
Chapter 2
Thermodynami
s
2.1 Des
ription of thermodynami
 states and trans-formations2.2 Introdu
tory remarks and basi
 de�nitionsThermodynami
s is a phenomenologi
al theory in 
ontrast to the mi
ros
opi
theories 
onsidered so far, i.e. it does not refer to the mi
ros
opi
, quantum me-
hani
al behavior of matter, but is based on the observation of the ma
ros
opi
properties of "large" systems and the relations among these properties, where"large" requires further spe
i�
ation.As a result, thermodynami
s 
annot make absolute statements derived from mi-
ros
opi
s, but 
an only des
ribe the dependen
e of ma
ros
opi
 properties onea
h other. Any de�nition of a new quantity not known outside of thermody-nami
s, like temperature T , entropy S, must therefore be impli
it through thesedependen
ies. This leaves some sense of "in
ompleteness" , like in any phe-nomenologi
al theory.On the other hand, be
ause it does not rely on detailed mi
ros
opi
 propertiesor assumptions, thermodynami
s is 
ompletely general and 
losed in itself. It isthe strength of thermodynami
s that it is appli
able to a vast variety of systems.
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12 CHAPTER 2. THERMODYNAMICSEinstein about thermodynami
s"Eine Theorie ist desto eindru
ksvoller, je gröÿer die Einfa
hheit ihrerPrämissen ist, je vers
hiedenartigere Dinge sie verknüpft und je weiterihr Anwendungsberei
h ist. Deshalb der tiefe Eindru
k, den die klas-sis
he Thermodynamik auf mi
h ma
hte. Es ist die einzige physikalis-
he Theorie allgemeinen Inhalts, von der i
h überzeugt bin, dass sie imRahmen der Anwendbarkeit ihrer Grundbegri�e niemals umgestoÿenwerden wird."Thermodynami
s has been developed during the 19th 
entury, driven by the needto understand thermodynami
 
y
li
 pro
esses and to develop heat engines thatwere able to transform heat into me
hani
al work. Therefore, the 
entral de�-nitions of thermodynami
s have an operational 
hara
ter, i.e. are derived from
y
li
 pro
esses.Thermodynami
s is based on our every-day observation that most ma
ros
opi
systems, when left to themselves, rea
h after a su�
iently long time a steadystate, in whi
h the ma
ros
opi
ally observable quantities don't 
hange in time.These states are 
alled "equilibrium states". In the present 
ourse we will 
on-sider only thermodynami
 equilibrium states and transitions between them. Thestatements made above 
an be quanti�ed by the following basi
 de�nitions:
• Thermodynami
 system: Any ma
ros
opi
 system 
onsisting of N equalentities (e.g. parti
les, magneti
 moments (spin). . .) with √

N ≫ 1.(See statisti
al me
hani
s for the relevan
e of the square root.)
• A thermodynami
al state is a state of the system whi
h is 
ompletely de-termined by a set of ma
ros
opi
 thermodynami
 state variables.
• A state variable X is a physi
al quantity 
hara
terized by the fa
t that athermodynami
 state is uniquely determined by spe
ifying the value of Xand it does not depend on the history by whi
h this state has been rea
hed.In other words: If the thermodynami
 state of a system is 
hanged,the amount by whi
h a state variable 
hanges is independent of the path inparameter spa
e taken for this 
hange. For a non-state variable the 
hangewill, in general, depend on the the path. This distinguishes state variablesfrom non-state variables.



2.2. INTRODUCTORY REMARKS AND BASIC DEFINITIONS 13
state 2

(P2, T2)

state 1

(P1, T1)

C1

C2

T

P

Figure 2.1: A gas undergoing temperature, volume and pressure 
hangeExamples:� pressure p� volume V� temperature T� parti
le number N� 
hemi
al potential µ (de�ned later)� magneti
 �eld ~B� magnetization ~µ� ele
tri
 �eld ~E� ele
tri
 polarization ~Pare state variables, but "heat" Q is not a state variable.
• One distinguishes intensive and extensive quantities:� intensive:volume V → αV : x(αV ) = x(V )

x is invariant under s
aling of the system volume� extensive:volume V → αV : x(αV ) = αx(V )

x s
ales with the system volume



14 CHAPTER 2. THERMODYNAMICS
• Thermodynami
 equilibrium:State in whi
h the state variables do not 
hange with time.
• The fun
tional relation between all the (relevant) state variables in equilib-rium is 
alled equation of state: f(P, V, N, T ) = 0E.g. for the ideal gas:

pV = NkBT (2.1)Equations of state will be 
onsidered in more detail later.Thermodynami
 
hanges of state:1. quasistati
:slow 
hange, so that the system remains (nearly) in equilibrium duringthe 
hange for ea
h momentary set of state variables.2. reversible:system returns to its initial state upon time reversal (i.e. by runningall pro
esses as under reversed time). Entropy 
hange ∆S = 0, seebelow.3. irreversible:system does not return to its initial state upon time reversal, ∆S > 0.4. isothermal:
∆T = 0 (2.2)5. adiabati
al:
∆Q = 0 (2.3)pro
ess without heat ex
hange6. isobar:
∆P = 0 (2.4)



2.3. STATE VARIABLES AND EXACT DIFFERENTIALS 157. iso
hor:
∆V = 0 (2.5)

• A heat bath is a system (heat reservoir) whi
h is large 
ompared to thesystem under 
onsideration, and whi
h is kept at 
onstant temperature T .
isotherm

V

P

T3 >T2

T2 >T1
T1

V

T

p2

p1>p2

p3>p2

isobar

Figure 2.2: Examples for a 
hange of state of an ideal gasNote: These examples pre
lude the quantity T whi
h will be de�ned onlybelow.2.3 State variables and exa
t di�erentialsThe de�nition of a state variable (independen
e of path) 
an be put in mathe-mati
al terms:Let F (x1, . . . , xn) be a fun
tion of the variables x1, . . . , xn. The di�erential of
F is

dF =
n∑

i=1

(
∂F

∂xi

)

{xj 6=i}

dxi (2.6)Partial derivative of F with respe
t to xi, keeping all xj , j 6= i, �xed.If the {xi} are state variables, then the partial derivatives 
ommute:
[

∂

∂xk

(
∂F

∂xi

)

{xj 6=i}

]

{xl6=k}

=

[

∂

∂xi

(
∂F

∂xk

)

{xl6=k}

]

{xj 6=i}

, i, k = 1, . . . , n (2.7)
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[For 2 variables: [

∂
∂x2

(
∂F
∂x1

)

x2

]

x1

=

[

∂
∂x1

(
∂F
∂x2

)

x1

]

x2

.]For a non-state variable the partial derivatives do not 
ommute in general.If the partial derivatives 
ommute 2.7, then dF (equation 2.6) is 
alled exa
tdi�erential.Ma
ros
opi
 
onsequen
e of 
ommuting partial derivatives:
F(B)

F(A)

A=(x1
(A)...xn

B=(x1
(B)...xn

(B))

(A) )

x2

x1

C1

C2

Figure 2.3: Independen
e of a thermodynami
 state 
hange on the path takenIndependen
e of the path taken:
F (B) − F (A) =

∫ B

A

dF =

∫

C1

[
n∑

i=1

(
∂F

∂xi

)

{xj 6=i}

dxi

] (2.8)
=

∫

C2

[
n∑

i=1

(
∂F

∂xi

)

{xi6=j}

dxi

] (2.9)The property that the di�erentials of all state variables are exa
t implies interest-ing relations between the state variables for a path for whi
h F (x1, . . . , xn) = 0,whi
h are purely founded in this mathemati
al stru
ture, and whi
h are thereforevery general.



2.3. STATE VARIABLES AND EXACT DIFFERENTIALS 17Let x, y, z, w be state variables, F (x, y, z, w) = 0.
(

∂x

∂y

)

z

=
1

(
∂y
∂x

)

z

(2.10)
(

∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1 (2.11)
(

∂x

∂w

)

z

=

(
∂x

∂y

)

z

(
∂y

∂w

)

z

(2.12)
(

∂x

∂y

)

z

=

(
∂x

∂y

)

w

+

(
∂x

∂w

)

y

(
∂w

∂y

)

z

(2.13)Proof of 2.10 and 2.11:
F (x, y, z) = 0 (2.14)

x = x(y, z), y = y(x, z) (2.15)
dx =

(
∂x

∂y

)

z

dy +

(
∂x

∂z

)

y

dz (∗) (2.16)
dy =

(
∂y

∂x

)

z

dx +

(
∂y

∂z

)

x

dz in (∗) : (2.17)
dx =

(
∂x

∂y

)

z

(
∂y

∂x

)

z

dx +

[(
∂x

∂y

)

z

(
∂y

∂z

)

x

+

(
∂x

∂z

)

y

]

dz (2.18)varying x, z independently:
(

∂x

∂y

)

z

=
1

(
∂y
∂x

)

z

(2.19)
(

∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y

= −1 (2.20)Although these relations follow trivially from any fun
tion of multiple variableswith exa
t di�erential, they imply useful relations between the state variableswhi
h 
an be used in des
ribing state 
hanges.



18 CHAPTER 2. THERMODYNAMICSSummary of thermodynami
 
on
epts
• Thermodynami
al (equilibrium) state:Stationary state of a system with many degrees of freedom (parti
les, spins,

. . .) whi
h is rea
hed after su�ently long time, if there is no external a
tionon the system. (Only equilibrium states 
onsidered here.)
• State variable:Physi
al quantity whi
h has a unique value for a given thermodynami
state. A 
omplete set of state variables determines a thermodynami
 stateuniquely.
• State equation:

F (p, V, N, T, . . .) = 0 (2.21)Relation between state varibales for a given system.
• Mathemati
al 
hara
terization of state variables X, YPartial derivatives of F wrt. X, Y 
ommute,

[
∂

∂Y

(
∂F

∂X

)

Y

]

X

=

[
∂

∂X

(
∂F

∂Y

)

X

]

Y

(2.22)for any pair X, Y , i.e. F has an exa
t di�erential wrt. X, Y :
dF =

(
∂F

∂X

)

Y

dX +

(
∂F

∂Y

)

X

dY (2.23)This implies that the values of X, Y in a thermodynami
 state A is inde-pendent of the path by whi
h A has been rea
hed.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 192.4 The fundamental laws of thermodynami
s2.4.1 The �rst law: energy 
onservationIn any 
hange of state the 
hange of the total energy of a system (=internalenergy U) is equal to the energy added to the system, minus the energyextra
ted.We express the 
hange dU during an in�nitesimal state 
hange in termsof the 
hanges of the extensive variables:� Me
hani
al work done by the system:
−dW = −~F · d~x = −F

A
· (A dx) = −p dV (2.24)
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

p, N, V

A

F

dxFigure 2.4: Me
hani
al work� Change of energy due to in
rease of parti
le number:
µ dN µ = 
hemi
al potential

= 
hange of energy due to adding one parti
le(2.25)� Heat is a form of energy (undire
ted motion of parti
les).
dQ Q is extensive, but not a state variable,as will be seen below (2.26)



20 CHAPTER 2. THERMODYNAMICSThe energy 
onservation is then written in terms of the extensive variables(in�nitesimal state 
hange):
dU = dQ−pdV +µdN +(possibly other variables) (2.27)For an in�nitesimal state 
hange, the law of energy 
onservation is thenwritten in terms of the extensive variables as
dU = dQ−p dV +µ dN (2.28)1st law of thermodynami
s. U is state variable.2.4.2 The se
ond law of thermodynami
s: Heat andthe state variables temperature T and entropy SWe have an intuitive 
on
ept of "hot" and "
old", whi
h is a unique prop-erty of a thermodynami
 state, i.e. 
orresponds to a state variable.It is 
lear that "heat", as an amount of energy, is not a state variable, be-
ause we 
an add a given amount of heat energy (e.g. by burning a �xedamount of gasoline) to a 
old body as well as to a hot body. This meansthat heat does not 
hara
terize the state of a system uniquely.Therefore, we need to look for a di�erent state variable quantifying theproperty "hot" or "
old". This leads to the quantity temperature T and atthe same time to the 
on
ept of the state variable entropy S.The de�nition of T is (and has to be !) operational, i.e. through the de-penden
e of other state variables on T .Basi
 statement for the de�nition of temperature:Two thermodynami
 systems whi
h are in heat 
ontra
t (i.e. 
an freelyex
hange heat) are at the same temperature (after su�
iently long time).This means that temperature 
an be de�ned for a spe
i�
, 
onveniently
hosen system. The temperature of any system 
an then be determined by
omparison (heat 
ontra
t) with the referen
e system. This is the basis forany thermometer.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 21(a) The ideal gas thermometer (ideal gas T s
ale)The equation of state for an ideal gas (su�
iently dilute so that atomi
intera
tions are negligible) is known experimentally:
p =

α(N, T )

V
(2.29)where the proportionality 
onstant α depends on the parti
le number

N of the gas,
α ∼ N (2.30)and on the property how "hot" the gas is. The hotter the gas, thebigger α.We de�ne the temperature T through the simplest possible, monoton-i
ally in
reasing dependen
e of α on T .
α ∼ T (2.31)We then have
α = NkBT (2.32)and the ideal gas law
pV = NkBT. (2.33)The universal proportionality 
onstant kB has units [energy/temperature℄and is 
alled Boltzmann 
onstant.The ideal gas law implies that there is an absolute zero point of T ,sin
e pV ≥ 0.The numeri
al value of kB depends on the s
ale 
hosen for the tem-perature T .Convention:The temperature interval between the freezing and the boiling pointof water at atmospheri
 pressure 
orresponds to 100 degrees Kelvin,100K (Kelvin s
ale).In these units the freezing point of H2O is at 273,15K, and kB takesthe value:

kB = 1, 38 · 10−23 J

K
Boltzmann 
onstant (2.34)
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100 K

−273,15 0 100

0 273,15 373,15

0
absolute

freezing
  O2

boiling
  OH2H

T[K]

T[°C]

Kelvin scale

Celsius scale

at atm. pressure

Figure 2.5: Temperature s
alesThe 
onventions� α ∼ T , i.e. T0 = 0 and� Tboil − Tfreeze = 100K

}Kelvin s
aledetermine the temperature T uniquely as a state variable and give apres
ription how to measure it via the ideal gas law.Celsius s
ale:
TCelsiusboil − TCelsiusfreeze = 100 C (2.35)

TCelsiusfreeze = 0 C (2.36)(TCelsius
0 = −273, 15 C and α = TCelsius + 273.15 C)For 
onvenien
e, we will use the Kelvin s
ale only.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 23(b) The se
ond law of thermodynami
sThrough numerous observations of pro
esses in nature it has beenestablished empiri
ally:There does not exist any thermodynami
 
hange of state, whose only
onsequen
e is that(1) an amount of heat is taken from a heat reservoir and is 
ompletelytransferred into me
hani
al work, or(2) an amount of heat is taken from a 
older heat reservoir and givento a warmer heat reservoir.
heat reservoir 2, T<

heat reservoir 1, T>

Figure 2.6: A heat engine working between two heat reservoirs 1, 2For the further 
onsiderations we de�ne:A Thermodynami
 or heat engine is a 
y
li
 pro
ess, where(1) a working system takes up an amount of heat Q> from a heatreservoir at T>,(2) gives an amount of heat Q< to another heat reservoir at T<, and(3) performs the me
hani
al work ∆W > 0.(
) The Carnot de�nition of temperature T and entropy SAnother de�nition of temperature is given via the so-
alled Carnot
y
le. It is of physi
al 
on
eptual use, sin
e it involves expli
itly theheat transfer, and hen
e the 
on
ept of state variables or non-statevariables.It is also of histori
al importan
e, sin
e thermodynami
 
y
les playedan essential role in the development of thermodynami
s during the19th 
entury.



24 CHAPTER 2. THERMODYNAMICSThe Carnot 
y
le allows to transform undire
ted thermal motion (heat)into dire
ted motion (me
hani
al work):

V
(X)

P
(Y)

isothermal
expansion

isothermal compression

adiabatic

Q
43

∆

Q41=0∆

Q =0∆

T<

T>

1

Q12>0
Q43>0

N=0

∆

∆

∆
T> >T<

adiabatic

23

Q∆
12

2

4

3

Figure 2.7: Carnot pro
ess
1 → 2 : isothermal expansion 
onta
t with heat bath 1

T = 
onst. = T> (slow)
2 → 3 : adiabati
 no 
onta
t with heat bath

T ց ∆T = T< − T> < 0 (fast)
3 → 4 : isothermal 
ompression 
onta
t with heat bath 2

T = 
onst. = T< (slow)
4 → 1 : adiabati
 
ompression no 
onta
t with heat bath

T ր ∆T = T> − T< > 0 (fast)E�
ien
y of the 
y
le:
η =

me
hani
al workheat inje
ted =
∆Wtot
∆Q12

per 
y
le (2.37)(heat added to system is 
ounted > 0, work done by system is 
ounted
< 0. Energy always 
ounted wrt. the system, not reservoir.)



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 25Sin
e the internal energy is a state variable, its total 
hange around a
y
le must be zero:
0 = ∆Utot = ∆Qtot − ∆Wtot (2.38)

= ∆Q12 − ∆Q43 − ∆Wtot (2.39)
∆Wtot = ∆Q12 − ∆Q43 (2.40)

η = 1 − ∆Q43

∆Q12
< 1 sin
e∆Q43 > 0 (2.41)The Carnot pro
ess is the most e�
ient heat engine.Proof:Assume that there is a heat engine A with ηA > η. Then, let engine

A and Carnot engine C work between the same heat reservoir at T>and T<. A 
an drive C as a 
ooling ma
hine:
C

T>> T<

T<

W

Q12QA

A
∆

∆∆

∆Q43=∆Q12 ∆− W∆Q12
A

12

−∆W=∆QA
43

Figure 2.8: Coupled heat engines
Sin
e ηA > η,

∆W

∆QA
12

>
∆W

∆Q12
or ∆Q12 > ∆QA

12 (2.42)



26 CHAPTER 2. THERMODYNAMICSTotal heat transfer from T< to T>:
∆Q = (∆Q12 − ∆W ) − (∆QA

12 − ∆W ) (2.43)
= ∆Q12 − ∆QA

12 > 0 (2.44)Forbidden by 2nd law!  De�nition of temperatureusing the e�
ien
y of the Carnot 
y
le:It follows from the previous argument that all Carnot engines operat-ing between the same heat reservoirs T>, T< have the same e�
ien
y
η. Therefore, η does not depend on the state variables of the systeminvolved in the 
y
le, but only on the temperatures of the resrvoirs
T>, T<:

∆Q43

∆Q12
= f(T>, T<) (2.45)Consider now two Carnot engines 
oupled to ea
h other via heattransfer:

∆Q43

∆Q12

= f(T>, T ′)
︸ ︷︷ ︸same fun
tion f

(2.46)
∆Q65

∆Q43

= f(T ′, T<) (2.47)
∆Q65

∆Q12
= f(T>, T<) (2.48)

⇒ Fun
tional equation for f(T>, T<):
f(T>, T<) = f(T>, T ′) f(T ′, T<) (2.49)It has the solution
f(T>, T<) =

g(T>)

g(T<)
(2.50)with a universal fun
tion g(T ), whi
h must be monotoni
ally de
reasing,sin
e

∆Q43

∆Q12
=

g(T>)

g(T<)
< 1 in order for η > 0 . (2.51)
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1

2 T>>T’

Y

4

6

5

3
T‘>T<

T<

∆Q43

∆Q

∆Q65

21

XFigure 2.9: Two 
oupled Carnot pro
essesThe Kelvin temperature s
ale is de�ned through the 
hoi
e
g(T ) =

1

T
. (2.52)Note the ambiguity in the de�nition. Hen
e,

η = 1 − ∆Q43

∆Q12
= 1 − T<

T>

(2.53)It is shown within the mi
ros
opi
 kineti
 gas theory that both de�nitionsof the Kelvin s
ale are equivalent.De�nition of the state variable entropy
• For any Carnot 
y
le we have

η = 1 − ∆Q43

∆Q12

= 1 − T<

T>

(2.54)and with ∆Q34 = −∆Q43 < 0

∆Q12

T>
+

∆Q34

T<
= 0 . (2.55)
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• Any arbitrary reversible (→ see dis
ussion below) 
y
li
 pro
ess 
an bede
omposed into an in�nite number of in�nitesimal Carnot 
y
les.

Y

XFigure 2.10: Any 
y
li
 pro
ess 
an be de
omposed into (in�nitesimal) Carnot
y
lesThe amounts of heat ex
hanged between neighboring Carnot pro
esses in theinterior of the area 
ompensate ea
h other, so that only the 
ontributions fromthe boundaries remain.
⇒ For a general reversible 
y
le:

∮
δQ

T
= 0 (2.56)(Non-exa
t variations will be denoted by greek δQ.)The quantity dS = δQ

T
is a 
omplete di�erential of a state variable. The 
or-responding state variable

S =

∫
δQ

T
(for a reversible pro
ess) (2.57)is 
alled entropy. It will be related to the �disorder� in the system in statisti
alme
hani
s.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 29Remark:For a reversible pro
ess the relation dS = δQ
T

holds and is an exa
t (= 
omplete)di�erential, sin
e it was derived for a 
olle
tion of reversible Carnot 
y
les. Forirreversible pro
esses the relation
S =

∫
δQ

T
, dS =

δQ

T
(2.58)no longer holds, but the state variable S 
an still be de�ned. The relation

dS ↔ δQ will be dis
ussed next.The behavior of the entropy during thermodynami
 
hanges of state:reversible and irreversible pro
essesAll the pro
ess steps of the Carnot 
y
le are, by 
onstru
tion, performed in atime reversible way:
• The isothermal expansion (1→ 2) and 
ompression (3 → 4) are done in-�nitely slowly, so that the working system is in equilibrium with the reser-voir (T> and T<, respe
tively) at ea
h instant of time. Su
h a pro
essis always reversible. This is be
ause during ea
h in�nitesimal time inter-val between two equilibrium states only an in�nitesimal amount of heat istransferred between system and reservoir. Therefore, ea
h in�nitesimal stepis reversible. That the in�nite series of in�nitesimal steps is still reversibleis at the heart of the postulate of the 2nd law and 
an be understood in adeeper way only from the mi
ros
opi
 
on
ept of entropy as a measure for�disorder� in statisti
al me
hani
s. The problem will be re-visited there.
• The adiabati
 expansion (2 → 3) or 
ompression (4 → 1) are done without
onta
t of the system with the reservoir (in�nitely fast). Therefore, theinternal (potential) energy of the system is 
ompletely transformed intome
hani
al work (sin
e no other form of energy available), i.e. the adiabati
pro
ess is reversible.In pra
ti
e, however, the pro
esses des
ribed above are not ideal:1. No pro
ess 
an be done in�nitely slowly. As a 
onsequen
e, turbulen
es(or other disturban
es) are generated in the gas (system), are ultimatelytransformed into additional indire
ted motion in the gas (i.e. heat) andlead to irreversible losses.
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System

t1 t2∆ ∆ ∆ti

Q1δ δ δQ2 Qi

reservoir

time

Figure 2.11: Reversible in�nitesimal heat ex
hanges δQi2. Turbulen
es with the same e�e
t are also generated during the fast, adia-bati
 pro
esses.3. No system 
an be 
ompletely isolated from its surroundings, i.e. the adia-bati
 pro
ess itself is an idealization.4. Fri
tional losses o

ur in real systems during ea
h of the steps.
→ In an irreversible 
y
li
 pro
ess less than the maximum possiblefra
tion of the heat extra
ted from reservoir T> is transformed intome
hani
al work.I.e. 
y
li
 pro
esses whi
h in
lude irreversible pro
esses have asmaller e�
ien
y than the Carnot 
y
le. Conversely, all reversible
y
li
 pro
esses have the same maximum e�
ien
y η.Hen
e, we have

ηirrev = 1 +

=−Q43

︷︸︸︷

Q34

Q12
< η = 1 − T<

T>
(2.59)or ∆Q12

T>

+
∆Q34

T<

< 0 , and in�nitesimally (2.60)
∮

δQ

T
< 0 (2.61)for irreversible pro
esses.Note: T is an equilibrium 
on
ept and may not even be de�ned in anarbitrary irreversible pro
ess.
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hange 1 → 2:
∫ 2

1
︸︷︷︸irrev δQ

T
≤

∫ 2

1
︸︷︷︸rev δQ

T
≡

∫ 2

1
︸︷︷︸rev dS = ∆S1→2 (2.62)

⇒ In a thermally isolated system (δQ ≡ 0) the entropy S 
annotde
rease in any 
hange of state 1 → 2:
∆S1→2 ≥ 0 thermally isolated systems (2.63)This is a mathemati
al restatement of the 2nd law.It follows an important, 
entral 
on
lusion of thermodynami
s:Sin
e any system, left to itself (thermally isolated), rea
hes for time t → ∞the equilibrium state (=de�nition of equilibrium), and sin
e this �nal state isrea
hed through a su

ession of state 
hanges with ∆S ≥ 0 ea
h, the exa
t state-ment holds:In thermodynami
 equilibrium, for any set of values of the relevant state variables(N , V , ~B, . . .) whi
h 
an be �xed externally, the entropy S of the system takesthe maximum value as a fun
tion of the other variables, as illustrated in �gure12.

2.4.3 The third law of thermodynami
sThe entropy of any 
losed (no heat, parti
le, . . . ex
hange) thermodynami
 sys-tem, whi
h has a non-degenerate ground state, vanishes for T → 0:
lim
T→0

S(T ) = 0 (2.64)The requirement �non-degenerate ground state� is the essential 
ondition for the3rd law. Hen
e, it is a 
onsequen
e of quantum me
hani
s, sin
e in 
lassi
al me-
hani
s there are many degenerate minimum energy states possible for a many-parti
le system due to the 
lassi
al distinguishability of parti
les. This problem
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S

non−state variables
(local T,p, N, etc.
microscopic coordinates
of particles)

Smax

V,N
T

(averaged state
variables, fixed
externally)

Figure 2.12: In equilibrium the entropy assumes a global maximum as a fun
tionof �non-state� variables.is only lifted by the nondistinguishability of equivalent parti
les in quantum me-
hani
s. Therefore, quantum me
hani
s has profound 
onsequen
es even on theproperties of ma
ros
opi
 systems. This will be dis
ussed further in statisti
alme
hani
s.
2.5 The fundamental relation of thermodynami
sThe relation between the in�nitesimal 
hanges of the state variables manifested inthe 1st law 
an be 
ast into a non-in�nitesimal relation using a s
aling argument:The 2nd law implies for reversible pro
esses:

δQ = TdS (2.65)i.e. from the 1st law (energy 
onservation):
dS =

1

T
dU +

P

T
dV − µ

T
dN (2.66)
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tion of an external variable.)Hen
e, the derivatives of S wrt. U , V , N are
(

∂S

∂U

)

V,N

=
1

T
(2.67)

(
∂S

∂V

)

U,N

=
P

T
(2.68)

(
∂S

∂N

)

U,V

= −µ

T
(2.69)It follows from equation 2.66 that S is a fun
tion of the extensive variables U , V ,

N (whi
h are proportional to the system size, �s
ale� with system size) in su
h away that S s
ales with U , V , N , i.e. S is also proportional to the system size:The entropy S is an extensive quantity.Then the s
aling relation holds,
(λU, λV, λN) = λS(U, V, N) (2.70)whi
h implies by di�erentiation wrt. λ and λ → 1,
d

dλ
(λS) = S =

∂S

∂U
U +

∂S

∂V
V +

∂S

∂N
N (2.71)and using ∂S

∂U
, ∂S

∂V
, ∂S

∂N
above,

TS = U + PV − µN (2.72)
⇔ U = TS − PV + µN .

Fundamental relationof thermodynami
s (2.73)
S is a homogenous fun
tion of U , V , N .It 
an be seen as a non-in�nitesimal form of the 1st law, where now both theextensive variables S, V , N and the intensive variables T , P , µ 
an be varied(by 
hanging e.g. external parameters). The total di�erential of the fundamentalrelation implies another relation between thermodynami
 derivatives:

TdS + SdT = dU + PdV + V dP − µdN − Ndµ (2.74)
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dU = TdS − PdV + µdN : (2.75)
dµ = − S

N
dT +

V

N
dP Gibbs-Duhem-relation (2.76)Using parti
le density ρ = N

V
and entropy density s = S

V
one obatins:

dµ = −1

ρ
sdT +

1

ρ
dP (2.77)The fundamental relation 
an be used to derive the equations of state for spe
i�
state 
hanges from the general equation of state, F (P, V, T, . . .) = 0.Equation for an ideal gas:

F (P, V, T ) = PV − NkBT = 0 general EOS (2.78)
⇒

︸︷︷︸

F.R.

FδQ=0(P, V, T ) = 0 adiabati
 equation (2.79)
FdT=0(P, V, T ) = 0 isothermal equation, et
. (2.80)2.6 Thermodynami
 potentialsThe internal energy U of a system des
ribes (but is not equivalent to, sin
e η < 1)the energy stored in the system, i.e. potential energy, that 
an be transformedinto me
hani
al work. It is, therefore, often 
alled a thermodynami
al potential.Example:

∆U = ∆Q − ∆W (2.81)work done by the gas:
∆W = −(∆U − ∆Q) > 0 (2.82)

|∆W | < ∆U (2.83)
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∆xFigure 2.13: Me
hani
al work ∆W done against external pressure P0The 2nd law implies a minimum prin
iple for U :For reversible and irreversible pro
esses 1 → 2 we have
δQ = TdS for reversible pro
esses (2.84)
δQ < TdS for irreversible pro
esses (2.85)

∆U ≤
∫ 2

1

T dS

︸ ︷︷ ︸

∆Q

−∆W12 +

∫ 2

1

µ dN (2.86)i.e. in a 
losed system with S, V , N = 
onst. and S a �xed variable in U (→ seebelow):
(∆U)S,V,N ≤ 0 for any pro
esses in a 
losed system. (2.87)The internal energy U has been written as a fun
tion of all the extensive variablesof the system, S, V , N , . . .

U is, therefore, useful to des
ribe pro
esses where S, V , N , . . . are �xed fromoutside, i.e. the minimum of U as fun
tion of S, V , N (dS, dV , dN =0) isdetermined for given S, V , N , and hen
e the 
orresponding T , P , µ, . . .

→ exer
ises
→ examples (below)In many 
ases, S, V , N (espe
ially S) are not determined from outside. Itis then useful to write the �potential energy� of the system as fun
tion of therelevant, externally determined variables, i.e. of intensive or extensive variables,or a 
ombination. For ea
h extensive variable there is an intensive quantity
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h is the derivative of U wrt. the extensive one; both variables form a pair of
anoni
ally 
onjugated variables:
S → T =

(
∂U

∂S

)

V,N

(2.88)
V → P = −

(
∂U

∂V

)

S,N

(2.89)
N → µ =

(
∂U

∂N

)

S,V

et
. (2.90)We want to write U not as a fun
tion of S but as fun
tion of T , the derivative of
U wrt. S.The standard way to write a given fun
tion f(y) lo
ally in dependen
e of Π = ∂f

∂yis the Legendre transformation.
f(y) : f = Πdy (2.91)

g(Π) = f − Πy : dg = df − Πdy
︸ ︷︷ ︸

=0

−ydΠ = −ydΠ (2.92)Re
ipe: f → g: subtra
t pair of 
onjugated variables.Example: Classi
al me
hani
sTransformation from Lagrange fun
tion L(x, ẋ
︸︷︷︸

y

) to Hamilton fun
tion H(x, p),where the 
oordinate x is an un
hanged variable, the velo
ity ẋ 
orresponds to
y, and the 
lassi
al momentum p = ∂L

∂ẋ

orresponds to Π:

H = L − x
∂L

∂ẋ
(2.93)Note:

• It is only ne
essary to perform a lo
al transformation in the vi
inity of somegiven value of the variable y, sin
e we are looking for the minimum of f .
• Lo
ally, the Legendre transformation is unique.
• If f(y) has a minimum (extremum) at a given point y then g(Π) has aminimum (extremum) at the same point, (only expressed by the variable

Π), and vi
e versa.
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ation to thermodynami
s:external �xed variables thermodynami
 potential
S, P, N enthalpy

H(S, P, N) = U + PV = ST + µN

dH = TdS + V dP + µdN

T, V, N free energy (Helmholtz free energy)
F (T, V, N) = U − TS = −PV + µN

dF = −SdT + PdV + µdN

T, P, N free energy (Gibbs free energy)
G(T, P, N) = U − TS + PV = µN

dG = −SdT + V dP + µdN

T, V, µ grand 
anoni
al potential
Ω(T, V, µ) = U − TS − µN = −PV

dΩ = −SdT − PdV − Ndµ(for systems with parti
le ex
hange)
S, V, N U(S, V, N) = TS − PV + µN

dU = TdS − pdV + µdN
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 derivatives: Maxwell relationsFrom dU = TdS − pdV + µdN it follows:
T =

(
∂U

∂S

)

V,N

(2.94)
P = −

(
∂U

∂V

)

S,N

(2.95)
µ =

(
∂U

∂N

)

S,V

(2.96)Taking another derivative and using ∂2U
∂x∂y

= ∂2U
∂y∂x

for state variables, one obtainsimmediately
(

∂T

∂V

)

S,N

= −
(

∂P

∂S

)

V,N
(

∂T

∂N

)

S,V

=

(
∂µ

∂S

)

V,N
(

∂P

∂N

)

S,V

= −
(

∂µ

∂V

)

S,N

Maxwell relations (2.97)
and similar relations for other variables.2.7 Thermodynami
 response fun
tionsThe response of a thermodynami
 system to the 
hange of external parameters,like temperature T , magneti
 �eld ~B, pressure p, et
., is des
ribed by the re-sponse fun
tions. If these external fun
tions are time-independent, the responsefun
tions 
an be expressed as derivatives of the thermodynami
 potentials.2.7.1 Thermal response fun
tionsThe thermal response fun
tions or spe
i�
 heats c des
ribe the 
hange of the heat
ontent δQ of a system (per volume) due to a 
hange of temperature T in a
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ess:
c =

δQdT = T
dSdT (2.98)where it must be spe
i�ed, whi
h other variables are kept 
onstant during thatpro
ess.For the N − p − V system, the parti
le number N and either V or p are kept
onstant. Hen
e, one has

cV = T

(
∂S

∂T

)

V,N

(2.99)
↑ (2.100)dF = SdT − p dV

︸︷︷︸

=0

+µ dN
︸︷︷︸

=0

(2.101)
= −T

(
∂2F

∂T 2

)

V,N

(2.102)
> 0 (2.103)or equivalently, sin
e dU = δQ − pdV + µdN ,

cV =

(
∂U

∂T

)

V,N

(2.104)
cp = T

(
∂S

∂T

)

p,N

(2.105)
↑ (2.106)dG = SdT − V dp

︸︷︷︸

=0

+µ dN
︸︷︷︸

=0

(2.107)
= −T

(
∂2G

∂T 2

)

p,N

(2.108)
> 0 (2.109)or equivalently, with dH = δQ − V dp + µdN ,

cp =

(
∂H

∂T

)

p,N

(2.110)
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ond law of thermodynami
s (formulation (2)) that thespe
i�
 heat is positive:
cV > 0, cp > 0 (2.111)2.7.2 Me
hani
al response fun
tionsThe 
ompressibility κ des
ribes the 
hange of volume of a system due to a pressure
hange, normalized to its volume:
κT = − 1

V

(
∂V

∂p

)

T,N

= − 1

V

(
∂2G

∂p2

)

T,N

≥ 0 (2.112)
κS = − 1

V

(
∂V

∂p

)

S,N

= − 1

V

(
∂2H

∂p2

)

S,N

≥ 0 (2.113)The stability of a physi
al system requires that the 
ompressibility is not negative(no spontaneous volume 
ollapse).The 
ompressibility 
an also be expressed in terms of the density n = N
V
:

1

n

(
∂n

∂p

)

N

=
V

N

(

− N

V 2

)
∂V

∂p
= κ (2.114)The 
hange of volume due to a temperature 
hange is given by the thermalexpansion 
oe�
ient α

αp =
1

V

(
∂V

∂T

)

p

=
1

V

{
∂

∂T

(
∂G

∂p

)

T

}
>
< 0 (2.115)The heat expansion α 
an be positive or negative.2.7.3 Magneti
 response fun
tionsThe magneti
 sus
eptibility χT,S is the response of the magnetization M to a
hange of the external magneti
 �eld B:
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χT =

(
∂M

∂B

)

T

=

(
∂2FT,B

∂B2

)

T

(2.116)
↑dFT,B = −SdT − pdV + MdB

χS =

(
∂M

∂B

)

S

=

(
∂2FS,B

∂B2

)

S

(2.117)
↑dFS,B = SdT − pdV + MdBwhere the �free energies� of a magneti
 system, FT,B, FS,B are understood as theLegendre transforms of U with respe
t to T and B and to S and B, respe
tively.The sus
eptibility is positive for a para- or ferromagneti
 system and negativefor a diamagneti
 system.The relations given in 1.6.1-1.6.3 show generally, that the response fun
tions 
anbe expressed in terms of the se
ond derivatives of an appropriate thermodynami
potential.2.7.4 Relations between thermal and me
hani
al responsefun
tionsThe following relations hold:

cp

cV

=
κT

κS

(2.118)
cp − cV = TV

α2
p

κT

≥ 0 (2.119)



42 CHAPTER 2. THERMODYNAMICSProof :
• Relation (1):

cp

cV
=

(
∂S
∂T

)

p
(

∂S
∂T

)

V

=

(∂p/∂T )S

(∂p/∂S)T

(∂V/∂T )S

(∂V/∂S)T

=

(∂V/∂S)
∂p/∂S

∣
∣
∣
T

(∂V/∂T )
(∂p/∂T )

∣
∣
∣
S

=

(
∂V
∂p

)

T(
∂V
∂p

)

S

=
κT

κS
(2.120)where we used in the numerator, that the total di�erential of p vanishes for

cp:
0 = dp =

(
∂p

∂S

)

T

dS +

(
∂p

∂T

)

S

dT ⇒
(

∂S

∂T

)

p

= −
(

∂p
∂T

)

S
(

∂p
∂S

)

T

(2.121)and in the denominator, that the total di�erential of V vanishes for cV :
0 = dV =

(
∂V

∂S

)

T

dS +

(
∂V

∂T

)

S

dT ⇒
(

∂S

∂T

)

V

= −
(

∂V
∂T

)

S(
∂V
∂S

)

T

(2.122)
• Relation (2):

cp − cV = T

{(
∂S

∂T

)

p

−
(

∂S

∂T

)

V

} (2.123)(i) We use the 
hain rule to express the T -derivative at p = 
onst. by a
T -derivative at V = 
onst. (see also above):

(
∂S

∂T

)

p

=
∂

∂T
S(T, V (p, T ))

∣
∣
∣
∣
p=
onst. (2.124)

=

(
∂S

∂T

)

V

+

(
∂S

∂V

)

T

(
∂V

∂T

)

p
︸ ︷︷ ︸

V ·αp

(2.125)(ii) (
∂S
∂V

)

T
is expressed using a Maxwell relation, employing the thermo-dynami
al potential F :
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S = −

(
∂F

∂T

)

V

(2.126)
(

∂S

∂V

)

T

= −
{

∂

∂V

(
∂F

∂T

)

V

}

T

=

{
∂

∂T

(

−∂F

∂V

)

T

}

V

(2.127)
=

(
∂p

∂T

)

V

(2.128)Sin
e in the last expression dV = 0, we have
0 = dV =

(
∂V

∂p

)

T

dp +

(
∂V

∂T

)

p

dT (2.129)
⇒

(
∂p

∂T

)

V

= −
(

∂V
∂T

)

p
(

∂V
∂p

)

T

= − V αp

(−V κT )
=

αp

κT
(2.130)and �nally

cp − cV = T

(
∂p

∂T

)

V

(
∂V

∂T

)

p

= TV
α2

p

κT

≥ 0. (2.131)Physi
ally cp ≥ cV , be
ause for p = 
onst. part of the heat added is notkept in the system but is transformed to me
hani
al work. Thus, more heatis ne
essary to make a given temperature 
hange than in the 
ase V = 
onst.Similarly, one 
an prove the magneti
 relations:
cB

cM

=
χT

χS

cB − cM = T
α2

B

χT
≥ 0

(2.132)
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