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Chapter 1
Introdution and overview
Up to now, during the ourse of theoretial physis the motion of a single partile(or, at best, a few partiles) under the in�uene of external �elds has been on-sidered, �rst lassially, then quantum mehanially. We had seen that, whenrelativisti motion and quantum mehanis are ombined, the sheer oneptof single-partile dynamis breaks down, beause of the possibility of partile-antipartile pair generation in an interating system at su�iently high energies.The relativisti quantum theory beomes neessarily a theory of many partiles(i.e. a �eld theory). While in relativisti quantum theory the many-partile as-pet ame, at �rst glane, as a neessary, but �unwanted� aident, there aremany systems in the world around us, whih onsist naturally of a huge numberof Partiles.Examples are

• atoms or moleules in a gas, liquid or solid
• eletrons in a metal
• magneti moments in a ferromagnet
• atomi nulei and eletrons in a plasma (star)
• photons in a laser
• ars on a highway
• individuals in a biologial population . . .7



8 CHAPTER 1. INTRODUCTION AND OVERVIEWIt is seen that there is a vast variety of many-partile systems with various typesof interations between the partiles. Charateristi for all many-partile sys-tems is their huge number of degrees of freedom, typially ≈ 1023 (oordinatesand momenta of eah partile).It is neither possible nor desirable to desribe the dynamis of all mirosopidegrees of freedom in a many-partile system. The latter holds for two importantreasons:1. Even knowledge of all mirosopi degrees of freedom would not allow useasily to desribe the marosopi behavior of a system, whih is observedin experiments and whih is relevant for pratial appliations.Example:Knowing (~x, ~p) for all atoms in a gas does not immediately tell us its temper-ature T and pressure P. Calulating T, P would be beyond any omputer'smemory.2. Many-partile systems often show olletive behavior ordering phenomena,phase transitions on the marosopi level, whih ould not even prinipallybe dedued from the mirosopi oordinates.Examples:Superondutivity, magneti and other phase transitions, olletive modes(waves in water et.), frational quantum Hall e�et: frational exitation.Thus, the mirosopi desription breaks down on a more fundamental thanmerely omputational level:�The whole is more than the sum of its parts.�On the marosopi level fundamentally new omplexity arises, whih an-not be seen on the mirosopi level.It is the task of thermodynamis and statistis to develop methods for desribing(omplex) marosopi systems onsisting of many degrees of freedom. Thisproeeds in three major logial steps:



91. Identify and de�ne relevant marosopi variables to de-sribe a system:state variables: T, P, V, N, E, S2. Provide rules for the dependene of the state variablesupon eah other






































thermodynamis
3. Develop methods to alulate the state variables andtheir mutual dependene from their mirosopi Hamil-tonian. → Statistial methods required, beause of vastnumber of degrees of freedom.



















statistial physisLink between mirosopis and marosopi behavior.Thermodynamishas been developed during the seond half of the 19th entury and is a losed�eld of researh now. It is a phenomenologial theory where the state variables,like temperature T, entropy S et., are de�ned in an impliit way through theirrelation to other variables. This often leaves the impression of thermodynamisbeing inomplete. However, it is the nature of a phenomenologial theory, thatonly impliit de�nitions are possible. The mathematial struture of thermody-namis is that of the theory of analytial funtions of multiple variables. Thestate variables are de�ned as derivatives of a given analytial funtion (potential)and are, thus, related to eah other purely on mathematial grounds, not throughphysial interations.Thermodynamis has been the basis for the development of engines like the steamengine et., whih revolutionized industry in the 19th and early 20th entury. Oneof its pioneers was Clausius who was the head of the Bonn physis institute.Statistial physisprovides the mirosopi basis and methods for the de�nitions and relations ofthermodynamis. It thus allows to alulate marosopi quantities from a mi-rosopi approah, not only in relation to eah other.Statistial physis is now one of the big ative �elds of researh and is appliedto many di�erent systems ranging from many-body quantum systems (super-ondutivity, laser . . .) to biologial systems and populations and to the stokmarket.
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