Lecture Theoretical Physics IV - SS 2005 - Prof. H. Kroha

M.-A. Lawn http://www.th.physik.uni-bonn.de/th/groups/kroha/teaching/StatMech_SS05/

Exercises 4

Exercises on May 09 - May 13

4.1 Stirling Formula

Integrals of the shape $I_N = \int_b^a dz f(z) e^{-Ng(z)}$ frequently occur in statistical physics. N is a large positive integer; $z=z_s$ be the single minimum of g(z) on the interval (a,b), and $f(z_s) \neq 0$.

In order to approximately calculate this integral, the so-called stationary phase approximation is used:

- The functions f(z) and g(z) are expanded about $z=z_s$; then, the substitution $x=N^{\frac{1}{2}}(z-z_s)$ is used.
- For $N \gg 1$, only the term $f(z_s)$ as well as the first two terms of the TAYLOR expansion of g(z) are retained.

By means of those approximations, the integral I_N becomes a GAUSS integral.

- a) Using the aforementioned steps, find a general approximation formula for I_N . Hint: $\int_{-\infty}^{\infty} dx e^{-\frac{a}{2}x^2} = \sqrt{\frac{2\pi}{a}}$.
- b) For all $z \in \mathbb{C}$, $\operatorname{Re}(z) > 0$, the Gamma function is defined by $\Gamma(z+1) = \int_0^\infty dt e^{-t} t^z$. Show that $\Gamma(z+1) = z\Gamma(z)$ as well as $\Gamma(1) = 1$. Then show that $\Gamma(N+1) = N!$ for N=1,2,3....
- c) By means of the stationary phase approximation find the STIRLING formula:

$$N! \sim \sqrt{2\pi N} \left(\frac{N}{e}\right)^N$$

where $N \gg 1$.

4.2 Joule-Thomsom Effect and Joule Cycle

The Joule-Thomson effect takes place in a system composed of two chambers which is perfectly isolated. In each chamber, the pressure is kept constant, $p_1 = \text{const.}$, $p_2 = \text{const.}$, but $p_1 > p_2$. The chambers are connected by a permeable wall, so the gas can adiabatically expand from the volume V_1 into the volume V_2 . Here, we assume that the gas be an ideal gas.

- a) Show that the enthalpy remains constant during the expansion, and that the process is an irreversible one.
- b) The JOULE-THOMSON coefficient is defined to be $\delta = (\frac{\partial T}{\partial p})_H$. Show that $\delta = [T(\frac{\partial V}{\partial T_p}) V]/c_p$, and that, for an ideal gas, $\delta = 0$.

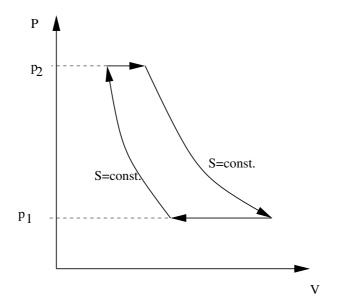


Figure 1: JOULE-THOMSON cycle

c) Calculate the efficiency ratio of the JOULE-THOMSON cycle as a function of p_1 and p_2 (see Fig. 1).

4.3 Elastic Wire

A force K is exerted on an elastic wire of length L. In the HOOKE regime, the equation of state is

$$K = k(L - L_0) + A_1(T - T_0),$$

where T is the temperature; L_0 and T_0 denote the standard length and the temperature for K = 0, resp., and k and A_1 are constants.

- a) Give the differential of the internal energy, dU, in terms of the thermodynamic differentials dS and dL, where S is the entropy. Give a formula for the entropy S.
- b) Construct a thermodynamic potential depending on the independent variables L and T. Find the MAXWELL relations which can be derived from that potential.
- c) Calculate the temperature expansion coefficient, $\frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_K = \alpha_K$ at constant force as well as the elasticity $\frac{1}{L} \left(\frac{\partial L}{\partial K} \right)_T = \kappa_T$.

4.4 Thermodynamic Potentials and the Ideal Gas

In exercise 3.3 we have shown that the entropy of an ideal gas at constant particle number is given by

$$S(T, V) = S_0 + Nk_{\rm B} \left[\frac{f}{2} \ln \frac{T}{T_0} + \ln \frac{V}{V_0} \right].$$

- a) By means of the two equations of state give the HELMHOLTZ free energy and the GIBBS free enthalpy. Then calculate the chemical potential.
- b) From the expression for F, rederive the thermal equation of state.