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Exercises 3
Exercises on May 2 – May 6

3.1 Heat Capacities

The heat capacity of a thermodynamic system is defined to be CX = T (∂S/∂T )X , where X
may be P or V , resp. By using the Maxwell relations show that
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Hint: You may make use of the known rules for functional determinants, e. g. functional
determinants, esp. ∂(u, v)/∂(x, v) = (∂u/∂x)v or the chain rule.

3.2 Thermodynamic Relations in a Magnetic System

Consider a magnetic system characterised by the entropy S, the temperature T , the magne-
tisation M , and an external magnetic field B. Its properties are described by the thermody-
namic response functions: the specific heat at constant magnetisation or constant magnetic
field, resp., cM = T (∂S/∂T )M , cB = T (∂S/∂T )B , the isothermal (dT = 0) as well as the
adiabatic (δS = 0) susceptibility, χT = (∂M/∂B)T , χS = (∂M/∂B)S , and the magnetisation
temperature coefficient, αB = (∂M/∂T )B .
Show that the following equations hold:

a) cB

cM
= χT

χS

(Hint: Write cB and cM in terms of thermodynamic derivatives of B and M alone by
using dB = 0 at cB and dM = 0 at cM ; then re-sort the terms in cB/cM in a suitable
way.)

b) cB − cM = T
α2

B

χT

(Hint: Using the chain rule, reduce cB to cM ; then use the Maxwell relations for S,
T , B, and M).

3.3 Adiabatic equation of state of an ideal gas (second time)

For an ideal gas, pV = nRT und cV = T (∂S/∂T )V = f

2
nR = const..

a) Show that dU = cV dT , and calculate the internal energy U(T, V ) and the entropy
S(T, V ).

b) Show that the adiabatic (S = const.) equation of state at constant particle number is
given by pV γ = const..



c) Consider a mixture of two ideal gases (1 and 2) in the molar ratio of x1 : x2. Show
that, for the mixture, the exponent γ is given by
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3.4 Probabilities: Central Limit Theorem

A random variable X may assume the values x ∈ M with probability p(x) (M is called the
event space of the random experiment). The quantity X is drawn N times independently;
the average of the values drawn defines a new random variable Y :

Y : y =
1

N

N
∑

i=1

xi.

We now aim to find the probability distribution of Y , PN(y), in the limit of N → ∞:

a) For the time being, assume N to have a fixed value. What is the probability for the
event (x1, x2, . . . , xN)? Formally find the probability distribution PN (y) in terms of the
p (xi).

The characteristic function of a probability distribution is a very useful function. p(x),

φ(k) =

∫
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which is related to the Fourier transform of p(x).

b) Show that the characteristic function of PN(y) is
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c) Using the assumption that all moments (see below) of the distribution p(x) exist, show
that, in the limit of N → ∞,

ΦN (k) → e−
σ
2

2N
k2

.

To that end, expand w. r. t. k/N . Finally, find the probability distribution

P (y) = lim
N→∞

PN(y).

Definition: The n-th moment of a distribution p(x) is 〈xn〉 :=
∫

xnp(x)dx.

Enjoy!


