Chapter 2

Thermodynamics

2.1 Description of thermodynamic states and trans-

formations

2.2 Introductory remarks and basic definitions

Thermodynamics is a phenomenological theory in contrast to the microscopic
theories considered so far, i.e. it does not refer to the microscopic, quantum me-
chanical behavior of matter, but is based on the observation of the macroscopic
properties of "large" systems and the relations among these properties, where
"large" requires further specification.

As a result, thermodynamics cannot make absolute statements derived from mi-
croscopics, but can only describe the dependence of macroscopic properties on
each other. Any definition of a new quantity not known outside of thermody-
namics, like temperature T', entropy S, must therefore be implicit through these
dependencies. This leaves some sense of "incompleteness" |, like in any phe-
nomenological theory.

On the other hand, because it does not rely on detailed microscopic properties
or assumptions, thermodynamics is completely general and closed in itself. It is

the strength of thermodynamics that it is applicable to a vast variety of systems.
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Einstein about thermodynamics

"Eine Theorie ist desto eindrucksvoller, je grofer die Einfachheit ihrer
Pramissen ist, je verschiedenartigere Dinge sie verkniipft und je weiter
ihr Anwendungsbereich ist. Deshalb der tiefe Eindruck, den die klas-
sische Thermodynamik auf mich machte. Es ist die einzige physikalis-
che Theorie allgemeinen Inhalts, von der ich iiberzeugt bin, dass sie im
Rahmen der Anwendbarkeit ihrer Grundbegriffe niemals umgestofen

werden wird."

Thermodynamics has been developed during the 19th century, driven by the need
to understand thermodynamic cyclic processes and to develop heat engines that
were able to transform heat into mechanical work. Therefore, the central defi-
nitions of thermodynamics have an operational character, i.e. are derived from
cyclic processes.

Thermodynamics is based on our every-day observation that most macroscopic
systems, when left to themselves, reach after a sufficiently long time a steady
state, in which the macroscopically observable quantities don’t change in time.
These states are called "equilibrium states”. In the present course we will con-
sider only thermodynamic equilibrium states and transitions between them. The

statements made above can be quantified by the following basic definitions:

o Thermodynamic system: Any macroscopic system consisting of N equal
entities (e.g. particles, magnetic moments (spin)...) with v N > 1.

(See statistical mechanics for the relevance of the square root.)

e A thermodynamical state is a state of the system which is completely de-

termined by a set of macroscopic thermodynamic state variables.

e A state variable X is a physical quantity characterized by the fact that a
thermodynamic state is uniquely determined by specifying the value of X

and it does not depend on the history by which this state has been reached.

In other words: If the thermodynamic state of a system is changed,
the amount by which a state variable changes is independent of the path in
parameter space taken for this change. For a non-state variable the change
will, in general, depend on the the path. This distinguishes state variables

from non-state variables.
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Figure 2.1: A gas undergoing temperature, volume and pressure change

Examples:

— pressure p
— volume V

— temperature T

— particle number N

— chemical potential p (defined later)
— magnetic field B

— magnetization [i

— electric field E

— electric polarization P
are state variables, but "heat" Q is not a state variable.
e One distinguishes intensive and extensive quantities:

— untensive:

volume V — aV :  z(aV) =z(V)

x is invariant under scaling of the system volume
— extensive:

volume V — aV . z(aV) = azx(V)

x scales with the system volume
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e Thermodynamic equilibrium.:

State in which the state variables do not change with time.

e The functional relation between all the (relevant) state variables in equilib-
rium is called equation of state: f(P,V,N,T) =0

E.g.

for the ideal gas:

pV = NkgT (2.1)

Equations of state will be considered in more detail later.

Thermodynamic changes of state:

1.

quasistatic:
slow change, so that the system remains (nearly) in equilibrium during

the change for each momentary set of state variables.

reversible:
system returns to its initial state upon time reversal (i.e. by running
all processes as under reversed time). Entropy change AS = 0, see

below.

irreversible:

system does not return to its initial state upon time reversal, AS > 0.

isothermal:

AT =0 (2.2)
adiabatical:

AQ =0 (2.3)

process without heat exchange

1sobar:

AP =0 (2.4)
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7. 1sochor:
AV =0 (2.5)

e A heat bath is a system (heat reservoir) which is large compared to the

system under consideration, and which is kept at constant temperature 7.

V A
ph isobar
P2
isotherm
pP1=Ps
P3>Po
T3 >T2
T,>T,
=T, >
\% T

Figure 2.2: Examples for a change of state of an ideal gas

Note: These examples preclude the quantity 7" which will be defined only

below.
2.3 State variables and exact differentials

The definition of a state variable (independence of path) can be put in mathe-

matical terms:

Let F(xy,...,x,) be a function of the variables zy,...,z,. The differential of

Fis
dF =Y <8F) dz; (2.6)
i {zjzi}

i—1 aZL’Z

Partial derivative of I with respect to x;, keeping all z;, j # 4, fixed.

If the {z;} are state variables, then the partial derivatives commute:

[ai (gF) ] = [aa (S—F) ] , iwk=1,....,n (2.7)
Tk Ti {zj4i} {(@ien} i Tk {@1er} (x4}
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[Foerariables: {8%2 <g—£) ] — {8%1 <g_£> ] ]
xT2 1 1 .

For a non-state variable the partial derivatives do not commute in general.
If the partial derivatives commute 2.7, then dF (equation 2.6) is called ezact
differential.

Macroscopic consequence of commuting partial derivatives:

X-A
2 F(B)

B=(x,®)...x®))
Cy

F(A)

A=(x,A)..x(A)

-
Lol

Xy

Figure 2.3: Independence of a thermodynamic state change on the path taken

Independence of the path taken:

F(B)—F(A):/ABdF _ /C ;(gf){}dx (2.8)

— /‘ E:(gF) dx; (2.9)
C2 | i=1 Li/ (s}

The property that the differentials of all state variables are ezact implies interest-
ing relations between the state variables for a path for which F(xy,...,z,) =0,
which are purely founded in this mathematical structure, and which are therefore

very general.
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Let x,y, z, w be state variables, F'(x,y, z,w) = 0.

Proof of 2.10 and 2.11:

F(z,y,2) = 0

r = x(y,2),

-
Y/ .
0

o

.- &)
Y.

varying z, z independently:
Oz
oy ),

or\ (o) (0:
oy ). \0z ), \oz ),
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(2.10)
(2.11)

(2.12)

(2.13)

(2.19)

(2.20)

Although these relations follow trivially from any function of multiple variables

with exact differential, they imply useful relations between the state variables

which can be used in describing state changes.
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Summary of thermodynamic concepts

e Thermodynamical (equilibrium) state:

Stationary state of a system with many degrees of freedom (particles, spins,
...) which is reached after suffiently long time, if there is no external action

on the system. (Only equilibrium states considered here.)

e State variable:

Physical quantity which has a wnique value for a given thermodynamic
state. A complete set of state variables determines a thermodynamic state

uniquely.

e State equation:

F(p,V,N,T,..)=0 (2.21)

Relation between state varibales for a given system.

e Mathematical characterization of state variables X, Y

Partial derivatives of F' wrt. X,Y commute,

o (a0 |, = lax (7)), b

for any pair X, Y, i.e. F' has an ezact differential wrt. X, Y

OF OF
dF = (8—X)Y dX + (5’—Y)X dy (2.23)

This implies that the values of X,Y in a thermodynamic state A is inde-
pendent of the path by which A has been reached.
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2.4 The fundamental laws of thermodynamics

2.4.1 The first law: energy conservation

In any change of state the change of the total energy of a system (=internal
energy U) is equal to the energy added to the system, minus the energy

extracted.

We express the change dU during an infinitesimal state change in terms

of the changes of the extensive variables:
— Mechanical work done by the system:

AW = —F - di — —g (Adz) = —pdV (2.24)

|
|
|
|
:
dx|

Figure 2.4: Mechanical work

— Change of energy due to increase of particle number:

wdN it = chemical potential

= change of energy due to adding one particle
(2.25)

— Heat is a form of energy (undirected motion of particles).

dQ () is extensive, but not a state variable,

as will be seen below
(2.26)
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The energy conservation is then written in terms of the extensive variables

(infinitesimal state change):

dU = dQ—pdV + pdN | +(possibly other variables) (2.27)

For an infinitesimal state change, the law of energy conservation is then

written in terms of the extensive variables as

dU = dQ—pdV+pudN (2.28)

1st law of thermodynamics. U is state variable.

2.4.2 The second law of thermodynamics: Heat and

the state variables temperature 7' and entropy S

We have an intuitive concept of "hot" and "cold", which is a unique prop-
erty of a thermodynamic state, i.e. corresponds to a state variable.

It is clear that "heat", as an amount of energy, is not a state variable, be-
cause we can add a given amount of heat energy (e.g. by burning a fixed
amount of gasoline) to a cold body as well as to a hot body. This means
that heat does not characterize the state of a system uniquely.

Therefore, we need to look for a different state variable quantifying the
property "hot" or "cold". This leads to the quantity temperature 7" and at
the same time to the concept of the state variable entropy S.

The definition of 7" is (and has to be !) operational, i.e. through the de-

pendence of other state variables on T

Basic statement for the definition of temperature:

Two thermodynamic systems which are in heat contract (i.e. can freely
exchange heat) are at the same temperature (after sufficiently long time).
This means that temperature can be defined for a specific, conveniently
chosen system. The temperature of any system can then be determined by
comparison (heat contract) with the reference system. This is the basis for

any thermometer.
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(a) The ideal gas thermometer (ideal gas T scale)
The equation of state for an ideal gas (sufficiently dilute so that atomic

interactions are negligible) is known experimentally:

a(N,T)
= 2.29
p v (2.29)
where the proportionality constant o depends on the particle number
N of the gas,
a~N (2.30)

and on the property how "hot" the gas is. The hotter the gas, the
bigger a.
We define the temperature T' through the simplest possible, monoton-

ically increasing dependence of o on 7.

an~T (2.31)
We then have

a = NkgT (2.32)
and the ideal gas law

pV = NkpT. (2.33)

The universal proportionality constant kp has units [energy /temperature]
and is called Boltzmann constant.

The ideal gas law implies that there is an absolute zero point of T,
since pV > 0.

The numerical value of kg depends on the scale chosen for the tem-

perature 1.

Convention:

The temperature interval between the freezing and the boiling point
of water at atmospheric pressure corresponds to 100 degrees Kelvin,
100K (Kelvin scale).

In these units the freezing point of H,O is at 273,15K, and kg takes
the value:

kp=1,38- 10—23% Boltzmann constant (2.34)
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at atm. pressul
absolute FEQ I—_b_O P
0 freezing boiling
I I i = TIK]
0 273,15 373,15 Kelvin scale

|l«— 100K —»]

| i = T0°C]
-273,15 0 100 Celsius scale

Figure 2.5: Temperature scales

The conventions
—a~T, ie Ty=0and

- Tboil - Tfreeze = 100K

determine the temperature 7" uniquely as a state variable and give a

} Kelvin scale

prescription how to measure it via the ideal gas law.

Celsius scale:

Tooi™ = Tieese™ = 100C (2.35)
Theewe” = 0C (2.36)

(Tt — 973 15C and o = TCsus 4 97315 C)

For convenience, we will use the Kelvin scale only.
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(b)

The second law of thermodynamics

Through numerous observations of processes in nature it has been
established empirically:

There does not exist any thermodynamic change of state, whose only

consequence is that

(1) an amount of heat is taken from a heat reservoir and is completely

transferred into mechanical work, or

(2) an amount of heat is taken from a colder heat reservoir and given

to a warmer heat reservoir.

heat reservoir 1,.T

O

heat reservoir 2, T

Figure 2.6: A heat engine working between two heat reservoirs 1, 2

(c)

For the further considerations we define:

A Thermodynamic or heat engine is a cyclic process, where

(1) a working system takes up an amount of heat ()~ from a heat

reservoir at 7T%,
(2) gives an amount of heat Q- to another heat reservoir at T, and

(3) performs the mechanical work AW > 0.

The Carnot definition of temperature 7' and entropy S
Another definition of temperature is given via the so-called Carnot
cycle. It is of physical conceptual use, since it involves explicitly the
heat transfer, and hence the concept of state variables or non-state
variables.

It is also of historical importance, since thermodynamic cycles played
an essential role in the development of thermodynamics during the
19th century.
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The Carnot cycle allows to transform undirected thermal motion (heat)

into directed motion (mechanical work):

p A
(Y) 1
isothermal

AQ expansion AQ; >0
AQyz>0
T.>To
AN=0

AQyq=
adiabatic adiabatic
4 £Q,5=0
T. o3
isothermal compression
Y
X)
Figure 2.7: Carnot process
1 — 2. isothermal expansion contact with heat bath 1
T = const. = T- (slow)
2 — 3 : adiabatic no contact with heat bath
3 — 4 : isothermal compression contact with heat bath 2
T = const. = T- (slow)
4 — 1: adiabatic compression no contact with heat bath
Efficiency of the cycle:
hanical k AW,
y— mec ar%lc.a work tot per cycle (2.37)
heat injected AQ12

(heat added to system is counted > 0, work done by system is counted

< 0. Energy always counted wrt. the system, not reservoir.)
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Since the internal energy is a state variable, its total change around a

cycle must be zero:

0= A[]‘cot = A62‘50‘5 - AI/Vtot (238)

= AQ12 - AC943 - AWtot (2-39)

AWtot = AQH - AC943 (2-40)
AQu3 :

=1- A >0 2.41

n=1 20, < 1 | since AQus (2.41)

The Carnot process is the most efficient heat engine.

Proof:
Assume that there is a heat engine A with n4 > 7. Then, let engine
A and Carnot engine C' work between the same heat reservoir at 7.

and T.. A can drive C' as a cooling machine:
T>> T<

ALY ¢ AQr T

DQ,AW=0Q)3 AQy3=AQ AW

T

Figure 2.8: Coupled heat engines

Since n4 > 1,

AW AW

AQA > AOm or AQq2 > AQ{B (242)
12
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Total heat transfer from 7. to T%:

AQ = (AQu—AW) — (AQ{E — AW) (2.43)
= AQu — AQY, >0 (2.44)

Forbidden by 2nd law! 2

Definition of temperature

using the efficiency of the Carnot cycle:

It follows from the previous argument that all Carnot engines operat-
ing between the same heat reservoirs 7%, T. have the same efficiency
7. Therefore, n does not depend on the state variables of the system
involved in the cycle, but only on the temperatures of the resrvoirs
1, T.:

AQu3

AQIQ = f(T>7T<> (245)
Consider now two Carnot engines coupled to each other via heat
transfer:

AQ43 /

= 1., T 2.46
ol - (240

same function f

AQG5 !

= ,T. 2.47
AD =TT (247
AQss

= 1., T. 2.48
A2 =TT (249

= Functional equation for f(7%,7-):

f(T>7 T<) = f(T>7 T/) f(Tla T<) (2-49)
It has the solution
o g(T%)

with a universal function g(7"), which must be monotonically decreasing,

A T
Qu _ 9(T) <1 in order forn >0 . (2.51)

AQq2 - 9(T<)
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YA

5 T<
X
Figure 2.9: Two coupled Carnot processes
The Kelvin temperature scale is defined through the choice
1
T)=—. 2.52
o) = = (2.5?)
Note the ambiguity in the definition. Hence,
AQu3 1.
—1_ —1-== 2.53
T T AT T 259

It is shown within the microscopic kinetic gas theory that both definitions

of the Kelvin scale are equivalent.
Definition of the state variable entropy

e For any Carnot cycle we have

Q3 T
=1- =1-—= 2.54
AQq2 T (2:54)

and with AQsy = —AQ4 <0
AQ12 + AC934 —0. (255)

T =
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e Any arbitrary reversible (— see discussion below) cyclic process can be

decomposed into an infinite number of infinitesimal Carnot cycles.

Figure 2.10: Any cyclic process can be decomposed into (infinitesimal) Carnot

cycles

The amounts of heat exchanged between neighboring Carnot processes in the
interior of the area compensate each other, so that only the contributions from
the boundaries remain.

= For a general reversible cycle:

0Q
f? =0 (2.56)

(Non-exact variations will be denoted by greek 6@Q).)

The quantity dS = %Q is a complete differential of a state variable. The cor-

responding state variable
0Q .
S = T (for a reversible process) (2.57)

is called entropy. It will be related to the "disorder” in the system in statistical

mechanics.
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Remark:
For a reversible process the relation dS = % holds and is an exact (— complete)
differential, since it was derived for a collection of reversible Carnot cycles. For

irreversible processes the relation
0Q 0Q
S= [ —, dS=— 2.58
|5 - (2.55)

no longer holds, but the state variable S can still be defined. The relation
dS « 0@) will be discussed next.

The behavior of the entropy during thermodynamic changes of state:
reversible and irreversible processes
All the process steps of the Carnot cycle are, by construction, performed in a

time reversible way:

e The isothermal expansion (1— 2) and compression (3 — 4) are done in-
finitely slowly, so that the working system is in equilibrium with the reser-
voir (7% and T, respectively) at each instant of time. Such a process
15 always reversible. This is because during each infinitesimal time inter-
val between two equilibrium states only an infinitesimal amount of heat is
transferred between system and reservoir. Therefore, each infinitesimal step
is reversible. That the infinite series of infinitesimal steps is still reversible
is at the heart of the postulate of the 2nd law and can be understood in a
deeper way only from the microscopic concept of entropy as a measure for

"disorder” in statistical mechanics. The problem will be re-visited there.

e The adiabatic expansion (2 — 3) or compression (4 — 1) are done without
contact of the system with the reservoir (infinitely fast). Therefore, the
internal (potential) energy of the system is completely transformed into
mechanical work (since no other form of energy available), i.e. the adiabatic

process is reversible.
In practice, however, the processes described above are not ideal:

1. No process can be done infinitely slowly. As a consequence, turbulences
(or other disturbances) are generated in the gas (system), are ultimately
transformed into additional indirected motion in the gas (i.e. heat) and

lead to irreversible losses.
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reservoir

[ System }

Figure 2.11: Reversible infinitesimal heat exchanges 0Q);

2. Turbulences with the same effect are also generated during the fast, adia-

batic processes.

3. No system can be completely isolated from its surroundings, i.e. the adia-

batic process itself is an idealization.

4. Frictional losses occur in real systems during each of the steps.

— In an srreversible cyclic process less than the maximum possible
fraction of the heat extracted from reservoir 7% is transformed into
mechanical work.

[.e. cyclic processes which include irreversible processes have a
smaller efficiency than the Carnot cycle. Conversely, all reversible

cyclic processes have the same maximum efficiency 7.

Hence, we have

=—Qu3
~
Q34

irrev — 1+
! Qo

AQ1o N AQ34
T. T

§52 <0 (2.61)

for irreversible processes.

< n=1-= (2.59)

< 0, and infinitesimally (2.60)

Note: T is an equilibrium concept and may not even be defined in an

arbitrary irreversible process.
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Or for state change 1 — 2:

2 2 2
1 T 1 T 1
v ~— ~—

= In a thermally isolated system (0QQ = 0) the entropy S cannot

decrease in any change of state 1 — 2:

AS12>0 thermally isolated systems (2.63)

This is a mathematical restatement of the 2nd law.

It follows an important, central conclusion of thermodynamics:

Since any system, left to itself (thermally isolated), reaches for time ¢ — oo
the equilibrium state (= definition of equilibrium), and since this final state is
reached through a succession of state changes with AS > 0 each, the exact state-

ment holds:

In thermodynamic equilibrium, for any set of values of the relevant state variables
(N, V, é, ...) which can be fixed ezternally, the entropy S of the system takes

the maximum value as a function of the other variables, as illustrated in figure
12.

2.4.3 The third law of thermodynamics

The entropy of any closed (no heat, particle, ... exchange) thermodynamic sys-

tem, which has a non-degenerate ground state, vanishes for 7" — 0:

lim S(T) = 0 (2.64)

T—0

The requirement "non-degenerate ground state” is the essential condition for the
3rd law. Hence, it is a consequence of quantum mechanics, since in classical me-
chanics there are many degenerate minimum energy states possible for a many-

particle system due to the classical distinguishability of particles. This problem
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S Smax

(averaged state \‘

variables, fixed
externally)

V,N

bl

-

non—ste?e variables
(local T,p, N, etc.
microscopic coordinate
of particles)

Figure 2.12: In equilibrium the entropy assumes a global maximum as a function

of “non-state” variables.

is only lifted by the nondistinguishability of equivalent particles in quantum me-
chanics. Therefore, quantum mechanics has profound consequences even on the
properties of macroscopic systems. This will be discussed further in statistical

mechanics.

2.5 The fundamental relation of thermodynamics

The relation between the infinitesimal changes of the state variables manifested in
the 1st law can be cast into a non-infinitesimal relation using a scaling argument:

The 2nd law implies for reversible processes:
0Q =1TdS (2.65)

i.e. from the Ist law (energy conservation):

1 P W
ds = TdU + ?dV — TdN (2.66)
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(S is a homogenous function of an external variable.)
Hence, the derivatives of S wrt. U, V, N are

95\ _
o)y
(7)., -
WV )un
oS 1

o0 _ K 2.69
(M)w T (269)

It follows from equation 2.66 that S is a function of the extensive variables U, V,

(2.67)

Nl S

(2.68)

N (which are proportional to the system size, "scale” with system size) in such a

way that S scales with U, V', N, i.e. S is also proportional to the system size:

The entropy S is an extensive quantity.

Then the scaling relation holds,

(AU, AV, AN) = AS(U,V, N) (2.70)
which implies by differentiation wrt. A and A — 1,

d oS oS oS

—(\S) =8 =2 — —N 2.71

N T AR (2.71)
and using %, %, g—]‘\qf above,

TS =U+ PV —uN (2.72)

Fundamental relation (2.73)
& U=TS5—-PV+uN . of thermodynamics '

S is a homogenous function of U, V', N.

It can be seen as a non-infinitesimal form of the 1st law, where now both the
extensive variables S, V, N and the intensive variables 7', P, u can be varied
(by changing e.g. external parameters). The total differential of the fundamental

relation implies another relation between thermodynamic derivatives:

TdS + SdT = dU + PdV + VdP — udN — Ndy (2.74)
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and with the 1st law

dU =TdS — PdV + pdN (2.75)
S V . .
dp = ——dT + —dP Gibbs-Duhem-relation (2.76)
N N
Using particle density p = % and entropy density s = % one obatins:
1 1
dp = ——sdl' + —dP (2.77)
P P

The fundamental relation can be used to derive the equations of state for specific
state changes from the general equation of state, F'(P,V,T,...) = 0.

Equation for an ideal gas:

F(P.V,T) = PV —NkgT =0 general EOS (2.78)

= Fso—o(P,V,T) = 0 adiabatic equation (2.79)
F.R.

Fyr—o(P,V,T) = 0 isothermal equation, etc. (2.80)

2.6 Thermodynamic potentials

The internal energy U of a system describes (but is not equivalent to, since n < 1)
the energy stored in the system, i.e. potential energy, that can be transformed

into mechanical work. It is, therefore, often called a thermodynamical potential.

Example:

AU = AQ — AW (2.81)

work done by the gas:

AW = —(AU —AQ) >0 (2.82)
IAW| < AU (2.83)
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A Po

-

Ax

Figure 2.13: Mechanical work AW done against external pressure Fy

The 2nd law implies a minimum principle for U:

For reversible and irreversible processes 1 — 2 we have

0Q) = TdS  for reversible processes (2.84)
0QQ < TdS for irreversible processes (2.85)
2 2
1 1
AQ

i.e. in a closed system with S, V, N — const. and S a fixed variable in U (— see
below):

(AU)syn <0 for any processes in a closed system. (2.87)

The internal energy U has been written as a function of all the extensive variables
of the system, S, V, N, ...

U is, therefore, useful to describe processes where S, V, N, ... are fized from
outside, i.e. the minimum of U as function of S, V, N (dS, dV, dN —0) is
determined for given S, V', N, and hence the corresponding T', P, p, ...

— exercises

— examples (below)

In many cases, S, V, N (especially S) are not determined from outside. It

)

is then useful to write the "potential energy” of the system as function of the
relevant, externally determined variables, i.e. of intensive or extensive variables,

or a combination. For each extensive variable there is an intensive quantity
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which is the derivative of U wrt. the extensive one; both variables form a pair of

canonically conjugated variables:

ou
oU
;e () o
ou
N — U= (a—N)SJ/ etc. (290)

We want to write U not as a function of .S but as function of 7', the derivative of

U wrt. S.

The standard way to write a given function f(y) locally in dependence of 1T = g—g
is the Legendre transformation.
fly): fo= Tldy (2.91)
g(Il) = f— Iy : dg = df —Idy —ydll = —ydIl (2.92)
~———

=0

Recipe: f — g: subtract pair of conjugated variables.

Example: Classical mechanics

Transformation from Lagrange function L(z, # ) to Hamilton function H (z,p),

y
where the coordinate x is an unchanged variable, the velocity & corresponds to

y, and the classical momentum p = % corresponds to II:
oL
H=L—-z— 2.93
T (2.93)
Note:

e [t is only necessary to perform a local transformation in the vicinity of some

given value of the variable y, since we are looking for the minimum of f.
e Locally, the Legendre transformation is unique.

e If f(y) has a minimum (extremum) at a given point y then g¢(II) has a
minimum (extremum) at the same point, (only expressed by the variable

IT), and vice versa.
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Application to thermodynamics:

external fixed variables

thermodynamic potential

S, P, N

enthalpy
H(S,P,N)=U+ PV =ST + uN
dH =TdS + VdP + pdN

TV, N

free energy (Helmholtz free energy)
F(T,V,N)=U —TS = —PV + uN
dF = =8dT + PdV + pdN

free energy (Gibbs free energy)
G(T,P,N)=U—-TS+ PV = uN
dG = —SdT + VdP + pdN

grand canonical potential
NT,V,u)=U—-TS —uN = —-PV
dQ) = =SdT' — PdV — Ndpu

(for systems with particle exchange)

S, V. N

U(S,V,N) =TS — PV + uN
dU = TdS — pdV + pdN

37
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Relations between thermodynamic derivatives: Maxwell relations

From dU = T'dS — pdV + pdN it follows:

T = ou (2.94)
08 VN
ou
P = —| = 2.95
(7)., )
ou
= [ — 2.96
= ()., 240
. — .U U . .
Taking another derivative and using b2y — dyos for state variables, one obtains
immediately
ory _ _(op
WV )sn 9S )y n
8_T = % M 1l relati (2.97)
N . = |39 . axwell relations .
oPN - (or
ON SV B ov SN

and similar relations for other variables.

2.7 Thermodynamic response functions

The response of a thermodynamic system to the change of external parameters,
like temperature 7', magnetic field g, pressure p, etc., is described by the re-
sponse functions. If these external functions are time-independent, the response

functions can be expressed as derivatives of the thermodynamic potentials.

2.7.1 Thermal response functions

The thermal response functions or specific heats ¢ describe the change of the heat

content d(Q) of a system (per volume) due to a change of temperature 7" in a
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reversible process:

_0Q dS
= a5 = Tﬁ (2.98)

where it must be specified, which other variables are kept constant during that

C

process.

For the N — p — V system, the particle number N and either V or p are kept

constant. Hence, one has

oS
T )y n
1 (2.100)
dF = SdT —p%‘é—l—u%%\_f/ (2.101)
O*F
_ _7 <_) (2.102)
o1? )y n
> 0 (2.103)

or equivalently, since dU = 6Q) — pdV + udN,

ou
v = (8_T)V,N (2.104)
a8
¢ = T(—) (2.105)
P ), n
1 (2.106)
dG :SdT—V\dg/%—uQ]/_(\)f/ (2.107)
=0 =
0*G
= -T (—) (2.108)
T2 )
> 0 (2.109)

or equivalently, with dH = 6Q — Vdp + pudN,

OH
Cp = (8—T)p’N (2110)
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It follows from the second law of thermodynamics (formulation (2)) that the

specific heat is positive:

cy >0, ¢, >0 (2.111)

2.7.2 Mechanical response functions

The compressibility k describes the change of volume of a system due to a pressure

change, normalized to its volume:

1 [/oV 1 [0°G

- (== - (2= > 2.112

. V(ap)T,N v<8p2)T,N_0 ( )
1 [0V 1 (0?°H

" 4 (8p)S,N 4 <8p2)s,N_O (2113)

The stability of a physical system requires that the compressibility is not negative

(no spontaneous volume collapse).

The compressibility can also be expressed in terms of the density n = %

1 /on V N\ oV
— i N S B 2.114
n <8p)N N ( V2) 8]) R ( )

The change of volume due to a temperature change is given by the thermal

expansion coefficient o

1 [fov 1[0 (0G >
v (o), v lar (5,10 i

The heat expansion « can be positive or negative.

2.7.3 Magnetic response functions

The magnetic susceptibility x7 s is the response of the magnetization M to a

change of the external magnetic field B:
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oM 82FTB
— (2= — J 211
xr <aB)T < o ) (2.116)
7
dFrs = —SdT — pdV + MdB
oM\ (PFsp
Xs = <8—B)S = < i )S (2.117)
7

dFsp = SdT —pdV + MdB

where the “free energies” of a magnetic system, Fr g, Fg g are understood as the

Legendre transforms of U with respect to 7" and B and to S and B, respectively.

The susceptibility is positive for a para- or ferromagnetic system and negative

for a diamagnetic system.

The relations given in 1.6.1-1.6.3 show generally, that the response functions can
be expressed in terms of the second derivatives of an appropriate thermodynamic

potential.

2.7.4 Relations between thermal and mechanical response

functions

The following relations hold:

@ _ T (2.118)
Cy Ks
a2
cp—cy = TV-L>0 (2.119)
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Proof:

e Relation (1):

os (Op/oT)s  (V/0S) ‘ (8_V>
S (3_T)p _ /Sy _ ow/0S |p  \%)p _Kr (2.120)
o (&) T @Vons T evien|  (av) kg '
orJv. (9v/aS)r @p/3T) | g ) g

where we used in the numerator, that the total differential of p vanishes for

Cp:

3l

0=dp= (g—g)TdS+ <§—;)5de <g—§)p: —EZ_;j (2.121)

and in the denominator, that the total differential of V' vanishes for ¢y :
oV 1% ds (

0=dV=(—=—| dS — | AT = =] =-—
(5s),95+ (5r), 7= (57), (

e Relation (2):

cp—cV:T{<g—§)p— (g—;)v} (2.123)

(i) We use the chain rule to express the T-derivative at p = const. by a

T-derivative at V' = const. (see also above):

915

V|
’%|<

)s (2.122)

)

uE
S

oS 0
(8—T)p = 8—TS(T, V(p, T)) - (2124)
oS 08 oV
= — — — 2.12
(MJV+<MJT<MJP (2.125)
Vv

(ii) (%)T is expressed using a Maxwell relation, employing the thermo-

dynamical potential F"
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S = —(%)V (2.126)
(), - -3, e
- <g_§)v (2.128)

Since in the last expression dV = 0, we have

oV ov
0 = dV=|—) dp+ (=) dT 2.129
), (ar), 2
0
(@) _ Gy ey o (2.130)
oT oV (—VI{T) KT .
v (ap)T
and finally
Op ov ol
_ = —_— — = — > 0. .
cp—cy =T <8T)V (8T)p TVHT >0 (2.131)

Physically ¢, > cy, because for p = const. part of the heat added is not
kept in the system but is transformed to mechanical work. Thus, more heat

is necessary to make a given temperature change than in the case V' = const.

Similarly, one can prove the magnetic relations:

s _ xr
CMm Xs
0 (2.132)
Cp —Cpy — T—ZO

XT
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