
1 0 1/vV2 0 1/V2
1 -1 0 0 1/V/2 0
1. SO(3)

If the eigenstates |j, m) are taken in the Z-basis, then these transformations

153
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are the rotations of the wave functions in position space, and j can, by

construction, only assume integer values, j = [ (see chapter 7).

with
Q=(0,¢), j=1=01,2,.... (9.4)

The rotation group is the Special Orthogonal group with 3 (real) symmetric
generators, called SO(3), with

det R =1, ||v)| = const. (9.5)

SU(2)
The eigenstates |j, m) can also be in an abstract vector space, without
relation to #-dependent function. Then half-integer and integer values of j

are allowed, corresponding to even- and odd-dimensional representations.

e 2-dimensional representation: j = %, m = :I:%
We have explicitly calculated the generators in the 2-dimensional .J2,

J, eigenbasis:

1
Ji = §hak, k=uxuy,z, (9.6)

where

01 0 —i 10
U“"”Z<1 0)’ Uy:(z’ 0)’ UZZ(O —1) 57)

are the Pauli matrices, which can be combined as a vector like ¢ =

(0s, 0y, az)T.

Properties of the Pauli matrices
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(a) o2 =0, =02 =1
(b) 0,0, =i0,, 0,0, =10y, 0,0, =10,
(¢) [o4,0y] =2i0,, 0., 0, =2i0y, |oy,0,]=2i0,

The general rotation operator in the |3, m) basis is:

U@@) = exp (-%(07-5)) (9.8)
— 1/ 1_\"

= ZO o (—ziaa) (9.9)

= cos(a/2) —isin(a/2)(a-d), (9.10)

where @ represents the rotation axis and angle since,

—

a-0 = 0,0, +au0,+a,0, (9.11)
a-0) = oyl —ioya,o, +io0,0,

+iogayo, + ai[ — 10,0y Oy,

— 1000y + 10 0,0, + o1 (9.12)

= |a]*I (9.13)

(@-&)* = |a*™I (9.14)
(@) = |a*"T(@- ) (9.15)

The rotation group is the Special Unitary group with 2 (complex
hermitean) generators, called SU(2), with

detU =1, ||v)| = const. (9.16)

The generators explicitly read

1 0 o u*
() (o) .

By construction SU(2) and SO(3) have the same Lie algebra, the
angular momentum algebra. There is a group homomorphism, which
maps each element of SU(2) to an element of SO(3):

h: SU@2) — SO@3) (9.18)
U@ — R(a) (9.19)

The mapping is defined by the following properties.
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U(d) is an arbitrary SU(2) transformation in the 2-dimensional
space spanned by {|3, m = £3)}
U(d) transforms the Pauli matrices in such a way that any vector

in the 3-dimensional space spanned by o, 0y, 0.,

-

o(b) == byo, + byo, + b0, (9.20)

is rotated by R(d). The Pauli matrices can be seen as cartesian

basis vectors of a 3-dimensional vector space.

Proof:

By components we get
U(ae,)o, U (ae,) = cos(a)o, +sin(a)a, (9.21)
U(ae,)o,U'(ae,) = cos(a)o, —sin(a)o, (9.22)
Ulae,)o.Ul(ae,) = o. etc., (9.23)
[cos(a/2) — isin(a/2)o,|o, - [cos(a/2) + isin(a/2)0,]
= [cos(a/2) —isin(a/2)0,] - [cos(a/2)o, + isin(a/2)0,0,]
= [cos(a/2) —isin(w/2)o,] - [cos(a/2)0, + sin(a/2)o,]
= cos’(a/2)o, + 2sin(a/2) cos(a/2)o, — sin®(a/2)0,
= {[cos(a)o, + sin(a)o,] - [cos(a/2) — isin(a/2)0.]|}o,
x[cos(a/2) +isin(a/2)0,]
= {...}[cos(a/2)o, — sin(a/2)o,]
= cos’(a/2)o, — 2sin(a/2) cos(a/2)o, — sin*(a/2)a,

= cos(a)o, —sin(a)o, etc.

Furthermore we can follow that

UeSUQ2) < -UeSU(2), (9.24)

since

det (—U) =1 (9.25)

in the 2-dimensional representation, and

hU)=R < h(-U)=R (9.26)
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yield. Therefore for each R(&) € SO(3) there are exactly 2 elements
+U(d), which are mapped onto R(&) by h.

But +U(d) and —U (&) are equivalent,

U@) = cos (%) [ —isin (%) @-) (9.27)
_U@) = cos (O‘ 22”) I
—isin (O‘ z%) @ - &) (9.28)

Physical meaning:
. . 1 1
of the abstract Hilbert space spanned by {|j = s =5, m = £3)}.
(a) s =3 is an allowed representation of the rotation group.
(b) m = =3 is realized in nature as an internal, abstract degree of

freedom of certain particles (electrons, protons, quarks;...)

(c) It has no classical analogon.

(d) Since the |3, +1) state transforms according to the rotation group
SU(2), s = 5, m = %1 is best visualized as an internal angular
momentum of the particle, and is called spin of the particle.

(e) However, the analogy is not complete because of the half-integer

value j = %h and the spin eigenvalue of ﬁ, 5 = %, which cannot
1

be changed in contrast to the orbital angular momentum [. s = 35
is therefore a quantum number characteristic for the particle, like
mass or charge, or |%, 1, \%, 1)

(f) The vectors in the {|3, £3)}-space are called spinors,

( ¥y (7) ) | (9.2
V()

where the 7™-dependence not necesary.
e 3-dimensional representation of SU(2): s=1, m =0,+1
The 5 = | = 1 representation is realized by the rotation of wave
functions Y;"(6, ). It can also be realized as a 3-dimensional repre-

sentation of SU(2), acting on a 3-dimensional spinor space,

—\

Py (7
wO(F) s s = ]-7 ms = 1a07 —1 (930)

Y1 (7)
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The 3-components are not identified with the orbital angular momen-

tum m, but with the internal m,.

Generators (see chapter 7)

. 010
S, = —— 1 01 (9.31)
2
V2 010
0 — 0
S, = f i 0 7 (9.32)
, = — — .
2
V2 0 ¢« O
1
S, = h 0 (9.33)
—1
Note:

These matrices do not span all 3-dimensional hermitean matrices.

There also exists an alternative basis for the generators.

The 3-dimensional representations of SU(2) are the rotations acting on
vectors (or vector fields) in 3-dimensional space. The most prominent

examples of vector fields are gauge fields /_f,
(ﬁ— Eg) , (9.34)
c

in particular the electromagnetic vector potential A. The time com-
ponent ¢ of the 4-vector A* is not relevant here, since we consider
only rotations in position space. All vector fields carry a spin s = 1,
mg = 1,0, —1, as an internal degree of freedom, in addition to angular

momentum.

Examples:

(a) Gauge fields

(b) Photons, particles of the electromagnetic field, which have spin 1.
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9.2 Magnetic moment

When a magnetic field B is present in a system, we can calculate from the
Schrédinger equation, how the angular momentum L couples to B and hence,
what is the magnetic moment M related to L. In this case the Schrodinger

equation reads

[i (*— %e,af)z +V(r)

where —e is the elctron charge. Now we consider the kinetic term and derive the

() = Ep(r), (9.35)

squared brackets.

o \2 . R 2
(ﬁ— —eA) = 72+ SpA+ S+ (5) A° (9.36)
C C C C
_ ﬁ2+f[—z’7ﬁ£+£ﬁ]
C
— 2 —
+S A5+ (5) A (9.37)
C C

where the quadratic term in Ais neglected for small A.

— —

B=[VxA4 = /T:—%[Fxé}, (9.39)

for B =const. on a scale of ¢(7). We then get

— ]_ —
iy = —5lrx By (9.40)
1 —
1 - =
- SBL (9.42)

—— T = ——BL+V ) = Ry(r 9.43
2m r? 8rr or  2mr?2  2mc V() | () Y(r), ( )

with
_° BL=5-M. (9.44)
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e Since the energy of a magnetic moment M in a B-field is given by V =

—EM, we assign the magnetic moment,

. eh L L
_er L L 4
M=o =Hupg, (9.45)

to the angular momentum L. Furthermore we define

%
o = 5— = 0.58- 10—8% (9.46)

as the Bohr magneton.

Magnetic moment of spin
At the present state of our theoretical development it is not obvious that a

magnetic moment is connected with the internal spin degree of freedom.

When quantum mechanics is formulated in a relativistically invariant way

(QMII, Relativistic quantum mechanics), the ezistence of spin, its value

1

for electrons, s = 3, and its magnetic moment follow as a necessary conse-

quence.

The result is:

M = gup : (9.47)

St Uy

where ¢ is the Landé factor which has for electrons in vacuum the numerical

value
g~ 2. (9.48)

Due to vacuum fluctuations corrections must be taken into account, such
that:

g = 2-(1.001159652140(£28)) theory (9.49)
2+ (1.0011596521884(+43))  experiment (9.50)

The measurement of the g-factor is used as a precision test on quantum
field theory.
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9.2.1 Normal Zeeman effect

The spectrum of atoms in a magnetic field B is measured by optical spectroscopy.

e For B =0 the (21 +1) states |I, 1), |I, I — 1), ..., |l, —=I) are degenerate.

e If we choose the z-axis parallel to the magnetic field g, we get for B #0

R1d,d R+
“omiadg %+72mr2 — uMB | Vi (7)

where m is the magnetic quantum number and ppmB is equal to ugBL, /h.
The (20 + 1) states split in a magnetic field with

AE,(B) = —ugmB | (9.52)
and
m=1... -l (9.53)
m
E | 2
1
1=2 0,
E,(B=0) B
1
2

Figure 9.1: Splitting of atomic spectral lines into equidistant ,multiplets®

Analogous splitting of spin states

(9.54)

AE,,(B) = —gupmB

with m = +£1/2.



162 CHAPTER 9. SPIN AND MAGNETIC MOMENT



Chapter 10

Addition of Angular Momenta

Now we want to treat the problem of adding several angular momenta to one

total angular momentum.

e A particle may have orbital angular momentum and spin, e.g.

URN (10.1)
¥y (7)
e Two or more particles with angular momentum and/or spin, e.g.
() (7). (10.2)

Each angular momentum [;- or spin s;-degree of freedom corresponds to its own
(2l; + 1) or (2s; + 1) - dimensional Hilbert space. We consider only the case of 2
angular momenta j;, jo, where each one can be either orbital angular momentum,

[, or spin, s.

The total Hilbert space is the direct product space of the Hilbert spaces for

each ji, Ja,
H=H, oH,. (10.3)
A basis set of H are the (277 +1) (2j2+ 1) - dimensional product states, product
basis, with m; = ji,.., —j1, M2 = ja, .., —Jo,
|jima) ® |jama) = |jima, j2ma) (10.4)
TP jvma,jama) = B2 (ji + 1) | juma, j2ma) (10.5)
(i) [ jima, jamae) = hmg|jima, jams) (10.6)

163
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The total angular momentum operator is the sum of the individual angular mo-

mentum operators due to the correspondence principle,

J=501+1 .. (10.7)
This is a sum of direct products of operators where fl is acting on the Hilbert
space of angular momentum 1 and where the identity 1 is leaving states in the
Hilbert space of angular momentum 2 invariant.

In the following we will use the shorthand notation

T =T+, (10.8)

where the direct product is tacitly understood. We have

[J]m, le] =ih székl, k‘,l = 1, 2 (109)
such that
oyl = Y [kesJe] =ih Y Jpe = ih, (10.10)
kl=1,2 k=1,2
(., Ju] = ihd, (10.11)
[y, J.] = ik, (10.12)
Problem:

What are the eigenstates of the total angular momentum J2,.J,?

10.1 Example: Two spins s; =

1
S;i = =, m; =
2 _

(10.13)

Il
— —

N N [=
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The product basis in the ket-notation reads

11,2) = [s1, m1;52, ma) (10.14)
1,1 = % %; % 3/ (10.15)
LD = I3 59 ) (10.16)
LT = I%, —%; % %) (10.17)
L1 = 15 55 ) (10.18)

which becomes in coordinate representation of the product basis

1
0

o=, (10.19)
0
0

Ly = |} (10.20)

) - 0 .

0
0
0

L= (10.21)
0
0
0

Lb =1, (10.22)
1

What are the eigenstates and eigenvalues of 52 = (51 + 52)2 and S, =
Slz + SZZ?
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By definition, S, is diagonal in the product basis so that we get

S:111)

S| 1) =

S =
Sl L) =

(S1z + S22)| 1) (10.23)
n(5+3) 11D =l (10.24)
n(5-3) 1= (10.25)
0/ 17) (10.26)
—h| 1]). (10.27)

In coordinate representation (product basis) we then get

S, —h

"
1
0
0

0

o o oz

0

o o o5

0

1

0
0
—1

, (10.28)

which is obviously diagonal. The eigenvalue S, = 0 is twofold degenerate, since

it is realized by the configurations | T]) and | [1). Since

2= (S +5,)2=5+52+25,-5, (10.29)

and
[52,53] — 0 i=1,2 (10.30)
[52,52-2] = 2 [51-52, 3 ] 40 i=1,2 (10.31)

are valid, we cannot expect that there is a simultaneous eigenbasis of S? and S,

In coordinate representation (product basis) we also get

2 s B2

S O O N
O R = O

O = = O

: (10.32)

o O O

[\

which is diagonal, too. The product states | 11), | |]) with all m; equal are
cigenstates of 2, the "mixed” states | 1), | | 1) are not.
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52 can be diagonalized in the m = 0 subspace {| 1), | |1)} with eigenstates and

eigenvalues.
s=0m=0) = L ([11)—]11)) (10.33)
s(s+1) = 0
s=Lm=0) = % (|10)+]11)) (10.34)
s(s+1) = 2

The arbitrary phase prefactor is by convention chosen to be 1. Hence, we have
the 4 states with well-defined total s, m.

1
[00) = E(ITU—HT)) (10.35)
11) = [11) (10.36)

1
[10) = ﬁ(llTHllT)) (10.37)
[1-1) = [1]), (10.38)

where the state with s = 0,m = 0 is a singlet and the states s = 1,m = 0, +1
form a triplet. The product space is therefore decomposed into subspaces with

well-defined s, i.e.

11
ez =100 10.39
5 ®5 =10 (10.39)

The 1 represents a triplet and the 0 represents a singlet.

e Checking the degeneracy yields

2.2=3+1. (10.40)

e Analysing the symmetries results in an antisymmetric singlet and a sym-

metric triplet. (— Pauli’s principle, He atom ground state)

e Which basis to choose?
For

4 5.3a 52
H=—-¢g-— B(SH 4+ 35 10.41
95 (S +5) ( )
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one can see that
SIS (10.42)

is a good choice and for

H =050 — g (G2 — P _ ger (10.43)

one should choose the basis

S, S.. (10.44)

10.2 Generalization of 10.1

e J, diagonal in the product basis

e The naiv method is to diagonalize jz) but a better method is to use the

raising and lowering operators.

e Possible values of j

The maximum values of j are given by

Jmax = J1 + J2 (10.45)
and

Jmin = |1 — Jol- (10.46)

Checking the degeneracy here gives

hiz (2j+1) = f: 2(j1—jo+k)+1 (10.47)
J=j1—J2 k=0
= 2U1—J2)+1)(22+1)
+2J2 (272 + 1) (10.48)
= (21 +1) (22 +1). (10.49)

Example: % ® %

At first we consider the case s = 1.

1 =[11) (10.50)
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This state is by phase convention properly normalized (Gordon-Shortley). On

the one hand we have
S_|11) =v2h|10) (10.51)
and on the other hand

(SYW SNy =R 1) +]11)) (10.52)
so that we get

1
|10) = 7 ([T +11). (10.53)
The state |1, —1) = | |]) is obvious, but can also be calculated as follows,
S_[10) = hV2[1-1) (10.54)
M g2y L _
(5= +52) 5 (1T +111) V2n| |l), (10.55)
i.e.
|1, =1) =1 []). (10.56)

Now we consider the case s = 0. The state |00) has to be a linear combination
of all states which fulfill m = 0, i.e. here

100) = Al 1)) + B | 11), (10.57)

which indeed has m = 0. The normalization finally yields
1

_ ) 10.58

7 ([T =111)) (10.58)
Checking that there is really no other possible state gets us

S£|00) =0, (10.59)

like expected.

We can formulate this procedure in a more general form. The maximal state
is given by

| J1 + G2, 1+ J2) = [J1 1) ® | 2 j2)- (10.60)
From here on all states with 5 = j; + jo can be generated by the action of J_.

The orthonormality condition gives us
|j1+d2 =1, ju+ g2 = 1) L | g1+ jo, i +j2 — 1), (10.61)

i.e. that only two terms can appear in linear combinations.
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10.3 Clebsch-Gordon Coefficients

It is desired to construct from the basis

|J1 M0 j2 ma) = [j11ma) |J2 ma) (10.62)

the eigenvectors of .J,, J% which form a new basis. What we want to do is nothing
else but a change of the basis. Since J? and J§ commute with every component

of j, we, hence, obtain
[Jz,Jf] - [Jfrﬂ - [ﬁjﬂ - [ﬁjg] —0. (10.63)

The eigenvectors of J, and J?% can be required to be simultaneously eigenvectors
of ff and J? also. At this point it is to stress that J2 does not commute with
J1, or Jo,! In the subspace of the simultaneous eigenvectors of flz and J§ with

eigenvalues j; and j, respectively we can write the transformation equation

[ Jm,duga) = Y | dima jama) (jima jama| jm i ja), (10.64)

mima2

which connects the two sets of normalized eigenvectors. The problem of adding
angular momenta is thus the problem of determining the transformation coeffi-

cients

(J1ma 2 ma| jm g1 j2). (10.65)

These elements of the transformation matrix are called vector addition or Clebsch-

Gordon or Wigner coefficients.

Now we apply the operator J, = Ji, + Jo, to (10.64) and get

Jo[jm, jij2) = mh|jm, ji j2), (10.66)
and

(Jiz + J22) [ Gm, g1 j2) = (ma 4+ mo)h|jm, ji ja). (10.67)
By this we can conclude the condition

m = my +ma, (10.68)
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because otherwise the Clebsch-Gordon coefficients vanish. Doing the same with

the operators J, and J_ yields after some lengthy calculations the condition
1= J2l <7 < i+ e (10.69)

One of the most useful symmetry relations for the Clebsch-Gordon coefficients

reads

(J1m1 jama| jm ji ja) (10.70)
= (=177 =Gy my jymal G ga i) (10.71)
= (jo —majr —mulj —mj2j). (10.72)

Another useful relation for the transition from j,msjm to j, —m, jo, —mo is

given by

. 2j + 1
e ) Y 10.73
(1 [ (10.73)

Since the Clebsch-Gordon coefficients are real, the transformation matrix is or-

thogonal. Furthermore m; = 7, is positive by phase convention.

The closed formula finally reads

(J1m1 Jamaljm ji j2) (10.74)

_ \/ (25+1) (G1+a—i)! (j1—ma)! (G2—m2)! (j+m)!
G172+ (G1—g2+9)! G2—g1+)! (G1+m)! (G2+m2)! (j—m)!

j—m
X(Sm, S Z(_l))l—nﬂ—n (]—nm)
n=0
X (J1t+mi+n)! (2+j—mi—n)! (1075)

(j1—m1—n)! (2—j+mai+n)!”

This becomes in particular,

o e 251)! (2541)!
<j1 J2J2] — .]1‘.].]> = (j1+j2(_,_]j13_1()!j(;_)j2+j)1' (1076)
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Chapter 11

Time-Independent Perturbation

Theory

Most, Hamiltonian problems are not exactly solvable, because the potential is too
complicated. This and the following two chapters are devoted to approximate

solution methods.

e Perturbation theory
Problems where there is a small term, a perturbation, in the Hamiltonian,
such that without this term the problem is exactly solvable. The theory
provides an approximate solution in the form of a systematic (Taylor) ex-

pansion in powers of a small parameter.

e Time-independent perturbation theory
In this case the perturbation is time-independent. The theory provides
a power expansion of the eigenstates and eigenenergies of the complete

Hamiltonian.

e Time-dependent perturbation theory
Here, the perturbation is explicitly time-dependent. In this case, stationary
eigenstates of the complete Hamiltonian do not exist. The theory provides
an expansion of the time-dependent eigenstates in terms of the (station-
ary) eigenstates of the unperturbed Hamiltonian. Thus, it describes how a

time-dependent perturbation can induce transitions between the stationary

173
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states of the unperturbed Hamiltonian. Further developments of this the-
ory allow also to describe particle-particle interactions, since one moving,
e.g. charged, particle provides a time-dependent potential for the other

particle.

e Non-perturbative methods

Variational methods and theories, WKB approximation

11.1 Time-independent perturbation theory: For-

malism non-degenerate Perturbation theory

The total Hamiltonian now includes a perturbation operator, i.e.
H=H"+\V, (11.1)

where H° is the unperturbed Hamiltonian with orthonormal eigenstate basis
{|n®)] n = 1,2, ...}, which is assumed to be known, and AV is the perturbation,
which is supposed to be "small” in a sense to be specified later. For the parameter

A we claim
AER, A< 1, (11.2)

e.g. the potential strength in units of some characteristic energy. A is the formal

small parameter of the expansion.

The exact eigenstates and eigenenergies of H , expressed in a perturbation se-

ries, i.e. power series in A, read

Iny = |n°) + |nt) 4+ |n?) + ... (11.3)

E, = EC+E +E*+ .., (11.4)
where

In*) ~ AP R AR (11.5)

The |n*), EF are determined by comparing the coefficients of the expansion in

each order \*.
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1st order:  Keep terms up to O(\!)
(H°+AV) [In%) + [n') + ON*)] = (B, + E, + O(\)) [In°) + In') + O(A\) ]
HOIn"y + AV |n%) = EX|n') + E} [n°) + O(A?),
because O(\°) fulfills
HY |n%) = E°n?). (11.6)
a) Correction to the eigenenergy
Since |n") is normalized, i.e.
(n°|n% =1, (11.7)
we get by multiplying equation (11.6) by (n°|
(n’[H|n") = Ep(n’[n’) (11.8)

and

El = (n®AVn®) |- (11.9)

This is a first order correction to the energy eigenvalue. This correction is,
as demanded, linear in A and it involves only eigenstates of the unperturbed

Hamiltonian.

b) Correction to the eigenstate:

We make an expansion in {|n)} as follows,

n') =" |m°)(m°|n"). (11.10)
Assuming

E° £ E°  Ym #n, (11.11)
i.e. we apply a non-degenerate perturbation theory, we get by multiplying
equation (11.6) by (m?|

(m°|H°|n') + (mP| AV |n®) = (m°|E>|n') (11.12)
& B2 (m°nt) + (mO AV |n°) = EX(m°n'). (11.13)
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Figure 11.1: Vector representation of the eigenstate

The expansion coefficients for m # n therefore are

_(mP|AVn®)

(mIn') = (11.14)

The expansion coefficient for m = n and a,, = (n°|n!) is determined by the

normalization of the total eigenstate, up to order O(A!).

) = [n") +[n') +O(\?) (11.15)
= (Lt a)®) + > |m®) (11.16)
m#n
(nn) = N+a,l*+> '(;o'*g'ﬁ ik (11.17)
m#n

= |1+ a,]* +0(\?) (11.18)

= 14|an)* +a, +a (11.19)

= 1+0(\) +a,+a; (11.20)

= 1400 (11.21)

By this we get
a, =i, o €R (11.22)
and

1+a, =+ 0(\). (11.23)
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The component of |n') parallel to the unperturbed |n°) is only changed by
a phase factor in O(A!). We can therefore multiply |n') by an overall phase

factor, i.e.
In) — [n)e ™ = )+ Z Im?) 0|W|"
m#n
x(1— ia+0()\2)) (11.24)
= |n + Z | OI)‘V|"
m#n
x (1 —O(\) +0(\?)). (11.25)

We then get the first order correction to the eigenstates as

0 n
)+ > m®) AR (11.26)
m##0

This correction involves only eigenstates and energies of the unperturbed
Hamiltonian H® and up to the order O(A!') the component of |n') parallel
to the corresponding unperturbed |n°) is not changed by the perturbation.

Furthermore
n') L |n%) (11.27)
is valid.
2nd order:
(H° +AV) [|n%) + [n!) + |n®) + O(N?) ] (11.28)
= (EY+ E} + EX) [|n°) + |n) + [n?) ], (11.29)

which is fulfilled in O(\%), O(A!) by construction of E! |n'). We only

consider terms of second order, i.e. O(\?).
HO |n?) + AV |n') = EY |n?) + E} |n') + EZ |n°) (11.30)
By multiplying this equation by (n°| and paying attention to the relation

(n°|n") =0, (11.31)
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we get
(n°|H[n?) = EO(n°[n?), (11.32)

and by this the 2nd order correction to the energy eigenvalues,

0 m
Ey = (n°\Vnt) = > Ml (11.33)
m#n

For the ground state, i.e. n =0, we obtain
EF <0, (11.34)

which means that the 2nd order correction to the ground state energy is
always < 0.

Discussion of the validity of perturbation theory
The perturbation series gives meaningful results, i.e. it converges, if the terms of

the perturbation series decrease in size fast enough as the order (A¥) increases,

'<m°|W|n°>

B | < 1. (11.35)

In general, this is the case for small A\. But it always fails for arbitrary A | if

E? — E° or E9 = E? for some m #n .

In this case one must apply degenerate perturbation theory. The formulas for
In') and for E? show that n given states |m°) contribute the more to the cor-
rection to |n°), the smaller the energy difference between the two states is. If
E° = E°, the state is unstable to a perturbation, |m°) and |n°) "mix” strongly,

not proportional to .

11.2 Degenerate perturbation theory

The full Hamiltonian in perturbation theory was given by

H=H"+\V. (11.36)
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Now we consider the case that H° has a degenerate subspace of eigenstates
with
0 0 0 0
k., =E,, =..=E, =E,. (11.38)

Then, the corrections due to AV cannot be calculated using the method derived

in the last section. We have to distinguish between the following cases.

a) AV is also degenerate in this subspace M
AV m;) = v, |mi) (11.39)
Then H = H® + \V is also diagonal in this subspace,

(HY + AV) |m;) = (Eyp,. + vpm,)

m;), (11.40)
and the problem is already solved in the space M.

b) AV is non-degenerate in this subspace M

Example:

Consider H° AV in an eigenstate basis representation of H°.

E° 0
H = E° (11.41)
0 E°

AV o= A V21 0 Va3 (1142)

Solution:
Diagonalize AV in the degenerate subspace M. Since H° is degenerate in M, it

remains diagonal by this procedure.

e The diagonalization problem of AV in the degenerate subspace(s) of HY is

often tractable, since the dimension of the subspace is often low, e.g. d = 2.
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e By diagonalization of AV in the subspace M, the eigenvalue problem of the

complete system H° 4+ AV is solved exactly in the degenerate subspace M.

e This basis transformation lifts, in general, the degeneracy of H® 4+ AV in

the degenerate subspace of H°. One can then proceed in the new basis,

using non-degenerate perturbation theory.

e AV can have matrix elements (n|A\V|m;) which connect states in the de-

generate subspace M with states outside of M. These matrix elements are

not taken into account in the diagonalization of \V within M. They are

treated afterwards by regular perturbation theory.

Example: Degenerate perturbation theory

Assume that an eigenstate basis of H° is given.

Ej

0 wvig vz v

*

*
U3 Ugg

o
e
3

*

*
[ Vg Ugy

S*

i.e. only rotations in the subspace M.

1. Diagonalize H° + \V in M.

EX—FE  u, a -
vi E°—E as |

(Ep, — E)? —|vml* = 0
== E?n :l: |,Um‘ - El 2

)

with corresponding new eigenvectors |my), |ms).

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)
(11.48)
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2. Redefine H°, \V in the new eigenstate basis.

EY 0
~ E9
HY = 2 B o] (11.49)

m
| O Egv, + |Um|
0 wvig vz v
*
~ U12 0 V23 Uog

AV = (11.50)
Uiz Uy 0 0

L vy vy 00
The perturbation is removed in M.

3. Proceed with f[o, AV using non-degenerate perturbation theory.

11.3 Example: Stark effect

Consider a charged particle with charge ¢ in a binding potential, subjected to an
externally applied, homogenous electric field

_9¢
oxr’

Here, the binding potential is the one of the harmonic oscillator (see figure 11.2),

E = (11.51)

so that we get the full Hamiltonian

I
. 11.
— + -mwz” — qbx (11.53)

The perturbation operator  in an eigenstate basis of H° reads

T =/52—(a+al). (11.54)

2mw

Hence, we get by this

H=hw(d'a+1) —qE\/ 52 (a+al). (11.55)
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Vo + AV (again parabolic)
—qEz

>
X

Figure 11.2: Binding potential of the harmonic oscillator

The shifted potential is given by

L 5 9 Loy qE ’ (¢E)?
imw r° —qFEr = imw (:B — 7)) T g

(11.56)

where the term (x — q¢E/2mw?)? is the shifted harmonic oscillator and the term

—(qE)?/2mw? represents a constant downward shift of the energy.

The energy eigenvalue correction of first order perturbation theory yields

B} = (nlgB /5 (a + ah)n) =0, (11.57)

and in x representation
E! = /dx [02(z)|> gEx = 0, (11.58)

since [2(z)|? is symmetric and qEx is antisymmetric. The calculation of the

second order correction reads

a (IT n
B2 = 3 Uiyl (11.59)

m#n

2
_ 2 /_h [nO41lal [n%)2 | [(n°—1]a|n®)?
= (qE) ( 2mw) [ E3-EQ, | + EO—EY_| } (11'60)

BT mos11at nOP | [(n0=1]a]n®)?
= (¢E)? [“ + + ] 11.61
2mw —hw hw
- @B [ ] 1162

(11.61)
(11.62)
_ @By (11.63)
(11.64)
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which is also clear from the sketch of the potential.

Selection rule:
The linear potential —gEx connects only states n £ 1 with n.

The first order correction to the eigenstates can be derived as

h a [lT TL
) = )+ Ym0y Y g )] (11.65)

m#n

= |n>—— 2mw (Vnl(n—1)°% —vn+1|(n+1)) (11.66)

Remark:
For a finite binding potential, e.g. V(r) = %, as in figure 11.3, the particle may
be ionized from the potential.

ionization

tunneling

Figure 11.3: Binding potential

11.4 Example: Fine structure of atomic spectra

There are relativistic corrections to the kinetic energy in the hydrogen atom.
These will be treated systematically in the course of Quantum Mechanics II. The
relativistic treatment implies,

(1) the existence of spin,

(2) the coupling of the spin of a particle to its angular momentum,
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3) and terms proportional to p*, p°... in the kinetic energy,
p,p gy

BErin = v/m2c* + p2c2 —mc* = %_8”{;—;62_‘_... (11.67)

The relativistic corrections are suppressed by a factor

p2

s <1 (11.68)

for the hydrogen atom, which we will here not consider. Nevertheless it
does play a significant role in heavy atoms, where the inner shells are tightly
localized near the nucleus, because of its big charge Ze, so that the average

(p?) becomes relativistically large.

We will now consider the
Spin-Orbit coupling:

Visualization:
In the rest frame of an electron bound to a hydrogen nucleus, the nucleus moves,
classically speaking, in a circle around the electron (figure 11.4), and generates a
magnetic field,

evXT el

B:_E e (11.69)

with e being the proton charge, which is positive, and " the velocity of electron

which is equal to the proton’s velocity, but with opposite sign.

Figure 11.4: Spin-orbit visualization
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The electron spin has a magnetic dipole energy in this B-field,

~ e L
Hspin—orbit = - 3
mer
e 1 - -
m2c2 13 ’
with
_6 —_
A=95—95, gr2.
2mec

The relativistic treatment gives the correct result,

—_

S-L|

" ez 1
spin-orbit — & Y
P 2m2c? r3

where the prefactor 1/2 is the so-called Thomas factor.

Corrections to the energy eigenvalues due to H,,,

One can write S - L in terms of the total angular momentum,

=

1 L
&L=§@ﬁ—ﬁ—5%
with

J?=(L+5)

In the basis of the total angular momentum eigenstates one gets

, 1 : 1
<j/m/; l/, §| Hspin—orbit |.]m7 lv 5)
2

@
Tg nl7

With j =1+ % one furthermore gets

. e /1 Lo =1ty
spin-orbit,nl — Am2c2 \ r3 o —(l—l—l), ]: _ 1

185

(11.70)

(11.71)

(11.72)

(11.73)

(11.74)

(11.75)

(11.76)

(11.77)

(11.78)
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with

1 1 1
— = — . 11.79
<> A D+ 1) (11.79)

Therefore the first order energy eigenvalue correction reads

l

] o2 {_(z+1)}

e | (11.80)
s.0.,nl 4mc (ﬁc) ngl(l + %)(l + 1)

which is valid for [ = 0,1, 2,.... The factor

62N 1
he 137

is called fine structure constant. The heart of the matter is that the spin-orbit

(11.81)

splitting lifts the [-degeneracy of the hydrogen spectrum.



Chapter 12

Time-Dependent Perturbation

Theory

We now consider time-dependent problems, where the Hamiltonian can be de-
composed into a time-independent part H°, whose eigenstates and eigenenergies

are assumed to be known, and a time-dependent perturbation V(t),
H=H"+V(t). (12.1)

This leads us to the question of how to describe time-dependence in quantum

mechanics in general.

12.1 Representations of time-dependence in quan-

tum mechanics

12.1.1 Schrodinger picture

Any physical property of a system in a state |¢)) is described by the expectation

value of the appropriate operator €,

Q1)) = W[Q[¥), (12.2)

which can be time-dependent.

187
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Schrédinger picture

Let €, be a time-independent operator, except for possible explicit t-dependence,
and let |v5) = [1s(t)) be a time-dependent state. The equation of motion for
|1)(t)) then reads

. d
ih— [¥s(t)) = HIvs(2)). (12.3)

The time evolution of |¢(t)) is formally described by the time evolution operator
Ult,to),

[s()) = Ut to) |4 (t0)), (12.4)

with the initial condition |¢)(y)). In chapter 5 we had given a procedure of how
to calculate U in z-representation by path integrals. This will not be considered

here.

Example: H time independent
Then

(1)) = e [ (t0)) (12.5)
is a formal solution of the Schrodinger equation

il |s(t)) = Hys(1)), (12.6)
with

U(t, to) = e 1, (12.7)

If H= H+V(t) is time-dependent, then U(t, ;) cannot be written in the simple

exponential form, since the ¢t-dependence of H would give an additional term in

o) -

It is our goal to develop an efficient, perturbative method for calculating U (t, ¢()

and, hence, |¢)4(t)) for such time dependent problems.
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General properties of U(t, )
1. The time evolution operator U(t, 1) is unitary, i.e.
U'U =1, (12.8)
since
(ths(t) [1hs(2)) = 1, VL. (12.9)
2. U(t,t1) U(ty,to) = U(t, to)
3. U(t,t) =1

4. UT(tl,tg) - U(tg,tl)

12.1.2 Heisenberg picture

All the time dependence can be cast from [¢(t)) into a time dependence of €2 |
while keeping all physical predictions of the theory, i.e. (Q)(¢), unchanged.

Q) = (Ws(t)] 2 [¥s(2)) (12.10)
= (Ws(to) | UL(t, t0)QUs(t, o) [s(t0)) (12.11)
= (Vut)|Qu(t) [Yu(t)) (12.12)

While Equation (12.10) represents the Schrodinger picture, equation (12.12) rep-

resents the Heisenberg picture, in which we have the t-independent state

) = [1hs(to)), (12.13)

and
Qu(t) = UL(t, 10) QUi (1, 1), (12.14)

which is also valid for Q2 = H.

Equations of motion for Qy(t) and Uj(t,ty)

B [.(0) = ULt 1) [0u(t) (12.15)
= HUs(tat0)|¢s(t0)>> (1216)
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which must be fulfilled for all initial conditions [i4()). Hence, we get
ihLU(t,to) = HU,(t, to), (12.17)
and by equation (12.14) moreover

L0 (t) = ih | L2, + UTQ 4 4 Uty || (12.18)

with
—ih — UTH. (12.19)

Thus we obtain

ihgQu(t) = —UIHUUIQU, + UIQUUIHU, +ihgQu(t),  (12:20)
and finally
ihEQp(t) = [Qu, Hy | +ihdQu(t) | (12.21)

This equation is in complete analogy to the classical Hamiltonian equation of

motion, i.e.
10 = {QH}+ 20 (12.22)
{Q,H}y = 2o _2i (12.23)

Correspondence principle in Heisenberg picture!
1
{Q,H}H%[Q,H] (12.24)
1

Remark:
Historically, the Heisenberg picture was first discovered by Heisenberg, when he
found from his analysis of atomic spectra that in quantum mechanical physical

transition amplitudes have matrix multiplication rules,

i = Y Gk, (12.25)
k

!Compare also with the Ehrenfest theorem!
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and, hence, must be described as operators. He took the correspondence principle
(12.24) as the natural generalization of classical mechanics.

Schrédinger introduced his picture shortly after from a generalized description of
interference phenomena. The equivalence was at first not clear, but was shown

by Dirac.

Equal-time commutators in Heisenberg picture

[zr(t),pr(t)] = Ul(t,to) x Us(t, to)Ul(t, to) p Us(t, to)

—Ul(t,t0) pUs(t,t0)Ul(t, tg) x Uy(t, to) (12.26)
= Ul(t, to) x Us(t, to)Us(to, t) pUs(t, to)

—Ul(t, to) p Us(t, to)Us(to, t) x Us(t, to) (12.27)
= Ul(t,ty) x Uy(t, t) pUs(t, to)

—Ul(t,to) pUs(t,t) x Uy(t, to) (12.28)
= Ul(t,to) [2,p] Us(t, 1) (12.29)
= ikl (12.30)

The commutators for non-equal times are in general more complicated, in par-

ticular # 0, since

Ult,to) UT(t, to) # 1. (12.31)

12.1.3 Interaction or Dirac picture

For the development of perturbation theory it is useful to separate the "trivial”
t-dependence of [1,(t)) due to the stationary time evolution of exp (—%H¢) from
the nontrivial t-dependence due to V(t), e.g. for eigenstates of H?, where the

t-development according to H? is absorbed in an exponential function, i.e.
In(t)) = e~ P=10) | (¢g)). (12.32)

Therefore, we define the interaction or Dirac picture as follows.

[r(t)) = R U |y (1)) = U (E, to) [ (1)) (12.33)
U (t, o) Us(t, to) o) (12.34)
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Equations of motion for [¢;(t)) and ()

By

—ihdU% = UYTH? (12.35)
and

ih2U, = [H? + Vi(t)] Us (12.36)
we get

il [1(t)

= —UMH U, [y) + U (H? + VU, [¢o) (12.37)
= UMVU, ) = U1V i) (12.38)
= UUTVUD [or (1)) = Vilt)ln (8)) (12.39)

We then have

(Ws()|Qs(t)) = (br|UT QUL 1 (1)) (12.40)
= (W[ @)]r(t)) (12.41)

with

Q) = UYQU.

3 0
Ug — e #H(t=to)

ihg [i(t)) = Vi(t) [vr(t))

, (12.42)

which desribes the time evolution in the interaction picture.

In the interaction picture, the state evolves according to a Schrodinger equation
only with the perturbation V;(t). Any operator evolves like a Heisenberg opera-
tor, but with the unperturbed Hamiltonian H°. The advantage of the interaction

picture is that the time evolution of the operators is known.
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12.2 Perturbation theory in general

[1(t)) = Ur(t, to) [¥1(to)), (12.43)

where U is the time evolution operator in the interaction picture. With

U, =UU; (12.44)
the equation of motion for U; reads

ihor = ViU (12.45)

Since V; is t-dependent, we here have no simple exponential solution.

The formal integration with initial condition yields

(12.46)

Ur(t, to) =1 — —ft dt' Vit U (t', to)

which is known as the Lippmann-Schwinger integral equation. The Lippmann-
Schwinger equation can be solved by iteration. This generates the desired power

series in V() .

Ui(t,to) = —%ff dt' Vi(t ’> —“f;dt’f: dt” Vi(t)Vi(t")
i L dt ﬁ dtllﬁ dt///V[ ‘/I(t”)‘/I(tm)
+... (12.47)
Us(t,tg) = Ut to)Us(t, to) (12.48)

It would be convenient to have the upper integral bounds independent of the

integration variables.

T ft'; dt ftf) dt" V(O WVt = f[; dt ftf) dt" Vit V(")

+ [Ldt [y dt” Vit )Vi(t) (12.49)
= [odt [ at" vi(t)Vi(t")
+ [ dt” [ dt Vit )Vi(t") (12.50)

These integrals share the same integration area, since the integrands in both parts

of the integral are equal (see figure 12.1).
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We then obtain
Jodt [}t Vi Wity =L T [ dt [} dt" V(£ )Va(t"), (12.51)
with

Vi(ty) Vi(ta) t1 > to
Vi(te) Vi(ty) t1 <to

t i

[-area [-area

(12.52)

T{Vi(t)Vilt2) } = {

t// t//
A

t' >t

»
- L

/

Figure 12.1: Integration area for perturbation V;

Consequently the time evolution operator reads

Unlt,to) = Tt Ju @ Vi) (12.53)

Since Uj(t,1t9) and [1;(t)) have the same equation of motion in terms of ¢,

il [91(t)) = Vi(t) [r (1)) = UMTVLU hr (1)), (12.54)

we can write the same perturbation expansion for |¢;(t)) as for U;(t, to).

(12.55)

(1)) = [ (to)) — 7 fiy dt Vi(t) ()

which is the Lippmann-Schwinger Equation for |¢(t)). By iteration we get

[Wr(®)) = (b)) — 4 fy, At Vi(t) 1 (ko))
+(—3)? f, dt ffol dt” Vit Wit ) r(to)) + ... (12.56)
= Te oV (1)) (12.57)
= Ui(t, to)|vr(0))- (12.58)
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The state in the Schrédinger picture is, hence, obtained as

[¥s(t)) = ULt to) Us(t, to) [r(to)) (12.59)
— e RHOt0) P i Sy VI ) (12.60)

where
|1 (to)) = [4s(t0))- (12.61)

This equation allows to calculate the time evolution of any state under the action
of V(¢). In particular, an (initial) eigenstate [i%) of H° will, after time ¢, have

developed into a superposition of final eigenstates | f°).

[5(2) Z N1 (0), (ko)) = 1" (ko)) (12.62)

where (fO(t) |1,(t)) is on the one hand the amplitude for finding the system in
eigenstate | f0(t)) of H?, after V(t) has been acting for the time ¢ on the initial
state [i°) and on the other hand the transition amplitude for [i") — |f°) after
the time ¢ under the action of V().

(f°|4s(t)) can be calculated using perturbation theory. In first order pertur-
bation theory, set to = 0, i.e.

[45(0)) = 1i°(0)), (12.63)

and get by this

a1 = e F00) — £ [ dt Vi(t)]i%(0)) } (12.64)
PO eat) = (F0)]e 7 i(0))

—5 Jo dt f° (#)le#"V(#)]i°(0)) (12.65)

= (fPO)°0) — 5 Jo df (fPOIVI(E)[°0),  (12.66)

i.e.

(FO(t) [0s(t)) = 05 — L [ordt’ (fO(0)| Vi(t) [°(0)) =: dys(t) |- (12.67)
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This is the first order transition rate [i%) — |f°) after time ¢. With
Vi(t) = ent V() e nH (12.68)

equation (12.67) becomes

dsilt) = b5 — 3 Jy dt (SOOI VL) [0(0)) e FEFDE | (12.69)

12.3 Periodic perturbation to first order pertur-

bation theory

Consider a periodic perturbation

Vi(t) = V cos(w), (12.70)

—twt

which is the real part of the potential Ve with w — +w. Assume that the

system comes into contact with the perturbation at time ¢ = 0.

dlt) =~ JLdt (OO T (0) exp (2(By — B~ hw)t)  (1271)
i =y expli(wr—wi—w)t)—1
(| iyl ) (12.72)
with
B9,
f#i and wp; = £ (12.73)
The probability for the transition [:°) — |f°) reads
- in(1/2-(wf—wi—w)t) 2
Pglt) = dnf? = () 7 ) | 2GR e (12.70
see also figure 12.2.
Transition dynamics:
The system "likes” to go to states with |z| < 7,
(wy—w;—w)i| S 7 (12.75)
E}—E) = hw+A (12.76)

27h 2rh
- S AT (12.77)
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-
I I v

x:(wf—wi—w)%

Figure 12.2: Illustration of the transition probability

Discussion:
The allowed energy interval A around Aw shrinks to 0 with increasing time, be-
cause for finite time ¢, the perturbation is a pulse [0,t], whose Fourier spectrum

contains a continuum of frequencies in the interval [w — 27”, W+ 27” ]

Energy conservation rule:
EY = E} + hw applies, when the width (uncertainty) of the spectrum 27/t is
negligible towards its center frequency w , i.e. for 27” < w and many cycles in the

pulse

wt > o (12.78)

is valid. The transition amplitude for t — oo reads

dfi(oo) - tlirgo _% ff% dt/<f0(0>| ‘7 ‘ZO(O»( eilws—wimwt -+ etlws—witw)t )

= 2OV |0 [6(wy — wi — w) + (wy — w; +w)],

and the transition probability

Pyi00) = F (I V [0 P [6(ws —wi —w) P + [8(wy —wi+w) 2 (12.79)
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with

Mwr—w; —w)o(wp —w; —w)

= §(Aws —w)0(Awy; —w) (12.80)
1 7 :
= (Awy; —w)o— lim _;e“AWfi—“’) dt (12.81)
t
= 0(Awyp — w) lim —. 12.82
(Awg; — w) lim o (12.82)

The transition rate for long times,

§(wp — wi —w) = hO(E} — E} — hw), (12.83)

)

reads

Ri_y =Tt = 20 fO|V]i0) 26 (B — EP ¥ hw) |- (12.84)

t

Equation (12.84) is called Fermi’s Golden Rule.
Remarks:

e In realistic problems, the final state energy EJQ is always integrated over a

finite range dE; so that the transition becomes
Ri_y(Ey) dEy = 22[(fO| V [i®)[2N(E? + hw) dEy, (12.85)
where the factor N(E? + hw) is the density of states in the final state.

e Fermi’s Golden Rule is only valid for not too large times ¢, since then higher
order contributions of perturbation theory become important. If the system
has a discrete eigenspectrum, the time evolution is eventually periodic, e.g.
neutrino oscillations, 2d-Hilbert space. Fermis’ Golden Rule remains valid,
as long as the occupation probability of the initial state is much greater
than the occupation probability of the final state. This is, in particular,
the case, if the final state is depopulated into a 3rd state.

Derivation of Fermis’s Golden Rule:
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2mh
[ ]
For ¢t > E,—]

In this case, all states are in the central peak of sin® (£¢) /(w/2). In other

a transition to the whole ensemble of final states is possible.

words, the energy width dFE is so large, that the central peak is within dFE.
Only then the approximation 27t (w) is valid.

e For ¢t not being too large the distance between the energy of the final states
is small for a sufficiently dense distribution, since w is a continuous variable.

If 0F denotes their distance, we, hence, get

21h
—_ 12.
P S (12.86)

e Validity of first order perturbation theory: Rt < 1

2mh 2
o, s

Characteristic function:

Ixiceq P = Xioeg do =2t = || Fxoog | (12.88)

Fy = &= [l e dp = e (12.89)

_ \/gnth (12.90)

éf(%“’t) dv = 7t (12.91)

12.4 Sudden perturbation

A sudden perturbation is reprensented by an abrupt change of the Hamiltonian
over a small time interval . The change of state according to the Schrédinger

equation has the following asymptotic behavior.

Va(+5) = [0(=5)) = Wafter(®) ~ [Ybefore(t)) (12.92)
—3 25 dt H(t) [s(1)) (12.93)
— 0 (12.94)

for ¢ — 0. Therefore, the state is not changed by a finite, sudden perturbation.
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v
V(t)=V-6(t)

~Y

Figure 12.3: Sudden perturbation

The approximation of a discontinuous change is good, if the time scale of the

perturbation change ¢, is short compared to the characteristic time scale 7 on

which |14(t)) changes, i.e.

[0s(5)) — [(~ )

= — i[5 atH )] 100) (12.95)

N i Wy [1(0)) (12.96)
——

<1

Example: [ decay

J — Z+1

Figure 12.4: Nuclear change at § decay

Here, an abrupt change of nuclear charge, Z — Z + 1, during the time

Qo atom radius
= =" 7 12.97
c Zc  velocity of e” ( )

takes place where ag is the Bohr radius of the hydrogen atom,

h2
_ 12.98
%= he? ( )
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For Z > 1 one gets

K2

a = mZe?”

The energy eigenvalue is given by

_ ZRy

Ey
n2

with the Rydberg constant

IRy — metZ? _ Zzez.
2h2 2&0

Characteristic time for the 1s electron:

h QhCLO
T R —

EO Z2e2
€ 1 _e? 1 1
S - 278 - Za=—17
T 2% he 2797 21

which is a small number for light nuclei.
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(12.99)

(12.100)

(12.101)

(12.102)

(12.103)

After the perturbation is switched on, the system is not in an eigenstate of the

perturbed Hamiltonian. It evolves according to the perturbed, time independent

Hamiltonian, with the initial condition that at ¢ = 0 the system was in an eigen-

state of the unperturbed Hamiltonian.

Sudden perturbation:

dpp = —3(f°|V i
in Awy
:>Pfi = %|Vfi|2smgt2
= Po= i Vil (wr — w)
t 4r?
27 K2
Py;

t

exp(i(wf —wi)t) -1

- |sz'|2 ho (Ey — E;) Telastic”

(12.104)

(12.105)
(12.106)

(12.107)

(12.108)
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Adiabatic perturbation:

Vit) = "V >0 (12.109)

= Py, = 7 ft dr em e (Er—E <f\V|) (12.110)
Er—FE; 2

W o= Eeffh(,f_“;h Vil (12.111)

=GR 2’;’f+nh V4|2 (12.112)

= %8 = " e Vil (12.113)

= Ry = Zn—cming(p B |V (12.114)

n—0

12.5 Adiabatic perturbation

Adiabatic theorem:

If H(t) changes on a time scale 7" much slower than the intrinsic time scales of
the system 7 | especially the inverse eigenenergies i/ E°, then the system makes
many cycles exp (—+E,T) before H(t) changes significantly, and we can define
stationary eigenstates and eigenenergies at each instant of time, [¢,(¢)). The
time dependent eigenstates of H(t) are the energy eigenstates of H(t) at each

instant of time.

|thn), E

Figure 12.5: Adiabatic evolution of the eigenenergies, eigenstates

Therefore the system does not change if it is in a state of the discrete spectrum.

Example: Particle in a slowly expanding box
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e Time for one oscillation of the particle reads

L mL mL?
’7‘ = —= = — s
v D hm

since p = hn/L and v = p/m = h/mL. It is adiabatic if

|AL[per cycleT |(?)—Il;f|mL2 ~ mL 0L

L KL  7wh
or

Vwalls <1

Uparticle

e Eigenenergies

EO o p?L (nh’ﬂ->2
"o 9m 2ml?
hr)?
EY—EY ~ (
f ( mlL2
h mL?
T = R
EY — E9 him?

ot

| <1
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(12.115)

(12.116)

(12.117)

(12.118)
(12.119)

(12.120)
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Chapter 13

Many-Particle Systems - Fermions,

Bosons

13.1 Many-particle wave functions

Assume a system of IV identical particles which do not interact with each other.

The full Hamiltonian then reads

H = HY(Z,p,) + H (L9, p2) + ... + H (Zy, Pn), (13.1)
where the single-particle Hamiltonian in x-representation is given by

HY(Z,p) = Z + V() (13.2)

with 77, p1 being the coordinate and the momentum of particle 1 and so on.
Then the state can be written as a direct product of the single-particle states.
Let particle 4, i = 1,..., N, be in eigenstate |n;) of the Hamiltonian H'. Then

try to construct the many-particle state.

(21, e 2n)) = [Yny (71)) [0 (22)) - [y (Tw)) (13.3)

Quantum Mechanics:

If all the NV particles are indistinguishable, then the state can only be changed
by a phase factor when two particles are interchanged, i.e. ¥; «+» Z;. Exchanging
these particle twice must lead back to the initial state. Therefore the phase fac-

tor aquired by particle exchange must be £1 (representation of the permutation

205
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group). Hence, the many-particle wave function is either totally symmetric or

totally antisymmetric.

Symmetric wave functions: Bosons

|1/J(.Z’1, Ce ,LIZ‘N>>B
Nl!N{VN! Zp{fl in} Wm(fl)) e WnN (fN» (13.4)

.....

Antisymmetric wave functions: Fermions

W(l'l, e ,ZEN)>F
= i Cptaint (D W0 (B1) - [y (Tn)) (13.5)

N; is the number of particles in the single-particle state ¢ and the exponent p
is the permutation factor which can assume the values £1 according to an even

(+1) or an odd (-1) permutation.

Example: 2 particles

Bosons:

[U(z1,22)) 5 = %[ |01 (Z1)) [Ya(T2)) + [101(Z2)) |2 (Z1)) | (13.6)
Fermions:

(w1, 29)) = L[ |01 (Z1)) 102 (T2)) — 11 (Z2))[12(1)) ] (13.7)

5

2

W1 (T) |1 (d2))
| [Va(Z1))  [tha(Z2)) ' (13.8)

For N particles we get the so-called Slater determinant,

[V (T1)) - |, ()

Ulars o)) = | PN PomlE (13.9)

[Wnn (F1)) - [Yny (EN))
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Spin-Statistics theorem:

Systems consisting of identical particles with integer spin have totally symmet-
ric wave functions (Bosons). Systems consisting of identical particles with half-
integer spin have totally antisymmetric wave functions (Fermions).

This theorem follows from relativistic quantum field theory and is only mentioned

here without a proof and any motivation.
Slater determinant:

If two particles occupy the same state, n; = n; for two particles, then the state

is 0. Therefore no double occupancy of states is possible.

13.2 Helium atom

The Helium atom consists of two electrons which have to obey the Pauli principle.

Spin eigenfunctions:

Xoo = %(Tl —17) s=0 antisymmetric (13.10)
xu = 17 (13.11)
X0 = %(Tl +17) s=1 symmetric (13.12)
xi-1 = 1 (13.13)
Space eigenfunctions:
From the full Hamiltonian,
1 2 2 Ze*  Zeé? e?
- (5D 52)° _ _
h=5 (p LR R e S T C 7~<2>|) ’ (13.14)

we can see that the problem separates so that we choose as an ansatz for the

eigenfunctions

¢ = ¢n1l1m1 (F(l)) ¢N212M2 (77(2))' (13'15)

For the ground-state we get the energy

7% e?

By = —2
0 2@0

(13.16)
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and the symmetric state ¢100 @100 (L = 0). For the first excited state we get

1Y\ Z2¢?
B =(-1-= 13.17
! ( 4) 2aq (13.17)

and the state ¢100 ¢2lm or ¢2lm ¢100 (L = Z)

We therefore have a well-defined symmetry in this problem,

1

V2

where the & indicates the behavior under exchange.

¢ (b100 P2tm £ P2tm P1r00); (13.18)

Altogether we have the ground state

®100 100 Xo0, s=0 (13.19)

and the first excited states

PP = dxon o YU = B X, (13.20)

The Ortho-Helium has no ground state and the wave function °"*"° is metastable.

It also has a fine structure.
— Are there two sorts of Helium?!
Repulsion: Level spacing ~ 0, 1eV

Hund’s rules

They take the repulsion into account.

(1.) S maximal:
The spin function is symmetric and for strong repulsion the spin function

is antisymmetric, in particular = 0 for #% — 79,

(2.) L maximal:
The electrons are further away from the nucleus and therefore further away
from each other. Hence, the repulsion is smaller. This effect is smaller than
the first rule.
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(3.) If the shell is less than half-filled, then J = |L — S| and if the shell is more
than half-filled J = L + S, because of LS-coupling. The ?He ground state
has S =0 and not S = 1.

Relativistic corrections:

4 mc?(Za)* n

_r o _mea) (@ _ %> 7 (13.21)

Ze? T a me?(Za)* l
and =0 for [=0 (13.23)

mc2(Za)t
;ijnzziz 5(7,—*) N 2(nZ4 ) 52’0 (13.24)
’ mc2(Za)* n

=0 = Dzl (% - H%) (13.25)

13.3 Hund’s rules: Antisymmetry of the total wave

function

(1.) Total spin: S maximal
e Spin-wave function totally symmetric
— Position wave function totally antisymmetric
— (7T =0 for 7= 7
— Minimization of Coulomb energy of electrons
(2.) Total orbital angular momentum: L. maximal
e Wave function most be strongly extended in space

— Maximal average distance between electrons

— Coulomb-energy due to e~ — e~ interaction minimized

(3.) Total angular momentum

. { L+ S  shell less than half filled (13.26)
L—S more
N
Vep = Z ai[jl. . 5_*; (Russel-Saunders) (13.27)
i=1
L h* Ze?
% e

(without interaction corrections) (13.28)
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From the first two rules we get

(L) ~ (L), (Si) ~ (S) (13.29)
such that
Vep=A-§- L = %A[J(J YO SLIL4+1) - SIS+ (13.30)

e Shell less than half filled: All spins 111

S
-2 13.31
Si N (13.31)
a S  «
Vsg = > aili--=—L-§ (13.32)
2 N~ N
«
A= 250 13.33
e (13.33)

= J minimal: J =|L — S|

e Shell more than half filled:
Substract Vgp from filled shell A < 0

13.4 Atoms with several electrons - periodic sys-

tem of elements

With increasing number of electrons the orbitals of an atom R,,;(7)Y;™(0, ¢) are

filled in the ground state according to

e Minimize energy (lowest-lying orbitals)
e Pauli principle (fermions)

e Hund’s rules (minimizing energy, taking corrections by Coulomb-interaction

and spin-orbit coupling into account)
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Shell structure:

single-particle e-e-interaction, spin-orbit hyperfine
0 wave function l-degenaracy lifted coupling coupling Je; - Sy
n=3 breaking of
‘ B B m; degeneracy
1=0,1,2 (s,p,d) subshells * 1072 — 10~%eV splitting
< 1073eV
~ 0,1eV
principal | n =2 *
shell 1=0,1 (s )A degeneracy breaking of
=S 20+ 1)(2s4+1) 1,5 degeneracy
~ 1leV degeneracy
(2J+1)

Figure 13.1: Split up of energy states

Periodic system of elements'

Electronic configurations of elements:

e 8 elements per main period:

Filling of (nearby degenerate s, p orbitals)

e Noble gases:

Filled main shells. Stable, since large energy gap to next main shell.

e Transition metal elements:
Filling of d-shell (I = 2, for n > 3)
2(20 + 1) = 10 degeneracy

e Lauthanides, actinides:
Filling of 4f and 5f shells (I = 3, for n > 4)
2(21 4+ 1) = 14 degeneracy

'see e.g. http://www.webelements.com or http://www.chemistrycoach.com /periodic tables.htm
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s s
H: 1!
He: 18
Lii 1225¢
Be: 18225 p! D:lj
B: 122l p2
C: 1228 B
N:  1s22¢2 pd
0O: 2 ¢2 p4
F: 282 pd
Ne 9 &2 f

l
" Y * occugation#

1 5! = of orbital

Figure 13.2: Electronic configurations of elements

13.5 The Fermi sea

Consider electrons in a box of length L and volume L3. The possible k-states
read

- 2 - ~ ~
k:%(nxeernyeernzez), ni = 0,41, +2. (13.34)

The states are filled according to the Pauli principle. The k-space volume for two

electrons (spin 1, | ) is (3£)%.

Figure 13.3: Illustration of the Fermi sea
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The Fermi momentum and the Fermi energy are given by

p2
Pp = hkp, FEp=-L.
2m

A sharp edge separates occupied from unoccupied states.

213

(13.35)
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Chapter 14

Electrons in Electromagnetic Fields

14.1 Atoms interacting with electromagnetic ra-

diation; classical treatment of the e-m field

In an atom the eigenstates are stationary (time-dependence ~ exp (—%Ent))
This remains true even for time-independent perturbations, since these would
only modify the stationary eigenstates.

Thus, in order to have transitions between atomic states (excitations, decay) a
time-dependent perturbation is necessary.

Consider a time-dependent external electromagnetic field with radiative transi-

tions like
A7 t) = Ay cos(kT — wt), (14.1)
which represents a plane wave. From
1 —e) \* -
H=_— (ﬁ— ( e)A) , VA=0 (14.2)
2m c

we have the perturbation linear in A (also see section 9.2).

V(i) = %ff-ﬁ (14.3)
e - T
= — kr— wt)Ay - D 14.4
— cos(k” — wt)Ag - (14.4)
e (i (k7 T
_ i(kr—wt) | —i(kF—wt)y A 5 14.5
2mce (6 +.6 oot ( |
_ V+e—zwt_|_v—ezwt (14.6)

215
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The transition rate from the initial eigenstate |i°) to the final eigenstate |f°) of

the unperturbed Hamiltonian follows from Fermi’s Golden rule,

Ry = 20U VAP O(ED — B — )
(O IV P O(E} — B + hw) }. (14.7)

14.1.1 Photoelectric effect

The photoelectric effect describes the ionization of an atom by electromagnetic
radiation. The initial state |:°) is a bound eigenstate of the atom, e.g. the ground

state. The final state | f°) ~ |p}) is an approximately free state (momentum py').

The approximation of a free final state |py) is good if the "higher order terms”

give a small contribution to |(f° |[VE|i°)|* compared to |p}).

This is the case if

- EY> E},

- the initial state is a s-wave (e.g. the H ground state).

Since for absorption Ef — E) > 0 yields, only the first term in R;_; contributes

and we, hence, have the perturbation

V(7 t) = ——e* Ay pe ™t (14.8)
Ve, (14.9)

The transition matrix element in position basis for the H ground state reads

T > — i
T

(fOIvV]i%) = 2%CN/d?’r P17 T A (—ihV ) e o (14.10)

where the factor N consists of the normalization of a plane wave and of the H

ground state, i.e.

No L (ig) | (14.11)
(2mh)2 \Tag

179 = [p) + “higher order terms in atomic potential”
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Electric dipole approximation: Treating the factor k7

The factor eiEF, originating from the wave vector k of the incident electromagnetic

wave, can be seen as adding the momentum Ak to the atom in the state

e~ HPIT R — o= By —kN) T (14.12)

The multipole expansion in general is just the expansion of the exponential func-
tion, i.e.

M =140k 7). (14.13)

Now we estimate (k - 7) for relevant magnitudes of k¥ an 7 in atomic situations.

o |7 < ag

e With w = c- |k| = ck and
o2
E} —E)=hw, E}—E)~I1Ry= o (14.14)
we approximately get

hw e?
— ~ - 14.15
he  heag ( )

e By that we finally obtain
2

1
€ o=« (14.16)

hrvogs = o= 132

where « is again the fine structure constant.

The approximation

i (14.17)

is called electric dipole approximation which is very good for atomic transitions.

Physical meaning:

The wave length of an electromagnetic wave, with an amount of energy which is
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relevant for atomic transitions, is much greater than the atomic radius. Therefore
the electron in the atom sees a position-independent external field. If we assume

a wave length of A &~ 1000nm, one typically gets raiom ~ 1 A =10"1 nm.

In the electric dipole approximation the 7-dependence of V is neglected, i.e.

e — .
V() = —Ay-pe ™t 14.18
() = 5—A-pe (14.18)
2 2
p e
H® = — — — 14.19
2m r ( )

This perturbation is equivalent to the perturbation caused by the electric dipole

momentum of the electron, d= —er, coupling to the external electric field E(t) =
194

Tcate

V(t) = —id- E(w)e ™ (14.20)
with

Bw) = —= 4, (14.21)

c

where the prefactor 1/2 in equation (14.20) comes from geometrical considera-
tions.
Proof:

By plugging in the commutator relation

h
=" 5 14.22
ra =2 (1422)

in the matrix element for any atomic transition, we get

(PRI = = (O FH — H) ) (14.23)
= (B - B))(f°1A ) (14.29)

7 W__/
= imw(f°|r]4% (14.25)

and therefore

!

(f g5 A0 - 11 = (fO1(—3d - E))| ). (14.26)
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The matrix element for photo-ionization reads

NI

(B V0 = -5 ! (13) /d3r eiPI™ Ay (—ihV) e 0 (14.27)

2mec (27rh)% Tag

The integral can be evaluated by partial integration. We get the golden rule

expression

8m3h3 mad [1+ <pf_;o)2]4

- Py[P6(EY — E) — hw). (14.28)

)

R 27 ( e )2 1 1 64m2al
=T T me
A

x|

e Angular dependence of the photo-emission

Riey ~ |- ~ cos? (2(A: ), (14.29)

which is typical for dipole characteristics. The emission, as shown in figure
14.1, occurs predominantly into the direction of the polarization of the light

(as expected classically)

dS) solid angle

Ao, E I
k

Figure 14.1: Photo-emission
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e Total photoemission rate
The total photoemission rate can be calculated by integrating over all mo-

menta py. By

2

Dy o_ Py
Ey =L, 0Ej==—=0 14.30
P o i = 0P (14.30)
and
2
0(55 — BY — hw) = 2 6(ps — v/ 2m(E] + hw)) (14.31)
one gets
4a3e? .
Ri_oq, = 0 . Ay - pr|? 09 14.32
09y mrhtcpp[ 1+ (B52)2]4 [4o - Py ( )
with
pr = /2m(E} + hw). (14.33)

By integrating over all angles, i.e.

2m 1 4
/ / dcosf cos?f = —W, (14.34)
o J-1 3

one finally obtains

16a3e?py

Ri—>i0n = a
3mh*c?[ 1+ (B52)2 |4

| Ao (14.35)

The photoemission rate is proportional to light intensity |/TO|2 and ioniza-

tion only occurs if iw > —E? (threshold) yields.

14.1.2 Absorption and stimulated emission

The dipole approximation was defined by ¢ 22 1. The time-dependent potential

reads

e - . .
_ Al —iwt iwt 14.
V(1) S op(e™™" + ") (14.36)

V(e ™ 4 et (14.37)
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where the term proportional to exp (—iwt) represents absorption and the term

proportional to exp (iwt) emission. As in section 14.1.1 we obtain for intra-atomic

transitions
2T ~
Ri_y E|(f°|V|zo)|25(E§2 — E% + hw) (14.38)
~.. (& * I I
P = 5o [ i (DA (900 (14.39)

e Absorption and stimulated emission rate are proportional to the light in-

tensity |Ag|%.

e Stimulated emission of light (E9 < E}) occurs into the same wave vector k
and polarization 20 as the incident wave has (coherent emission, see field

quantization).

e Selection rules in electric dipole approximation

AS = 0 (Orthonormality of Y;" . VY)) (14.40)
Al = +1 (14.41)
Am; = =1, (14.42)

since | f%) and i) must have opposite parity. These rules are in accordance
with the fact that a vector field A has spin 1!
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How can spontaneous emission occur?

E )

- A"

N

hw

Figure 14.2: Photon absorption and emission

14.2 Field quantization and spontaneous emission

The classical treatment of the electromagnetic field (section 14.1) predicts that
a transition can only occur if the amplitude of the time-dependent field ff(t) is
finite. In contrast, it is observed experimentally that an excited electron state
decays "spontaneously”, even if there is no real external field present, thereby
emitting a photon.

This spontaneous decay is due to the zero-point (quantum) fluctuations of the
electromagnetic field, analogous to the zero-point motion of the harmonic oscil-
lator.

This means that even in the ground state of the electro-magnetic field there is a
finite expectation value of the field intensity ~ (A2(¢)) , which induces transition
of the electronic system.

In order to describe this effect, we map the dynamics of the electromagnetic field
onto a harmonic oscillator problem and thereby identify its quantized eigenstates
( = field quantization).

Since we had treated the harmonic oscillator in the Hamiltonian formalism, we
will also seek a Hamiltonian description of the electromagnetic field dynamics
here. This is not Lorentz invariant, since the Hamiltonian description treats time
and space coordinates in an asymmetric way. For our present purpose, this is,
however, sufficient. A more thorough treatment will be done in Quantum Mech-

naics II.
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14.2.1 A sketch of field quantization

In the following we will write down the Lagrangian of the free electromagnetic
field, derive the Hamiltonian and show that it is equivalent to an ensemble of
harmonic oscillators with eigenfrequencies w = C|E| , where k is the wave vector
of the mode.

The electromagnetic field tensor in the contravariant form is defined by
Fr = 9FAY — 0V A* (14.43)
with the explicit form
0 E, FE, E,
0 (14.44)
-F, B, —-B, 0

where A represents the components of the electromagnetic four-potential, (A*) =

(¢, A)T, and the electric and the magnetic field are given by

—

~V¢, B=VxA (14.45)

£,

E= c

Q

t

The Lagrangian of free field reads

1 ; }
= —— v 14.4
L T6m ’r F,F (14.46)
:-i/fmﬁ—ﬁ] (14.47)
8
_ 8i Pr[(—125 _vg) — (¥ x AP, (14.48)
m

e The integration over t, i.e. the calculation of the action functional S =
fttf dt L , and the variation of S with respect to A(7,t) and ¢(7,t) would,
together with the condition 0.5 = 0, yield the two (inhomogeneous) Maxwell

equations.
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o We consider free fields, i.e. p = O,j: 0, in the radiation gauge ¢(7,t) = 0.

Pulling the indices of the electromagnetic field tensor down, i.e. making

it covariant, yields

Fy,y - g“aFQ'Bgﬁy (1449)
1 —-FE, 0O B. -—-B
(Fw) = !
1 ~E, -B. 0 B,
0 1 ~E. B, —-B, 0
-1 0
1
x (14.50)
1
0 1

= (14.51)
E, -B, 0 B,
E. B, -B, 0
F, F" = tr{(F)F"™}=—-2[E*- B (14.52)
e Transversality conditions on the free fields
V-E = 4mp=0 (14.53)
V-B=0 = V-A=0 (14.54)
Performing a Fourier transformation these conditions read
k-E = 0 (14.55)
k-A = 0. (14.56)
Hamiltonian formulation:
For convenience, we absorb the prefactor 1/87 in /_f, i.e.
Art) = —— A1) (14.57)
rt) = T )
V8T
L = /d3r [(—124y2 (T x )], (14.58)
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/T(F, t) = 7 is considered as the "elongation” analogous to the elongation 7 in

point dynamics (at each space-time point (7,¢) ).

A7, 1) )
\\fi(Fm t2)
(71, 1) (T2, t2)

Figure 14.3: Sketch of the field A(7%, ;)

The canonical momentum associated with A reads

oL 204
i
pol

=n

(7,t) =
Notice the asymmetric treatment of 7 t.

The Hamilton function is given by

Fourier transforming equation (14.60) yields
= Bk g
A(Tt) = /W e Ak, t) etc.,

so that one finally finds

H= /d3  fi2(F, 1) + k2 - A2(K, 1)),

(14.59)

(14.60)

(14.61)
(14.62)

(14.63)

(14.64)

The term in brackets has the form of a (decoupled) harmonic oscillator in terms

of the coordinates # = A and the momentum p= II at each eigenmode k (Hamil-

tonian density). Because of this analogy one writes

H = /d3 H2 k) + mszz(k: t)]

(14.65)
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with

m = c% 2 2
R w” = (ck)*, (14.66)
which is the dispersion of electromagnetic waves.

Hence, in analogy to the harmonic oscillator (see chapter 4) we can write the

elongation A and the momentum I for each k in terms of raising/lowering oper-

ators of the excitation,

A = o 5 zw (a + ay)en(k) (14.67)

=\ (al (K, 1) + ax(k, 1)) ex(k) (14.68)
e = m;w (a} = ax)en(®) (14.69)
= h—f(ag(E,t)—aA(E,t))aA(E), (14.70)

where € (k)(\ = 1,2) is the transverse polarization vector which is perpendicular
to k and, in addition, a unit vector. A is called the transverse polarization. In

terms of raising/lowering operators one gets
H= Z/d% hw ( aﬁ AT 3) (14.71)
with w = ck and

{ax(k, 1), al, (K, 6)} = 0ppdydyy (14.72)
{ax(k,t), ay (K, t)} = 0. (14.73)

CL('F: t) = \/W 6ik7?a(]€, t) (1474)
tr= ¢’k I
a'(ryt) = ——— e "a'(k,t) (14.75)

Vv (27)?

the field operators are given in position space. They represent the field quantiza-
tion of the electromagnetic field. ai(E, t) creates and ay(k,t) destroys a photon

with wave vector k and wave length .



14.2. FIELD QUANTIZATION AND SPONTANEOUS EMISSION 227

14.2.2 Spontaneous stimulated emission and decay

Using the operator structure of A derived above, we can now calculate transition

matrix elements in an algebraic way.

AR = VRTAR.) = ,/27:” (al (K, t) + ax(k, 1)) ex(k) (14.76)

. N O S TP
= — —IRT IKT 14-
A7, 1) N (al (B, t) e ™ + ay(k,t) ) Er(k)  (14.77)

The new thing compared to the classical treatment of the electromagnetic field is
that A is now an operator which changes the excitation state of the electromag-
netic system, i.e. the electromagnetic system must now be considered as a part

of the quantum system, and not only as an external field.

Transition rate for decay (E} < E}):

2 - )
Rig = TP ILEAREOPE - B + ) (14.78)
%) = |ig) © |ipn) (14.79)
1) = 1) © | fon)s (14.80)

where A acts on a photonic state and p acts on an electric state.

(a) Spontaneous decay:
Here we consider the case that no field is applied and that the photon

number vanishes, i.e. [i0,) = [0p).

FOUA-PIEO) = (o) - (o | AT i)

— &k [2whe, o L
Aw) - Z | T VB @

Dipole approximation:
Now we have no 7-dependence, so that ¢*" =

w0 =3 [ o e 0 R 1) 0431
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Therefore, in the final state we have one photon with wave vector k and
wave length A (emission). Furthermore the same rules as for the point

harmonic oscillator are valid here.

As in the classical treatment we get
319180 = [ v () (-in) v (14.82)

Since the fluctuating electromagnetic field has components for any w, w is

integrated over to get the total transition rate R, ;.

Stimulated emission:

Here we have an applied external field with (w, E, A) so that the initial is

given by |z'2h) = |[ng).
(fon | A()]0) (14.83)

d3k 2rhe - ~
- S0+ D lal(F,w) [ ng,)  (14.84)

A3k 2rhe . -
— ;/\/W p ex(k)vngy + 1 (14.85)

The matrix element (f9 |p]i%) is the same as for spontaneous emission.

Important consequences:

In the presence of an external electromagnetic field with (w, k, A) the photon
is emitted in the same state, i.e. with the same momentum E, polarization
and phase. Therefore stimulated emission is coherent — Laser.

The stimulated emission rate R;_ ¢ is enhanced compared to the sponta-
neous emission rate by a factor (ngy+ 1), where n is the number of photons

in the initial state.

14.3 Bohm-Aharonov-Effect

Figure 14.4 shows the double-slit experiment with a magnetic field.
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=

path class C;

® B | path class Co

Figure 14.4: Double slit experiment with a magnetic field

The magnetic field B is confined to the region ® perpendicular to the paper,
B=VxA (14.86)
The vector potential A extends far outside, where B=0.

Gauge symmetry:

In the presence of a vector potential A(7), the wave function ¢ (r) acquires locally

a phase,
() = e ety o(F 1) (14.87)
= e (7 1), (14.88)
where ¢ = —e is the charge. We can calculate the (global) phase which a wave

function acquires after the particle has traveled through a region with A #0

along a path C1, Cs.

Path integral formulation:

B(it) = / B U 67 1) O o) (14.89)

= U(7 t;7 tg) e ™" (14.90)

with a point source, i.e.
U(7 tg) = 6(F — 7)) et (14.91)

The propagator is given by

U(F,t;5,t) = »_ e #5 - N, (14.92)

paths



230 CHAPTER 14. ELECTRONS IN ELECTROMAGNETIC FIELDS

where N is a normalization factor. The action functional consists of a part

containing a free particle and another part describing a vector field ff, ie.

t

S = / dt' (Imi? — 97 A(F)) + O(A?). (14.93)
to

Gauge transformation:

The wave function, the vector potential and the action functional are transformed

as follows. 7L A(7,t) represents the phase factor.

W) — e i A(T1) (14.94)
AP — A\(F) = A7) — VA(F, t) (14.95)
S— Sy = S- /dt 9 VAP, 1) + ) (14.96)
- S- /dt 12 a’;”) (14.97)

— S— (AR — Al to) (14.98)

The phase factor for each path C' due to the magnetic field B reads

i P
ehcfto ' (7-A) e%f}.co dr -A

(14.99)
Here we have used that A is a constant in time and we have substituted
dr
di = -t (14.100)
dr
Two different paths C7, Cy only differ by the phase
q
AO = d A—— d A 14.101
hc r he r ( )
q —
= d ~A dS V A 14.102
he r hc + ( )
q ¢
= —p=—2 14.103
Eo= Lo (14.103)

The flux ¢ is enclosed by ¢y, co and furthermore the factor ¢y = % = % is the

so-called flux quantum.

e A phase difference only occurs if there is a real magnetic flux enclosed.
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e Hence, the phase difference is a global effect:
Two paths must enclose a finite area in order to acquire a finite phase

difference.
Therefore a classical particle traverses only a single path, i.e. is not sensitive to
A A quantum mechanical particle probes all paths and the path classes 1 or 2

have all the same phase.

The total wave function on the screen is given by

cl:sitlé’l Clapsastgz
w8
_ O{[’le(’l?) +6z27r¢0 w2(r—f)] (14105)

This can be interpreted as a shift of the interference pattern.
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Chapter 15

Non-perturbative Approximation
Methods

General remarks:

e Perturbation theory:
- Small parameter (perturbation) necessary for expansion
- Systematical: Well-defined prescription of how to calculate effects of a
perturbation up to a given order
e Nonperturbative methods:
For problems where the perturbation is large or where the system is unsta-
ble.
- No small parameter necessary
- Not systematical: Knowledge about the solution must be put into the
method

15.1 Variational method (Ritz’ variation princi-

ple)

The Ritz variation principle is a method for finding the approximate ground state

energy and the ground state wave function.

(1.) Choose a model wave function [1) = |¢)a,. .4, Which depends on one or

several parameters. This defines a subset of Hilbert space (not necessarily

233
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space), in which the approximate solution is to be found.

{ W>a1...an‘ai 6Mi7 1= 17 ,TL} =U (151)

(2.) Minimize the expectation value of the Hamiltonian in the subset U with

respect to aj...a,, i.e.

(H) = (WIH]v) (15.2)

{¥[¥)

should become minimal. This method gives an upper bound for the ground
state energy and an approximate ground state wave function. The accuracy

of this method depends on the proper choice of the model wave function.

Example: Helium atom

_ 12v72 2 1272 2 2
H:(hvl—zf>+<hv2—zf>+ ‘ (15.3)

2m Ty |f1 — 52\’

where Z = 2 is the nuclear charge number and #';, Z> are the coordinates of
the electrons respectively. We expect that both electrons are in an s-wave state
(Para-Helium). The effect of the second electron on the motion of the first elec-

tron is approximately to screen the nuclear charge.

Model wave function:
The Slater determinant of two H ground state wave functions according to an

effective nuclear charge Z is given by

(1, T2, Z) = Po(Th, Z) vo(@2, Z) 55 (| T1) — | 11)). (15.4)

Furthermore the normalized hydrogen ground state wave function reads

- 1 =
Uo(¥,Z) = ,/W—&% e @ (15.5)

with

T (15.6)



15.2. THE METHOD OF THE SELF-CONSISTENT FIELD 235

Energy expectation value:

(H)z = (Y[H[Y)z (15.7)
= 2Ey(2) — 2 (ol “E2 o) + (| mgm ) (15.8)
Ey(Z) = —mZ= =—-7°Ry (15.9)
(ho| £ Z2 |yy) = 2RyZ* 42 (15.10)
) 5 -
Wlmzml¥) = 728y (15.11)
(H)z = 2Ry(-2"-22(Z - Z) + }2) (15.12)
= 2Ry(Z>-2Z7+37) (15.13)
Minimum for the effective reduced charge:
i<H) = 2R (22—2Z+§)—0 (15.14)
(92 z = Y 8 - .
_ 5 5 27
= Z—-—=2——=— 15.1
S TR TR T (15.15)

since Z is in this case 2.

15.2 The method of the self-consistent field (Hartree
and Hartree-Fock method)

In this section we want to discuss an approximation method for systems of several

or many particles. The direct product wave function

Y = 1(Z1)p2(Z2)...on (ZN) (15.16)

or Slater determinant is an exact solution only if the Hamiltonian is a sum of
single-particle Hamiltonians, i.e. for systems without particle-particle interac-
tion.

In the Hartree and in the Hartree-Fock approximations the particle-particle in-
teraction is treated approximately and one assumes that the problem of a single

particle in an arbitrary external potential is solvable.
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e Hartree approximation:
The many-particle wave function is approximated by a direct product of
single-particle wave functions. For one given particle, let’s say particle i,
the density of the other (N — 1) particles generates an effective potential
and one determines all N single-particle wave functions for this problem —

self-consistent problem.

e Hartree-Fock approximation:
In addition to the Hartree approximation, the total antisymmetry of the
wave function is taken into account, i.e. a Slater determinant of single-

particle wave functions is taken as an Ansatz.

Hartree approximation:
We will derive the Hartree approximation from variational principle. First of all

we define the many-particle wave function as a product of single-particle wave

functions,

(T, .., TN) = p1(1)...on(2), (15.17)
where the single-particle wave functions are given by

eili) = @il@5) x(m,,). (15.18)

©i(Z;) is the position wave function and y(ms,) is the spin wave function. The
normalization condition, which will be implemented by Lagrange parameters ¢;,

reads

/d% lpi(®))* =1, i=1,..,N. (15.19)

(H) =) & </ APz o (Z) pi(T) — 1) - (15.20)

+Z/d3$/d3y #i (T) 95 () g 0 @) 0 (9) (15.21)

The variation with respect to ¢} (Z) yields

2 & 62 62 ok —
<_2h_mv2 - % + ijéifdgy %) 0i(T) = € ¢, (15.22)
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where the factor €?|¢;()[*/|Z — 9] is the charge density p(y) of particles j # i.
Equation (15.22) is the single-particle Schrodinger equation for a particle ¢ in an
effective potential generated by the external potential and by the charge density

of the particles j # i. The Lagrange parameter ¢; is the single-particle eigenen-

ergy.
Hartree-Fock approximation: (fermions)

Ansatz:

ei(1) - p1(N)

on(1) -+ on(N)

Expectation value of H in the Slater state v:
(H) — Zéi </ d*x oi(T) i (T) — 1) (15.24)
- Y{ [ el -£9 -5 - e +a) (15.25)

+32/d3x/d3y ©; (7) @;(@ﬁ%@) ©i(Z) (15.26)

1 * [ = %/ — e . _’
_—Z/d?)x/d?’y 07 () ;1) o i (T) 0i(Y) Omyim,  (15.27)

25 2
(15.28)
Variation with respect to ¢} (Z):
2 = o2 o o2 _ .
(=3 V2 = ) 0i@) + iy | Py wglei (DP 0i(@)
1 et L
=5 2 O, /d?’y T g1 W) 2l #i(7) (15.29)
i#
= & ¢i(7) (15.30)

Remarks:

e The Hartree and the Hartree-Fock equations are a set of self-consistent,

non-linear integro-differential equations.
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e They can be derived from a variational principle. This means that, at least
for the ground state, the H- or HF approximations give the best single-

particle direct product of Slater wave functions.



