
Chapter 2
Thermodynamis
2.1 Desription of thermodynami states and trans-formations2.2 Introdutory remarks and basi de�nitionsThermodynamis is a phenomenologial theory in ontrast to the mirosopitheories onsidered so far, i.e. it does not refer to the mirosopi, quantum me-hanial behavior of matter, but is based on the observation of the marosopiproperties of "large" systems and the relations among these properties, where"large" requires further spei�ation.As a result, thermodynamis annot make absolute statements derived from mi-rosopis, but an only desribe the dependene of marosopi properties oneah other. Any de�nition of a new quantity not known outside of thermody-namis, like temperature T , entropy S, must therefore be impliit through thesedependenies. This leaves some sense of "inompleteness" , like in any phe-nomenologial theory.On the other hand, beause it does not rely on detailed mirosopi propertiesor assumptions, thermodynamis is ompletely general and losed in itself. It isthe strength of thermodynamis that it is appliable to a vast variety of systems.
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12 CHAPTER 2. THERMODYNAMICSEinstein about thermodynamis"Eine Theorie ist desto eindruksvoller, je gröÿer die Einfahheit ihrerPrämissen ist, je vershiedenartigere Dinge sie verknüpft und je weiterihr Anwendungsbereih ist. Deshalb der tiefe Eindruk, den die klas-sishe Thermodynamik auf mih mahte. Es ist die einzige physikalis-he Theorie allgemeinen Inhalts, von der ih überzeugt bin, dass sie imRahmen der Anwendbarkeit ihrer Grundbegri�e niemals umgestoÿenwerden wird."Thermodynamis has been developed during the 19th entury, driven by the needto understand thermodynami yli proesses and to develop heat engines thatwere able to transform heat into mehanial work. Therefore, the entral de�-nitions of thermodynamis have an operational harater, i.e. are derived fromyli proesses.Thermodynamis is based on our every-day observation that most marosopisystems, when left to themselves, reah after a su�iently long time a steadystate, in whih the marosopially observable quantities don't hange in time.These states are alled "equilibrium states". In the present ourse we will on-sider only thermodynami equilibrium states and transitions between them. Thestatements made above an be quanti�ed by the following basi de�nitions:
• Thermodynami system: Any marosopi system onsisting of N equalentities (e.g. partiles, magneti moments (spin). . .) with √

N ≫ 1.(See statistial mehanis for the relevane of the square root.)
• A thermodynamial state is a state of the system whih is ompletely de-termined by a set of marosopi thermodynami state variables.
• A state variable X is a physial quantity haraterized by the fat that athermodynami state is uniquely determined by speifying the value of Xand it does not depend on the history by whih this state has been reahed.In other words: If the thermodynami state of a system is hanged,the amount by whih a state variable hanges is independent of the path inparameter spae taken for this hange. For a non-state variable the hangewill, in general, depend on the the path. This distinguishes state variablesfrom non-state variables.
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Figure 2.1: A gas undergoing temperature, volume and pressure hangeExamples:� pressure p� volume V� temperature T� partile number N� hemial potential µ (de�ned later)� magneti �eld ~B� magnetization ~µ� eletri �eld ~E� eletri polarization ~Pare state variables, but "heat" Q is not a state variable.
• One distinguishes intensive and extensive quantities:� intensive:volume V → αV : x(αV ) = x(V )

x is invariant under saling of the system volume� extensive:volume V → αV : x(αV ) = αx(V )

x sales with the system volume



14 CHAPTER 2. THERMODYNAMICS
• Thermodynami equilibrium:State in whih the state variables do not hange with time.
• The funtional relation between all the (relevant) state variables in equilib-rium is alled equation of state: f(P, V, N, T ) = 0E.g. for the ideal gas:

pV = NkBT (2.1)Equations of state will be onsidered in more detail later.Thermodynami hanges of state:1. quasistati:slow hange, so that the system remains (nearly) in equilibrium duringthe hange for eah momentary set of state variables.2. reversible:system returns to its initial state upon time reversal (i.e. by runningall proesses as under reversed time). Entropy hange ∆S = 0, seebelow.3. irreversible:system does not return to its initial state upon time reversal, ∆S > 0.4. isothermal:
∆T = 0 (2.2)5. adiabatial:
∆Q = 0 (2.3)proess without heat exhange6. isobar:
∆P = 0 (2.4)



2.3. STATE VARIABLES AND EXACT DIFFERENTIALS 157. isohor:
∆V = 0 (2.5)

• A heat bath is a system (heat reservoir) whih is large ompared to thesystem under onsideration, and whih is kept at onstant temperature T .
isotherm
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T2 >T1
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p2

p1>p2

p3>p2
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Figure 2.2: Examples for a hange of state of an ideal gasNote: These examples prelude the quantity T whih will be de�ned onlybelow.2.3 State variables and exat di�erentialsThe de�nition of a state variable (independene of path) an be put in mathe-matial terms:Let F (x1, . . . , xn) be a funtion of the variables x1, . . . , xn. The di�erential of
F is

dF =
n∑

i=1

(
∂F

∂xi

)

{xj 6=i}

dxi (2.6)Partial derivative of F with respet to xi, keeping all xj , j 6= i, �xed.If the {xi} are state variables, then the partial derivatives ommute:
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[For 2 variables: [
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.]For a non-state variable the partial derivatives do not ommute in general.If the partial derivatives ommute 2.7, then dF (equation 2.6) is alled exatdi�erential.Marosopi onsequene of ommuting partial derivatives:
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Figure 2.3: Independene of a thermodynami state hange on the path takenIndependene of the path taken:
F (B) − F (A) =

∫ B

A
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∫
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] (2.8)
=

∫
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i=1

(
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∂xi

)

{xi6=j}

dxi

] (2.9)The property that the di�erentials of all state variables are exat implies interest-ing relations between the state variables for a path for whih F (x1, . . . , xn) = 0,whih are purely founded in this mathematial struture, and whih are thereforevery general.



2.3. STATE VARIABLES AND EXACT DIFFERENTIALS 17Let x, y, z, w be state variables, F (x, y, z, w) = 0.
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F (x, y, z) = 0 (2.14)

x = x(y, z), y = y(x, z) (2.15)
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= −1 (2.20)Although these relations follow trivially from any funtion of multiple variableswith exat di�erential, they imply useful relations between the state variableswhih an be used in desribing state hanges.



18 CHAPTER 2. THERMODYNAMICSSummary of thermodynami onepts
• Thermodynamial (equilibrium) state:Stationary state of a system with many degrees of freedom (partiles, spins,

. . .) whih is reahed after su�ently long time, if there is no external ationon the system. (Only equilibrium states onsidered here.)
• State variable:Physial quantity whih has a unique value for a given thermodynamistate. A omplete set of state variables determines a thermodynami stateuniquely.
• State equation:

F (p, V, N, T, . . .) = 0 (2.21)Relation between state varibales for a given system.
• Mathematial haraterization of state variables X, YPartial derivatives of F wrt. X, Y ommute,

[
∂
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(2.22)for any pair X, Y , i.e. F has an exat di�erential wrt. X, Y :
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dY (2.23)This implies that the values of X, Y in a thermodynami state A is inde-pendent of the path by whih A has been reahed.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 192.4 The fundamental laws of thermodynamis2.4.1 The �rst law: energy onservationIn any hange of state the hange of the total energy of a system (=internalenergy U) is equal to the energy added to the system, minus the energyextrated.We express the hange dU during an in�nitesimal state hange in termsof the hanges of the extensive variables:� Mehanial work done by the system:
−dW = −~F · d~x = −F

A
· (A dx) = −p dV (2.24)
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dxFigure 2.4: Mehanial work� Change of energy due to inrease of partile number:
µ dN µ = hemial potential

= hange of energy due to adding one partile(2.25)� Heat is a form of energy (undireted motion of partiles).
dQ Q is extensive, but not a state variable,as will be seen below (2.26)



20 CHAPTER 2. THERMODYNAMICSThe energy onservation is then written in terms of the extensive variables(in�nitesimal state hange):
dU = dQ−pdV +µdN +(possibly other variables) (2.27)For an in�nitesimal state hange, the law of energy onservation is thenwritten in terms of the extensive variables as
dU = dQ−p dV +µ dN (2.28)1st law of thermodynamis. U is state variable.2.4.2 The seond law of thermodynamis: Heat andthe state variables temperature T and entropy SWe have an intuitive onept of "hot" and "old", whih is a unique prop-erty of a thermodynami state, i.e. orresponds to a state variable.It is lear that "heat", as an amount of energy, is not a state variable, be-ause we an add a given amount of heat energy (e.g. by burning a �xedamount of gasoline) to a old body as well as to a hot body. This meansthat heat does not haraterize the state of a system uniquely.Therefore, we need to look for a di�erent state variable quantifying theproperty "hot" or "old". This leads to the quantity temperature T and atthe same time to the onept of the state variable entropy S.The de�nition of T is (and has to be !) operational, i.e. through the de-pendene of other state variables on T .Basi statement for the de�nition of temperature:Two thermodynami systems whih are in heat ontrat (i.e. an freelyexhange heat) are at the same temperature (after su�iently long time).This means that temperature an be de�ned for a spei�, onvenientlyhosen system. The temperature of any system an then be determined byomparison (heat ontrat) with the referene system. This is the basis forany thermometer.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 21(a) The ideal gas thermometer (ideal gas T sale)The equation of state for an ideal gas (su�iently dilute so that atomiinterations are negligible) is known experimentally:
p =

α(N, T )

V
(2.29)where the proportionality onstant α depends on the partile number

N of the gas,
α ∼ N (2.30)and on the property how "hot" the gas is. The hotter the gas, thebigger α.We de�ne the temperature T through the simplest possible, monoton-ially inreasing dependene of α on T .
α ∼ T (2.31)We then have
α = NkBT (2.32)and the ideal gas law
pV = NkBT. (2.33)The universal proportionality onstant kB has units [energy/temperature℄and is alled Boltzmann onstant.The ideal gas law implies that there is an absolute zero point of T ,sine pV ≥ 0.The numerial value of kB depends on the sale hosen for the tem-perature T .Convention:The temperature interval between the freezing and the boiling pointof water at atmospheri pressure orresponds to 100 degrees Kelvin,100K (Kelvin sale).In these units the freezing point of H2O is at 273,15K, and kB takesthe value:

kB = 1, 38 · 10−23 J

K
Boltzmann onstant (2.34)
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Figure 2.5: Temperature salesThe onventions� α ∼ T , i.e. T0 = 0 and� Tboil − Tfreeze = 100K

}Kelvin saledetermine the temperature T uniquely as a state variable and give apresription how to measure it via the ideal gas law.Celsius sale:
TCelsiusboil − TCelsiusfreeze = 100 C (2.35)

TCelsiusfreeze = 0 C (2.36)(TCelsius
0 = −273, 15 C and α = TCelsius + 273.15 C)For onveniene, we will use the Kelvin sale only.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 23(b) The seond law of thermodynamisThrough numerous observations of proesses in nature it has beenestablished empirially:There does not exist any thermodynami hange of state, whose onlyonsequene is that(1) an amount of heat is taken from a heat reservoir and is ompletelytransferred into mehanial work, or(2) an amount of heat is taken from a older heat reservoir and givento a warmer heat reservoir.
heat reservoir 2, T<

heat reservoir 1, T>

Figure 2.6: A heat engine working between two heat reservoirs 1, 2For the further onsiderations we de�ne:A Thermodynami or heat engine is a yli proess, where(1) a working system takes up an amount of heat Q> from a heatreservoir at T>,(2) gives an amount of heat Q< to another heat reservoir at T<, and(3) performs the mehanial work ∆W > 0.() The Carnot de�nition of temperature T and entropy SAnother de�nition of temperature is given via the so-alled Carnotyle. It is of physial oneptual use, sine it involves expliitly theheat transfer, and hene the onept of state variables or non-statevariables.It is also of historial importane, sine thermodynami yles playedan essential role in the development of thermodynamis during the19th entury.



24 CHAPTER 2. THERMODYNAMICSThe Carnot yle allows to transform undireted thermal motion (heat)into direted motion (mehanial work):
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Figure 2.7: Carnot proess
1 → 2 : isothermal expansion ontat with heat bath 1

T = onst. = T> (slow)
2 → 3 : adiabati no ontat with heat bath

T ց ∆T = T< − T> < 0 (fast)
3 → 4 : isothermal ompression ontat with heat bath 2

T = onst. = T< (slow)
4 → 1 : adiabati ompression no ontat with heat bath

T ր ∆T = T> − T< > 0 (fast)E�ieny of the yle:
η =

mehanial workheat injeted =
∆Wtot
∆Q12

per yle (2.37)(heat added to system is ounted > 0, work done by system is ounted
< 0. Energy always ounted wrt. the system, not reservoir.)



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 25Sine the internal energy is a state variable, its total hange around ayle must be zero:
0 = ∆Utot = ∆Qtot − ∆Wtot (2.38)

= ∆Q12 − ∆Q43 − ∆Wtot (2.39)
∆Wtot = ∆Q12 − ∆Q43 (2.40)

η = 1 − ∆Q43

∆Q12
< 1 sine∆Q43 > 0 (2.41)The Carnot proess is the most e�ient heat engine.Proof:Assume that there is a heat engine A with ηA > η. Then, let engine

A and Carnot engine C work between the same heat reservoir at T>and T<. A an drive C as a ooling mahine:
C

T>> T<

T<

W

Q12QA

A
∆

∆∆

∆Q43=∆Q12 ∆− W∆Q12
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−∆W=∆QA
43

Figure 2.8: Coupled heat engines
Sine ηA > η,

∆W

∆QA
12

>
∆W

∆Q12
or ∆Q12 > ∆QA

12 (2.42)



26 CHAPTER 2. THERMODYNAMICSTotal heat transfer from T< to T>:
∆Q = (∆Q12 − ∆W ) − (∆QA

12 − ∆W ) (2.43)
= ∆Q12 − ∆QA

12 > 0 (2.44)Forbidden by 2nd law!  De�nition of temperatureusing the e�ieny of the Carnot yle:It follows from the previous argument that all Carnot engines operat-ing between the same heat reservoirs T>, T< have the same e�ieny
η. Therefore, η does not depend on the state variables of the systeminvolved in the yle, but only on the temperatures of the resrvoirs
T>, T<:

∆Q43

∆Q12
= f(T>, T<) (2.45)Consider now two Carnot engines oupled to eah other via heattransfer:

∆Q43

∆Q12

= f(T>, T ′)
︸ ︷︷ ︸same funtion f

(2.46)
∆Q65

∆Q43

= f(T ′, T<) (2.47)
∆Q65

∆Q12
= f(T>, T<) (2.48)

⇒ Funtional equation for f(T>, T<):
f(T>, T<) = f(T>, T ′) f(T ′, T<) (2.49)It has the solution
f(T>, T<) =

g(T>)

g(T<)
(2.50)with a universal funtion g(T ), whih must be monotonially dereasing,sine

∆Q43

∆Q12
=

g(T>)

g(T<)
< 1 in order for η > 0 . (2.51)



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 27
1

2 T>>T’

Y

4

6

5

3
T‘>T<

T<

∆Q43

∆Q

∆Q65

21

XFigure 2.9: Two oupled Carnot proessesThe Kelvin temperature sale is de�ned through the hoie
g(T ) =

1

T
. (2.52)Note the ambiguity in the de�nition. Hene,

η = 1 − ∆Q43

∆Q12
= 1 − T<

T>

(2.53)It is shown within the mirosopi kineti gas theory that both de�nitionsof the Kelvin sale are equivalent.De�nition of the state variable entropy
• For any Carnot yle we have

η = 1 − ∆Q43

∆Q12

= 1 − T<

T>

(2.54)and with ∆Q34 = −∆Q43 < 0

∆Q12

T>
+

∆Q34

T<
= 0 . (2.55)



28 CHAPTER 2. THERMODYNAMICS
• Any arbitrary reversible (→ see disussion below) yli proess an bedeomposed into an in�nite number of in�nitesimal Carnot yles.

Y

XFigure 2.10: Any yli proess an be deomposed into (in�nitesimal) CarnotylesThe amounts of heat exhanged between neighboring Carnot proesses in theinterior of the area ompensate eah other, so that only the ontributions fromthe boundaries remain.
⇒ For a general reversible yle:

∮
δQ

T
= 0 (2.56)(Non-exat variations will be denoted by greek δQ.)The quantity dS = δQ

T
is a omplete di�erential of a state variable. The or-responding state variable

S =

∫
δQ

T
(for a reversible proess) (2.57)is alled entropy. It will be related to the �disorder� in the system in statistialmehanis.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 29Remark:For a reversible proess the relation dS = δQ
T

holds and is an exat (= omplete)di�erential, sine it was derived for a olletion of reversible Carnot yles. Forirreversible proesses the relation
S =

∫
δQ

T
, dS =

δQ

T
(2.58)no longer holds, but the state variable S an still be de�ned. The relation

dS ↔ δQ will be disussed next.The behavior of the entropy during thermodynami hanges of state:reversible and irreversible proessesAll the proess steps of the Carnot yle are, by onstrution, performed in atime reversible way:
• The isothermal expansion (1→ 2) and ompression (3 → 4) are done in-�nitely slowly, so that the working system is in equilibrium with the reser-voir (T> and T<, respetively) at eah instant of time. Suh a proessis always reversible. This is beause during eah in�nitesimal time inter-val between two equilibrium states only an in�nitesimal amount of heat istransferred between system and reservoir. Therefore, eah in�nitesimal stepis reversible. That the in�nite series of in�nitesimal steps is still reversibleis at the heart of the postulate of the 2nd law and an be understood in adeeper way only from the mirosopi onept of entropy as a measure for�disorder� in statistial mehanis. The problem will be re-visited there.
• The adiabati expansion (2 → 3) or ompression (4 → 1) are done withoutontat of the system with the reservoir (in�nitely fast). Therefore, theinternal (potential) energy of the system is ompletely transformed intomehanial work (sine no other form of energy available), i.e. the adiabatiproess is reversible.In pratie, however, the proesses desribed above are not ideal:1. No proess an be done in�nitely slowly. As a onsequene, turbulenes(or other disturbanes) are generated in the gas (system), are ultimatelytransformed into additional indireted motion in the gas (i.e. heat) andlead to irreversible losses.
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System

t1 t2∆ ∆ ∆ti

Q1δ δ δQ2 Qi

reservoir

time

Figure 2.11: Reversible in�nitesimal heat exhanges δQi2. Turbulenes with the same e�et are also generated during the fast, adia-bati proesses.3. No system an be ompletely isolated from its surroundings, i.e. the adia-bati proess itself is an idealization.4. Fritional losses our in real systems during eah of the steps.
→ In an irreversible yli proess less than the maximum possiblefration of the heat extrated from reservoir T> is transformed intomehanial work.I.e. yli proesses whih inlude irreversible proesses have asmaller e�ieny than the Carnot yle. Conversely, all reversibleyli proesses have the same maximum e�ieny η.Hene, we have

ηirrev = 1 +

=−Q43

︷︸︸︷

Q34

Q12
< η = 1 − T<

T>
(2.59)or ∆Q12

T>

+
∆Q34

T<

< 0 , and in�nitesimally (2.60)
∮

δQ

T
< 0 (2.61)for irreversible proesses.Note: T is an equilibrium onept and may not even be de�ned in anarbitrary irreversible proess.



2.4. THE FUNDAMENTAL LAWS OF THERMODYNAMICS 31Or for state hange 1 → 2:
∫ 2

1
︸︷︷︸irrev δQ

T
≤

∫ 2

1
︸︷︷︸rev δQ

T
≡

∫ 2

1
︸︷︷︸rev dS = ∆S1→2 (2.62)

⇒ In a thermally isolated system (δQ ≡ 0) the entropy S annotderease in any hange of state 1 → 2:
∆S1→2 ≥ 0 thermally isolated systems (2.63)This is a mathematial restatement of the 2nd law.It follows an important, entral onlusion of thermodynamis:Sine any system, left to itself (thermally isolated), reahes for time t → ∞the equilibrium state (=de�nition of equilibrium), and sine this �nal state isreahed through a suession of state hanges with ∆S ≥ 0 eah, the exat state-ment holds:In thermodynami equilibrium, for any set of values of the relevant state variables(N , V , ~B, . . .) whih an be �xed externally, the entropy S of the system takesthe maximum value as a funtion of the other variables, as illustrated in �gure12.

2.4.3 The third law of thermodynamisThe entropy of any losed (no heat, partile, . . . exhange) thermodynami sys-tem, whih has a non-degenerate ground state, vanishes for T → 0:
lim
T→0

S(T ) = 0 (2.64)The requirement �non-degenerate ground state� is the essential ondition for the3rd law. Hene, it is a onsequene of quantum mehanis, sine in lassial me-hanis there are many degenerate minimum energy states possible for a many-partile system due to the lassial distinguishability of partiles. This problem
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S

non−state variables
(local T,p, N, etc.
microscopic coordinates
of particles)

Smax

V,N
T

(averaged state
variables, fixed
externally)

Figure 2.12: In equilibrium the entropy assumes a global maximum as a funtionof �non-state� variables.is only lifted by the nondistinguishability of equivalent partiles in quantum me-hanis. Therefore, quantum mehanis has profound onsequenes even on theproperties of marosopi systems. This will be disussed further in statistialmehanis.
2.5 The fundamental relation of thermodynamisThe relation between the in�nitesimal hanges of the state variables manifested inthe 1st law an be ast into a non-in�nitesimal relation using a saling argument:The 2nd law implies for reversible proesses:

δQ = TdS (2.65)i.e. from the 1st law (energy onservation):
dS =

1

T
dU +

P

T
dV − µ

T
dN (2.66)



2.5. THE FUNDAMENTAL RELATION OF THERMODYNAMICS 33(S is a homogenous funtion of an external variable.)Hene, the derivatives of S wrt. U , V , N are
(

∂S

∂U

)

V,N

=
1

T
(2.67)

(
∂S

∂V

)

U,N

=
P

T
(2.68)

(
∂S

∂N

)

U,V

= −µ

T
(2.69)It follows from equation 2.66 that S is a funtion of the extensive variables U , V ,

N (whih are proportional to the system size, �sale� with system size) in suh away that S sales with U , V , N , i.e. S is also proportional to the system size:The entropy S is an extensive quantity.Then the saling relation holds,
(λU, λV, λN) = λS(U, V, N) (2.70)whih implies by di�erentiation wrt. λ and λ → 1,
d

dλ
(λS) = S =

∂S

∂U
U +

∂S

∂V
V +

∂S

∂N
N (2.71)and using ∂S

∂U
, ∂S

∂V
, ∂S

∂N
above,

TS = U + PV − µN (2.72)
⇔ U = TS − PV + µN .

Fundamental relationof thermodynamis (2.73)
S is a homogenous funtion of U , V , N .It an be seen as a non-in�nitesimal form of the 1st law, where now both theextensive variables S, V , N and the intensive variables T , P , µ an be varied(by hanging e.g. external parameters). The total di�erential of the fundamentalrelation implies another relation between thermodynami derivatives:

TdS + SdT = dU + PdV + V dP − µdN − Ndµ (2.74)
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dU = TdS − PdV + µdN : (2.75)
dµ = − S

N
dT +

V

N
dP Gibbs-Duhem-relation (2.76)Using partile density ρ = N

V
and entropy density s = S

V
one obatins:

dµ = −1

ρ
sdT +

1

ρ
dP (2.77)The fundamental relation an be used to derive the equations of state for spei�state hanges from the general equation of state, F (P, V, T, . . .) = 0.Equation for an ideal gas:

F (P, V, T ) = PV − NkBT = 0 general EOS (2.78)
⇒

︸︷︷︸

F.R.

FδQ=0(P, V, T ) = 0 adiabati equation (2.79)
FdT=0(P, V, T ) = 0 isothermal equation, et. (2.80)2.6 Thermodynami potentialsThe internal energy U of a system desribes (but is not equivalent to, sine η < 1)the energy stored in the system, i.e. potential energy, that an be transformedinto mehanial work. It is, therefore, often alled a thermodynamial potential.Example:

∆U = ∆Q − ∆W (2.81)work done by the gas:
∆W = −(∆U − ∆Q) > 0 (2.82)

|∆W | < ∆U (2.83)
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A
p0

∆xFigure 2.13: Mehanial work ∆W done against external pressure P0The 2nd law implies a minimum priniple for U :For reversible and irreversible proesses 1 → 2 we have
δQ = TdS for reversible proesses (2.84)
δQ < TdS for irreversible proesses (2.85)

∆U ≤
∫ 2

1

T dS

︸ ︷︷ ︸

∆Q

−∆W12 +

∫ 2

1

µ dN (2.86)i.e. in a losed system with S, V , N = onst. and S a �xed variable in U (→ seebelow):
(∆U)S,V,N ≤ 0 for any proesses in a losed system. (2.87)The internal energy U has been written as a funtion of all the extensive variablesof the system, S, V , N , . . .

U is, therefore, useful to desribe proesses where S, V , N , . . . are �xed fromoutside, i.e. the minimum of U as funtion of S, V , N (dS, dV , dN =0) isdetermined for given S, V , N , and hene the orresponding T , P , µ, . . .

→ exerises
→ examples (below)In many ases, S, V , N (espeially S) are not determined from outside. Itis then useful to write the �potential energy� of the system as funtion of therelevant, externally determined variables, i.e. of intensive or extensive variables,or a ombination. For eah extensive variable there is an intensive quantity



36 CHAPTER 2. THERMODYNAMICSwhih is the derivative of U wrt. the extensive one; both variables form a pair ofanonially onjugated variables:
S → T =

(
∂U

∂S

)

V,N

(2.88)
V → P = −

(
∂U

∂V

)

S,N

(2.89)
N → µ =

(
∂U

∂N

)

S,V

et. (2.90)We want to write U not as a funtion of S but as funtion of T , the derivative of
U wrt. S.The standard way to write a given funtion f(y) loally in dependene of Π = ∂f

∂yis the Legendre transformation.
f(y) : f = Πdy (2.91)

g(Π) = f − Πy : dg = df − Πdy
︸ ︷︷ ︸

=0

−ydΠ = −ydΠ (2.92)Reipe: f → g: subtrat pair of onjugated variables.Example: Classial mehanisTransformation from Lagrange funtion L(x, ẋ
︸︷︷︸

y

) to Hamilton funtion H(x, p),where the oordinate x is an unhanged variable, the veloity ẋ orresponds to
y, and the lassial momentum p = ∂L

∂ẋ
orresponds to Π:

H = L − x
∂L

∂ẋ
(2.93)Note:

• It is only neessary to perform a loal transformation in the viinity of somegiven value of the variable y, sine we are looking for the minimum of f .
• Loally, the Legendre transformation is unique.
• If f(y) has a minimum (extremum) at a given point y then g(Π) has aminimum (extremum) at the same point, (only expressed by the variable

Π), and vie versa.



2.6. THERMODYNAMIC POTENTIALS 37Appliation to thermodynamis:external �xed variables thermodynami potential
S, P, N enthalpy

H(S, P, N) = U + PV = ST + µN

dH = TdS + V dP + µdN

T, V, N free energy (Helmholtz free energy)
F (T, V, N) = U − TS = −PV + µN

dF = −SdT + PdV + µdN

T, P, N free energy (Gibbs free energy)
G(T, P, N) = U − TS + PV = µN

dG = −SdT + V dP + µdN

T, V, µ grand anonial potential
Ω(T, V, µ) = U − TS − µN = −PV

dΩ = −SdT − PdV − Ndµ(for systems with partile exhange)
S, V, N U(S, V, N) = TS − PV + µN

dU = TdS − pdV + µdN



38 CHAPTER 2. THERMODYNAMICSRelations between thermodynami derivatives: Maxwell relationsFrom dU = TdS − pdV + µdN it follows:
T =

(
∂U

∂S

)

V,N

(2.94)
P = −

(
∂U

∂V

)

S,N

(2.95)
µ =

(
∂U

∂N

)

S,V

(2.96)Taking another derivative and using ∂2U
∂x∂y

= ∂2U
∂y∂x

for state variables, one obtainsimmediately
(

∂T

∂V

)

S,N

= −
(

∂P

∂S

)

V,N
(

∂T

∂N

)

S,V

=

(
∂µ

∂S

)

V,N
(

∂P

∂N

)

S,V

= −
(

∂µ

∂V

)

S,N

Maxwell relations (2.97)
and similar relations for other variables.2.7 Thermodynami response funtionsThe response of a thermodynami system to the hange of external parameters,like temperature T , magneti �eld ~B, pressure p, et., is desribed by the re-sponse funtions. If these external funtions are time-independent, the responsefuntions an be expressed as derivatives of the thermodynami potentials.2.7.1 Thermal response funtionsThe thermal response funtions or spei� heats c desribe the hange of the heatontent δQ of a system (per volume) due to a hange of temperature T in a
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c =

δQdT = T
dSdT (2.98)where it must be spei�ed, whih other variables are kept onstant during thatproess.For the N − p − V system, the partile number N and either V or p are keptonstant. Hene, one has

cV = T

(
∂S

∂T

)

V,N

(2.99)
↑ (2.100)dF = SdT − p dV

︸︷︷︸

=0

+µ dN
︸︷︷︸

=0

(2.101)
= −T

(
∂2F

∂T 2

)

V,N

(2.102)
> 0 (2.103)or equivalently, sine dU = δQ − pdV + µdN ,

cV =

(
∂U

∂T

)

V,N

(2.104)
cp = T

(
∂S

∂T

)

p,N

(2.105)
↑ (2.106)dG = SdT − V dp

︸︷︷︸

=0

+µ dN
︸︷︷︸

=0

(2.107)
= −T

(
∂2G

∂T 2

)

p,N

(2.108)
> 0 (2.109)or equivalently, with dH = δQ − V dp + µdN ,

cp =

(
∂H

∂T

)

p,N

(2.110)



40 CHAPTER 2. THERMODYNAMICSIt follows from the seond law of thermodynamis (formulation (2)) that thespei� heat is positive:
cV > 0, cp > 0 (2.111)2.7.2 Mehanial response funtionsThe ompressibility κ desribes the hange of volume of a system due to a pressurehange, normalized to its volume:
κT = − 1

V

(
∂V

∂p

)

T,N

= − 1

V

(
∂2G

∂p2

)

T,N

≥ 0 (2.112)
κS = − 1

V

(
∂V

∂p

)

S,N

= − 1

V

(
∂2H

∂p2

)

S,N

≥ 0 (2.113)The stability of a physial system requires that the ompressibility is not negative(no spontaneous volume ollapse).The ompressibility an also be expressed in terms of the density n = N
V
:

1

n

(
∂n

∂p

)

N

=
V

N

(

− N

V 2

)
∂V

∂p
= κ (2.114)The hange of volume due to a temperature hange is given by the thermalexpansion oe�ient α

αp =
1

V

(
∂V

∂T

)

p

=
1

V

{
∂

∂T

(
∂G

∂p

)

T

}
>
< 0 (2.115)The heat expansion α an be positive or negative.2.7.3 Magneti response funtionsThe magneti suseptibility χT,S is the response of the magnetization M to ahange of the external magneti �eld B:
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χT =

(
∂M

∂B

)

T

=

(
∂2FT,B

∂B2

)

T

(2.116)
↑dFT,B = −SdT − pdV + MdB

χS =

(
∂M

∂B

)

S

=

(
∂2FS,B

∂B2

)

S

(2.117)
↑dFS,B = SdT − pdV + MdBwhere the �free energies� of a magneti system, FT,B, FS,B are understood as theLegendre transforms of U with respet to T and B and to S and B, respetively.The suseptibility is positive for a para- or ferromagneti system and negativefor a diamagneti system.The relations given in 1.6.1-1.6.3 show generally, that the response funtions anbe expressed in terms of the seond derivatives of an appropriate thermodynamipotential.2.7.4 Relations between thermal and mehanial responsefuntionsThe following relations hold:

cp

cV

=
κT

κS

(2.118)
cp − cV = TV

α2
p

κT

≥ 0 (2.119)
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• Relation (1):

cp

cV
=

(
∂S
∂T

)

p
(

∂S
∂T

)

V

=

(∂p/∂T )S

(∂p/∂S)T

(∂V/∂T )S

(∂V/∂S)T

=

(∂V/∂S)
∂p/∂S

∣
∣
∣
T

(∂V/∂T )
(∂p/∂T )

∣
∣
∣
S

=

(
∂V
∂p

)

T(
∂V
∂p

)

S

=
κT

κS
(2.120)where we used in the numerator, that the total di�erential of p vanishes for

cp:
0 = dp =

(
∂p

∂S

)

T

dS +

(
∂p

∂T

)

S

dT ⇒
(

∂S

∂T

)

p

= −
(

∂p
∂T

)

S
(

∂p
∂S

)

T

(2.121)and in the denominator, that the total di�erential of V vanishes for cV :
0 = dV =

(
∂V

∂S

)

T

dS +

(
∂V

∂T

)

S

dT ⇒
(

∂S

∂T

)

V

= −
(

∂V
∂T

)

S(
∂V
∂S

)

T

(2.122)
• Relation (2):

cp − cV = T

{(
∂S

∂T

)

p

−
(

∂S

∂T

)

V

} (2.123)(i) We use the hain rule to express the T -derivative at p = onst. by a
T -derivative at V = onst. (see also above):

(
∂S

∂T

)

p

=
∂

∂T
S(T, V (p, T ))

∣
∣
∣
∣
p=onst. (2.124)

=

(
∂S

∂T

)

V

+

(
∂S

∂V

)

T

(
∂V

∂T

)

p
︸ ︷︷ ︸

V ·αp

(2.125)(ii) (
∂S
∂V

)

T
is expressed using a Maxwell relation, employing the thermo-dynamial potential F :
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S = −

(
∂F

∂T

)

V

(2.126)
(

∂S

∂V

)

T

= −
{

∂

∂V

(
∂F

∂T

)

V

}

T

=

{
∂

∂T

(

−∂F

∂V

)

T

}

V

(2.127)
=

(
∂p

∂T

)

V

(2.128)Sine in the last expression dV = 0, we have
0 = dV =

(
∂V

∂p

)

T

dp +

(
∂V

∂T

)

p

dT (2.129)
⇒

(
∂p

∂T

)

V

= −
(

∂V
∂T

)

p
(

∂V
∂p

)

T

= − V αp

(−V κT )
=

αp

κT
(2.130)and �nally

cp − cV = T

(
∂p

∂T

)

V

(
∂V

∂T

)

p

= TV
α2

p

κT

≥ 0. (2.131)Physially cp ≥ cV , beause for p = onst. part of the heat added is notkept in the system but is transformed to mehanial work. Thus, more heatis neessary to make a given temperature hange than in the ase V = onst.Similarly, one an prove the magneti relations:
cB

cM

=
χT

χS

cB − cM = T
α2

B

χT
≥ 0

(2.132)
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