
Chapter 3
Foundations of Statistial Physis
3.1 Goals and methods of statistial physisIn thermodynamis it is assumed that the marosopially observable state (= �ther-modynami state� ) of a system omprised of many partiles (= �marosopisystem� ) an be desribed uniquely by a set of so-alled state variables. Theproperties of thermodynami states as well as thermodynami state hanges areharaterized on very general grounds by the 3 laws of thermodynamis, whihare established empirially (only postulates).However, no attempt is made in thermodynamis- to alulate the dependene of the marosopi properties on the state vari-ables for a given system. (e.g. the ideal gas law p ·V = NkBT ; dependeneof p on T for V = const. is only established empirially).- or even to give expressions for the state variables themselves in terms of themirosopi variables (~xi, ~pi for eah partile ) of a system. (e.g. pressure

p in terms of ~pi, i = 1, . . . , N).Only general, but very powerful relations among the state variables and amongthe response funtions ould be derived.It is harateristi for thermodynamis that no system-spei� information en-ters. 45



46 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSThe goal of statistial physis is to establish the link between the mirosopiproperties (Hamiltonian) of a system and the marosopi desription of thermo-dynamis, in detail:- De�nition of the state variables in terms of the mirosopi oordinates orquantum numbers (straight forward e.g. for energy, pressure,. . . but di�ultand essential for entropy)- Justi�ation of the struture of the phenomenologial equations (laws ofthermodynamis)- Mirosopi derivation of the marosopi thermodynamial properties ofgiven systems:
• equations of state
• phase transitions
• response funtions- Mirosopi alulation of the time-dependent behaviour: dynamis.Systems in ontat with external reservoirs or �heat baths� will be of speial in-terest.The essential tools of statistial physis are- the theory of probability, stohastis and- the mirosopi equations of motion.The entropy will establish the entral link between mirosopis and marosop-is.



3.2. ESSENTIALS OF PROBABILITY THEORY 473.2 Essentials of probability theoryWe �rst introdue important de�nitions
• (Random) Experiment (Zufallsexperiment):Reproduible measurement proedure, where the result of eah individualmeasurement an be random (i.e. di�erent for eah measurement).Example: throwing a die.
• Set of events (Ereignismenge), �event spae�:Set of possible results xi of a measurement, i = 1, . . . , Ne

M = { xi | i = 1, . . . , Ne } (3.1)(Example: Die: M = {1, 2, 3, 4, 5, 6})
• Random variable (Zufallsgröÿe):Physial quantity Y , whih depends in a de�nite way on the random resultof a measurement, i.e. Y is a mapping

Y : xi 7−→ Y (xi) i = 1, . . . , Ne. (3.2)Example: gain of money when throwing die 6.
• Relative frequeny of ourrene hM (xi) (relative Häu�gkeit):Perform a random experiment M times. During these M experiments theevent xi ours Mi times. Then:relative frequeny hM(xi) =

Mi

M
(3.3)Note: hM(xi) is not a random variable, sine it an be di�erent for eah setof M measurements.

• Probability:For a very large number of repetitions of the measurement, M → ∞, theratio hM(xi) = Mi

M
approahes a onstant, i.e. reproduible value. It isalled probability W (xi)

W (xi) = lim
M→∞

Mi

M
(3.4)



48 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICS(Follows from empirial law of large numbers, justi�ed by entral limittheorem → exerise.)Simple properties of the probability:
• W (xi) ≥ 0 positivity
•
∑
i

W (xi) =
P

i Mi

M
= 1 normalization

• W (xi) ≤ 1 boundednessThe probability W (xi) is, hene, a de�nite funtion ot the xi for a givenexperiment. Therefore, W (xi) is a random variable. It is often alledprobability distribution.
• Conditioned probability (bedingte Wahrsheinlihkeit):In a random experiment, two variables x, y an be measured (note: x ≡ yis inluded).Event spaes Mx = { xi | i = 1, . . . , Ne,x } (3.5)

My = { yi | i = 1, . . . , Ne,y } (3.6)Conditioned probability W (xi|yi)

W (xi|yi) = probability that result x = xi is obtained in one measurement,if result y = yj has already oured for sure:
W (xi|yi) =

M(xi, yj)

Myj

(3.7)with Myj
: number of draws for yj and M(xi, yj) = number of events with

xi and yi realized in M experiments.Normalization:
∑

i

W (xi|yj) = 1 and (3.8)
∑

j

W (xi|yj) = 1. (3.9)



3.2. ESSENTIALS OF PROBABILITY THEORY 49The probability of �nding results xi and yj in one measurement is
W (xi, yj) = W (xi|yj)W (yj)

= W (yj|xi)W (xi)
(3.10)

(from de�nition of W (xi|yj))
Normalization:

∑

i,j

W (xi, yj) =

(
∑

i

W (xi|yj)

)

︸ ︷︷ ︸
=1

·

(
∑

j

W (yj)

)

︸ ︷︷ ︸
=1

= 1 (3.11)
The two variables x, y are alled statistially independent if:

W (xi|yj) = W (xi) (result xi independent of yi) (3.12)
⇒ W (xi, yj) = W (xi)·W (yj) statistial independene (3.13)



50 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICS3.3 Pure and mixed states: de�nition ofthermodynami averages and state variablesIntuitively, it is lear :The marosopi, thermodynami state of a system, haraterized by de�nitevalues of the state variables, an usually be realized by a large number of miro-sopi states of the system, de�ned by the mirosopi oordinates.Example: A given amount of gas with partile number N at p,V ,T an berealized by realizations of the individual oordinates {(~xi, ~pi)|i =

1 . . .N} of the partiles.This motivates the de�nitions:
• Pure State or mirostate |n〉QM or |(~xi, ~pi)〉lass:Quantum mehanial (or lassial state), de�ned uniquely by de�nite valuesof the set of quantum numbers (or lassial oordinates) {n}.
• Mixed (or statistial) state uSet of pure states |n〉, eah one ourring with a ertain probability Wu(n)in the set u.A mixed state is haraterized by both:- mirosopi states |n〉 and- probability Wu(n) with whih |n〉 ours in the set u.Hene, a mixed state does not have a single quantum mehanial wave fun-tion, and annot in partiular be written as a (oherent) sum of mirosopistates |n〉. It is rather a set of mirostates.
• Statistial (or thermodynami) averageThe value of a physial observable Â asribed to a mixed state u is alulatedas the weighted average of the quantum mehanial expetation values of

Â in the states |n〉 whih omprise the mixed state u:
Ā ≡ 〈A〉 =

∑

n

Wu(n)〈n|Â|n〉 (3.14)
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Figure 3.1: Mixed state
Example: Â = Ĥ =total energy of the system.Note: |n〉 need not to be an energy eigenstate.Of speial importane is the ase that u orresponds to an equilibrium statewith ertain onstrain onditions, e.g. �xed energy, temperature, partilenumber et. In this ase, Ā ≡ 〈A〉 is alled thermodynami average.Below we will derive the probability distribution W (n) orresponding tothe equilibrium states. In order to formalize the onept of equilibriumstatistial average, we �rst introdue the statistial ensemble.

• A statistial ensemble (Statistishe Gesamtheit)A statistial ensemble is a set of NG opies of a system, with NG → ∞,whih all satisfy the same onstraint onditions, e.g. �xed energy, partilenumber, et.Among the NG opies, a number NG,n systems our in the mirostate
|n〉,

∑
n NG,n = NG. The probability that in the ensemble that system isin the state |n〉 is then

WG(n) = lim
NG→∞

NG,n

NG

(3.15)



52 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSNote: A mixed state an be viewed as a speial ase of an ensemble.However, the term �ensemble� is usually used for the ase that theonstraint onditions orrespond to �xing the values of ertain butnot all (equilibrium) state variables, e.g. energy E and partilenumber N , but pressure P and Volume V are still undetermined.The mixed state (set of mirostates) whih is obtained, when allvariables are �xed, is alled thermodynami state, as de�ned inthermodynamis.The ensemble is realized physially in the thermodynami limit (Volume
V → ∞) of marosopi systems, in that the system an be divided into
NG subsystems, where eah subsystem is large enough to represent thewhole system (in partiular that state variables are well-de�ned for eahsubsystem) and is thus a opy of the system.
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Figure 3.2: Visualization of a statistial ensembleDeviations from the average values:It will be shown expliitly that in a statistial ensemble in the thermo-dynami limit the quadrati variations of a physial quantity Â about itsaverage value 〈A〉 are small:
〈(A − 〈A〉)2〉 ≪ 〈A〉2 , (3.16)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 53where
〈A〉 =

∑

n

WG(n)〈n|Â|n〉. (3.17)Only if this ondition is ful�lled it is meaningful to represent a physialquantity by its thermal average.3.4 The entropy in Statistial PhysisIn thermodynamis the entropy was introdued as a state variable assoiated withreversible heat exhange. The 2nd law of thermodynamis gave us an intuitiveunderstanding that entropy is a measure of how �undetermined/disordered� astate is.This onept will now be formulated mathematially. It will be shown that it isequivalent to the thermodynami de�nition of entropy.Observable quantities like energy, partile number, et. are well de�ned for eahmirostate in an ensemble and therefore their values in a thermodynami state(= state variables) an be alulated as the thermal averages de�ned above.In ontrast, the entropy is a measure of how undetermined a thermodynamistate is by �xing its marosopi state variables, i.e. a measure of how manymirostates realize one and the same thermodynami marostate. Thus, entropyannot be de�ned for a single mirostate (like energy) but must be a funtionalof the probability distribution W (n) of mirostates |n〉 in a marostate u. In thefollowing the subsript u is dropped.De�nition and basi properties of entropy:The entropy S is a (real) funtional of the probability distribution W (n),
S : [0, 1]Ne −→ R

W (n) 7−→ S{W (n)} ∈ R

(3.18)whih satis�es the following properties:1. S ≥ 0 and S = 0 for W (n) = δn,n0
(≡ 3rd law of thermodynamis)



54 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICS2. S an be seen as a funtion of the Ne variables W (1), ....W (Ne):
S = S(W (1), ....W (Ne)). S is symmetrial in the W (n).3. S is an extensive variable.For statistial independent events (i.e. mirostates) e.g. mirostates |n1〉, |n2〉in di�erent independent subvolumes V1, V2 of the omplete system thismeans

S{W (n1, m2)} = S{W (n1)} + S{W (m2)}, (3.19)where |n1〉 and |n2〉 are realized and W (n1, m2) = W (n1) · W (m2).
V1 V2

W(n1) W(m2)

Figure 3.3: Two independent eventsFor the mirostates whih are not statistially independent we demand themore general relation
S{W (n, m)} = S{W (n)} +

∑

n

W (n) · S{W (m|n)} (3.20)where S{W (n)} is the measure of probability for state |n〉, ∑n W (n) theweighted sum over all the measures S{W (m|n)} for whih |m〉 is realizedand S{W (m|n)} is the measure probability for state |m〉 under the ondi-tion that |n〉 is realized.
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|n> |m>

Figure 3.4: Two statistially dependent events
Condition (3.22) inludes (3.21) trivially, sine for independent states W (m|n) =

W (m) and ∑n W (n) = 1. The onditions 1., 2. and equation (3.21) determinethe funtional S{W (n)} essentially uniquely, as will be derived now.We onsider S as a funtion of the Ne variables W (n), n = 1, ..., Ne and keepall the W (n) with n ≥ 2 �xed (without loss of generality).The event n = 1 an be omprised of several subevents:
n = 1





n = 1 m = a with ondition probability W (1) · W (a|1)

n = 1 m = b with ondition probability W (1) · W (b|1)... ... ... ...Thus, we have using (3.22):
S({W (1) · W (m|1)}, W (2), ..., W (Ne)) = S(W (1), W (2), ..., W (Ne))

+W (1) · S{W (m|1)}
(3.21)Sine the dependene holds for any of the variables W (1), W (2), ..., it is naturalto assume

S{W (n)} = S(W (1), W (2), ...) =
∑

n

fn(W (n)) (3.22)
=symmetry(2) ∑

n

f(W (n)) (3.23)



56 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSwhere f is a universal funtion. This implies the funtional equation for f :
∑

m

f(W (1) · W (m|1)) = f(W (1)) + W (1)
∑

m

f(W (m|1)) (3.24)Beause of the dependene on the produt in the argument of f we make theAnsatz:
f(x) = g(x) · ln(x) with g(x) to be determined (3.25)In (3.26):

∑

m

g(W (1) · W (m|1)) · ln(W (1) · W (m|1)) (3.26)
= g(W (1)) · ln(W (1)) + W (1)

∑

m

g(W (m|1)) · ln(W (m|1)) (3.27)or ln(W (1)) · [
∑

m

g(W (1) · W (m|1)) − g(W (1))] (3.28)
+

∑

m

ln(W (m|1)) · [g(W (1) · W (m|1)) − W (1) · g(W (m|1))] = 0 (3.29)This is ful�lled for g(x) ∼ x, sine:
∑

m

W (1)W (m|1)

︸ ︷︷ ︸
W (1)

−W (1) = 0 (1st [...] ) (3.30)
∑

m

ln(W (m|1)) · [W (1) · W (m|1) − W (1) · W (m|1)] = 0 (2nd [...] ) (3.31)It follows the general entropy funtional:
S{W (n)} = −k

∑

n

W (n) · ln(W (n)) (3.32)Sine 0 ≤ W (n) ≤ 1, ln(W (n)) < 0, the onstant k must be k > 0.As seen below in equilibrium, this de�nition is equivalent to the thermodynamione, i.e. S has units [E
T

]
= J

K
. Therefore we hoose

k = kB = Boltzmann onstant = 1, 38 · 10−23 J

K
(3.33)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 57the value known from the ideal gas law.Maximum of the entropy S:For Ne di�erent events n, S assumes its absolute maximum for the equidistribu-tion (Gleihverteilung):
Wmax(n) =

1

Ne

= onst.(n) and hene Smax = kB · lnNe (3.34)Proof: Consider the di�erene, for any S = S(W (n))

Smax − S = kB · lnNe + kB

∑

n

W (n) · lnW (n) (3.35)
= kB

[ ∑

n

W (n)

︸ ︷︷ ︸
=1

·lnNe +
∑

n

W (n) · lnW (n) (3.36)
+
∑

n

1

Ne

− 1

︸ ︷︷ ︸
=0

]

= kB

∑

n

W (n) ·

[ln(Ne · W (n)) +
1

Ne · W (n)
− 1

] (3.37)With x := Ne · W (n), and −lnx ≤ 1
x
− 1, x > 0 (square braket) it follows

Smax ≥ S. (3.38)
S{W (n) = δn,n0

} = 0 (3.39)Sine S is a measure of the �undeterminedness� of a thermodynami state, i.e. Sinreases with the number of mirostates realizing a thermodynami state, it isintuitively lear that on average a system (without external fores applied) makestransitions only from one thermodynami state with fewer miro-realizations toa thermodynami state with more or equal miro-realizations, sine the latter ismore probable. In the thermodynami limit, variations around this behaviourvanish. Hene, the entropy does not derease in any thermodynamial statehange (2nd law).However, a rigorous proof is still missing to date.
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Figure 3.5: Maximum of the entropy S3.4.1 Thermodynami equilibrium for an isolated system:miroanonial ensembleWe now want to �nd the statistial ensembles for thermodynami equlilibriumstates. From the preeding onsideration, this amounts to �nding the proba-bility distribution haraterizing the ensemble, for whih the entropy funtional
S{W (n)} is maximal.The maximization must be done under the onstraint onditions applied fromoutside. If W (n) in known, all thermodynami quantities an be alulated frommirosopis. We �rst onsider an ensemble of ompletely isolated systems, i.e.all systems in the ensemble have exatly the same energy E.The ensemble is alledMiroanonial ensemble:Energy �xed exatly to En = E

W (n) = 0 for En 6= E (3.40)Hene, S{W (n)} must be maximized with the onstraint
∑

n

W (n) =
∑

n

′

W (n) = 1 where En = E. (3.41)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 59This task is performed by means of the method of the Lagrange multiplier (seeappendix A):max[S{W (n)}
]

P
′ W (n)−1=0

(3.42)
= max[− kB

∑

n

′

W (n) · lnW (n) + λ

(
∑

n

′

W (n) − 1

)] (3.43)
≡ max [S{W (n), λ}] (3.44)The extremum onditions are
∂Sm

∂λ
= 0 =

∑

n

′

W (n) − 1 (3.45)
∂Sm

∂W (n)
= 0 = −kB · lnW (n) − kB + λ, n = 1, 2, ... (3.46)The seond set of equations determines the number W (n) for eah n and isindependent of n. Therefore W (n) is an equidistribution for |n〉 with En = Eand beause of normalization

W (n) =

{
1

Ω(E)
= onst. , En = E

0 , En 6= E
miroanonial ensemble (3.47)where Ω(E) is the number of mirostates |n〉 with energy E.The entropy is then

Sm(E) = k · lnΩ(E)
equilibrium entropy formiroanonial ensemble (3.48)and depends only on the �xed energy.3.4.2 Thermodynamial equilibrium for open systems withenergy exhangeWe now onsider the ensemble of systems whih are in ontat with a heat bath,i.e. the temperature is �xed but there is energy exhange possible between the



60 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSsystem and the bath. This �xes the average value of the energy of the system.This ensemble is alled anonial ensemble: 〈E〉 �xed.Note: In the statistial treatment we don't have de�ned the temperature
T yet. This will be ahieved below. For the following treatment weonly need the ondition 〈E〉 �xed.

〈E〉 = U is identi�ed with the internal energy of thermodynamis. We nowmaximize the entropy S{W (n)} under the onstraints normalization and �xedaverage value of energy:
∑

n

W (n) = 1 (3.49)
〈E〉 =

∑

n

En · W (n) (3.50)
=

∑

n

〈n|H|n〉 · W (n) (3.51)(3.52)(3.53)max[S{W (n)}]
∣∣∣P

n En·W (n)=1
≡ max[Sc{W (n), λ, η}] (3.54)
≡ max[− kB

∑

n

W (n) · lnW (n) (3.55)
+λ

(
∑

n

W (n) − 1

)

+η

(
∑

n

En · W (n) − 〈E〉

)]

The extremum onditions are:
∂Sc

∂λ
= 0 =

∑

n

W (n) − 1 (3.56)
∂Sc

∂η
= 0 =

∑

n

En · W (n) − 〈E〉 (3.57)
∂Sc

∂W (n)
= 0 = −kB · lnW (n) − kB + λ − ηEn (3.58)

⇒ W (n) = e
−1+ λ

kB
−

ηEn
kB = e

−1+ λ
kB · e

−
ηEn
kB (3.59)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 61The Lagrange multiplier λ is determined by the normalization, whih an bewritten as
Wc(n) =

1

Zc

e
−

η
kB

En (3.60)with
Zc :=

∑

n

e
−

η
kB

En . (3.61)The parameter η is determined by ∑n En · W (n) = 〈E〉.We rede�ne
η

kB

≡ β ≡
1

kBT̃
. (3.62)The new parameter T̃ will now be identi�ed with the temperature as de�ned inthermodynamis:Connetion of the statistial treatment with thermodynamis:Consider a reversible state hange with

T̃ → T̃ + d T̃ (3.63)Change of energy due to hange of distribution d Wc(n):
d〈E〉 =

∑

n

En · d Wc(n) (3.64)Change of entropy:
dS = −kB

∑

n

[lnWc(n) + 1] · d Wc(n) (3.65)
= −kB

∑

n

[
−

En

kBT̃
− lnZc + 1

]
· d Wc(n) (3.66)From normalization ofWc(n) before and after the state hange it follows∑n d Wc(n) =

0, i.e.
dS =

1

T̃

∑

n

En · d Wc(n) =
1

T
d〈E〉 (3.67)



62 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSor
d〈E〉 = dU = T̃ dS (3.68)This relation is idential to the thermodynami one if we identify the statistialequilibrium entropy of the anonial ensemble with the thermodynami one andthe parameter T̃ with the temperature T .We then have the �nal result for the probability distribution Wc(n) haraterizingthe anonial ensemble

Wc(n) = 1
Zc

e
−

En
kBT

Zc =
∑

n e
−

En
kBT

Boltzmann distributionCanonial partition sum (3.69)Remarks:1. Wc(n) is the probability that in the anonial ensemble (〈E〉 �xed fromoutside) the mirostate |n〉 is realized.2. Wc(n) depends only on the energy |n〉 for given temperature.3. In the partition sum, the summation runs over all mirosopi quantumstates (not over the energy) with a �xed partile number N , but arbitraryenergy.Using the Boltzmann distribution, the free energy evaluated as
F = U − TS = 〈E〉 − TS (3.70)

=
∑

n

EnWc(n) + kBT
∑

n

Wc(n) ln

(
e
−

En
kBT

Zc

) (3.71)
=

∑

n

EnWc(n) + kBT
∑

n

Wc(n)

︸ ︷︷ ︸
=1

[− lnZc︸︷︷︸independent of n− En

kBT
] (3.72)

= −kBT ln Zc (3.73)
F = −kBT ln Zc

or Zc = e
−

F
kBT (3.74)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 63These equations, together with the identi�ations of the thermodynami temper-ature T ≡ T̃ = 1
η
, onstitute the onnetion between the mirosopi theory andthe marosopi thermodynami theory, beause the partition sum Zc an be al-ulated, if the energy eigenvalues En are known from a mirosopi theory, andthe equilibrium free energy F allows to alulate any thermodynami quantity asa thermodynami derivative.

Zc depends expliitly on T through the Boltzmann fator (T-dependent averageoupation of the eigenstates with energies En) and depends on other thermody-nami variables like volume V , partile number N et. through the dependeneof En on V , N . For this reason, Zc is often alled �partition funtion�. Knowl-edge of Zc (T, V, N, . . .) allows to alulate the omplete thermodynamis of asystem. Several examples will be onsidered later. In an exerise it is shown that
E1 E2 E3 4E E5

− E/k  TBe

EFigure 3.6: Thermal oupation of the energy levels, assuming that the objets(partiles, spins et.) are distinguishable.in the thermodynami limit N → ∞ the energy �utuations per partile vanish:
〈(E − 〈E〉)2〉/N → 0. This proves that the miroanonial and the anonialensemble are equivalent.Stability properties of thermodynami response funtions1. Spei� heat: cV ≥ 0(The energy ontent annot derease with inreasing temperature.)



64 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSProof:
cV =

(
∂〈E〉

∂T

)

V

=
∂

∂T

∑

n

En

e
−

En
kBT

Zc

(3.75)
=

1

kBT 2

∑

n

(E2
n − En〈E〉)

e
−

En
kBT

Zc

(3.76)Using ∂

∂T

1

Zc

= −
1

Z2
c

∑

n

+En

kBT 2
e
−

En
kBT (3.77)

= −
1

kBT 2

〈E〉

Zc

(3.78)one obtains cV =
1

kBT 2
(〈E2〉 − 〈E〉2) (3.79)

=
1

kBT 2
〈(E − 〈E〉)2〉 ≥ 0. (3.80)

2. Compressibility: κT = − 1
V

(
∂V
∂p

)

T
= − 1

V

[(
∂p

∂V

)−1
]

T
≥ 0Proof:The pressure is alulated mirosopially as

p = −

(
∂〈E〉

∂V

)

T,N

= −
∂

∂V

∑

n

EnWc(n) (3.81)with 〈E〉 ≡ U and Wc(n) = e
−

En
kBT /Zc. I.e. the pressure arises beause ofthe volume dependene of the energy eigenvalues of the system: En ∼ 1

V
;assume En ≥ 0 without loss of generality. Then

p = −
∑

n

[
∂En

∂V︸︷︷︸
∼−

1

V 2
<0

Wc(n) + En

∂Wc(n)

∂V︸ ︷︷ ︸
<0

]
≥ 0 (3.82)

κT =
1

V

∑

n

∂2En

∂V 2
Wc(n) + 2

(
∂En

∂V

)
∂Wc(n)

∂V
(3.83)

+En

∂2Wc(n)

∂V 2
≥ 0 (3.84)



3.4. THE ENTROPY IN STATISTICAL PHYSICS 653.4.3 Thermodynamial equilibrium for open systems withenergy and partile exhangeOften, a system is in ontat with a reservoir with energy and partile exhange.Example: Eletrons in a wire onneted to a battery.In this ase, only the average energy and the average partile number are �xed:
∑

n

W (n) = 1 (3.85)
〈E〉 ≡ U =

∑

n

EnW (n) = const. (3.86)
〈N〉 =

∑

n

NnW (n) = const. (3.87)The summation extends over all eigenstates |n〉 of the system with arbitrary par-tile number Nn = 1, 2, 3, . . . ,∞.The ensemble of systems with �xed 〈E〉 and 〈N〉 is alled grand anonial en-semble. To �nd the probability distribution of the grand anonial ensemble, wemaximize the entropy with these onstraints:
SG{W (n), λ, η, ξ} =

∑

n

[
− kBW (n) lnW (n) + λW (n) (3.88)

−ηENW (n) + ξNnW (n)
]
− λ + η〈E〉 − ξ〈N〉

∂SG

∂λ
=

∑

n

W (n) − 1 = 0 (3.89)
∂SG

∂η
=

∑

n

EnW (n) − 〈E〉 = 0 (3.90)
∂SG

∂ξ
=

∑

n

NnW (n) − 〈N〉 = 0 (3.91)
∂SG

∂W (n)
= −kB ln W (n) − kB + λ − ηEn + ξNn = 0 (3.92)

⇒ WG(n) =
1

ZG

e
−

ηEn−ξNn
kB (3.93)



66 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSwhere the prefator exp
(
1 − λ

kB

) is �xed suh that WG(n) is normalized, i.e.:
ZG =

∑

n

e
−

ηEn−ξNn
kB grand anonial partition sum (3.94)

The parameters η

kB
≡ β ≡ 1

kB
eT and ξ

kB
≡ eµ

kB
eT are determined in analogy to theanonial ase:Connetion of the grand anonial ensemble with thermodynamis:Reversible state exhange with T̃ → T̃ + dT̃ and µ̃ → µ̃ + dµ̃, leaving dynamis,i.e. En, unhanged:Change of energy:

d〈E〉 =
∑

n

EndWG(n) (3.95)Change of entropy:
dS = −kB

∑

n

[ln WG(n) + 1]dWG(n) (3.96)
= −kB

∑

n

[−
En

kBT̃
+

µ̃

kBT̃
Nn − ln ZG + 1]dWG(n) (3.97)

∑

n

dWG(n) = 0 (3.98)It follows
∑

n

EndWG(n) ≡ d〈E〉 = T̃ dS + µ̃d〈N〉 (3.99)i.e. the identi�ation T̃ = T the temperature and µ̃ = µ the hemial potential.



3.4. THE ENTROPY IN STATISTICAL PHYSICS 67Note: The prefator kB of S{W} is up to now still arbitrary. It will be �xedlater when alulating S for the ideal lassial gas, whih was used tode�ne the temperature sale, and in the ourse of this the value of theBoltzmann onstant.
WG(n) = 1

ZG
e
−

En−µNn
kBT

ZG =
∑

n e
−

En−µNn
kBT

grand anonial distributiongrand anonial partition sum (3.100)The sum runs over all partile numbers N and all eigenstates |n〉 for given partilenumber N .The grand anonial potential is given as follows:
Ω = 〈E〉 − TS − µN (3.101)

=
∑

n

WG(n)[En − µNn + kBT ln WG(n)︸ ︷︷ ︸
− ln ZG−

En
kBT

+ µNn
kBT

] (3.102)
= −kBT ln ZG (3.103)
Ω = −kBT ln ZG

ZG = e
−

Ω

kBT

grand anonial potentialgrand anonial partition sum (3.104)The grand anonial ensemble automatially inludes the thermodynamial limit
N → ∞, sine in�nite summation over n. As in the anonial ase, it an beshown that in the thermodynamial limit the �utuations vanish:

√
〈(N − 〈N〉)2〉

〈N〉

N→∞

−→ 0 (3.105)
√
〈(E − 〈E〉)2〉

〈N〉
N→∞

−→ 0 (3.106)i.e. the miroanonial, anonial and grand anonial ensembles are equivalent.We have the orrespondene:



68 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICSensemble thermodyn. potential externally �xed variablemiroanonial U = E = const. S, Nanonial F = 〈E〉 − TS T, N and E �xed on average onlygrand anonial Ω = 〈E〉 − TS − µN T, µ and E, N �xed on average onlyRemark: It is often useful for alulated many-partile systems to alulatein the grand anonial ensemble, sine the states are more easilyenumerated without �xing the total number of partiles. This willbe seen expliitly for fermions and bosons, where the statistis im-poses restritions on the oupation of single partile states.


