Chapter 3

Foundations of Statistical Physics

3.1 Goals and methods of statistical physics

In thermodynamics it is assumed that the macroscopically observable state (= “ther-
modynamic state”) of a system comprised of many particles (=‘“macroscopic
system” ) can be described uniquely by a set of so-called state variables. The
properties of thermodynamic states as well as thermodynamic state changes are
characterized on very general grounds by the 3 laws of thermodynamics, which

are established empirically (only postulates).
However, no attempt is made in thermodynamics

- to calculate the dependence of the macroscopic properties on the state vari-
ables for a given system. (e.g. the ideal gas law p-V = NkgT'; dependence
of pon T for V = const. is only established empirically).

- or even to give expressions for the state variables themselves in terms of the
microscopic variables (7, p; for each particle ) of a system. (e.g. pressure

pin terms of p;, i=1,...,N).

Only general, but very powerful relations among the state variables and among
the response functions could be derived.
It is characteristic for thermodynamics that no system-specific information en-

ters.
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The goal of statistical physics is to establish the link between the microscopic
properties (Hamiltonian) of a system and the macroscopic description of thermo-
dynamics, in detail:

- Definition of the state variables in terms of the microscopic coordinates or
quantum numbers (straight forward e.g. for energy, pressure,. .. but difficult

and essential for entropy)

- Justification of the structure of the phenomenological equations (laws of
thermodynamics)

- Microscopic derivation of the macroscopic thermodynamical properties of

given systems:

e equations of state
e phase transitions

* response functions

- Microscopic calculation of the time-dependent behaviour: dynamics.

Systems in contact with external reservoirs or “heat baths” will be of special in-

terest.

The essential tools of statistical physics are

- the theory of probability, stochastics and

- the microscopic equations of motion.

The entropy will establish the central link between microscopics and macroscop-

ics.
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3.2 Essentials of probability theory

We first introduce important definitions

¢ (Random) Experiment (Zufallsexperiment):
Reproducible measurement procedure, where the result of each individual

measurement can be random (i.e. different for each measurement).

Example: throwing a dice.

e Set of events (Ereignismenge), “event space’:

Set of possible results x; of a measurement, : =1,..., N,

M={z|i=1,...,N.} (3.1)
(Example: Dice: M = {1,2,3,4,5,6})

e Random variable (Zufallsgréfie):
Physical quantity Y, which depends in a definite way on the random result

of a measurement, i.e. Y is a mapping

Y: z,—Y(%y) t=1,...,N. (3.2)
Example: gain of money when throwing dice 6.

e Relative frequency of occurrence hy,(z;) (relative Hiufigkeit):
Perform a random experiment M times. During these M experiments the
event x; occurs M; times. Then:

M;

relative frequency b () = 7 (3.3)

Note: hps(z;) is not a random variable, since it can be different for each set

of M measurements.

e Probability:
For a very large number of repetitions of the measurement, M — oo, the
ratio hy(z;) = % approaches a constant, i.e. reproducible value. It is
called probability W (x;)

M;
Wia) = lim — (3.4)
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(Follows from empirical law of large numbers, justified by central limit

theorem — exercise.)

Simple properties of the probability:

e W(z;) >0 positivity
o Y Wi(x;) = ]i\/[Mi =1 normalization
e Wi(x;) <1 boundedness

The probability W (z;) is, hence, a definite function ot the z; for a given
experiment. Therefore, W(z;) is a random variable. Tt is often called

probability distribution.

Conditioned probability (bedingte Wahrscheinlichkeit):
In a random experiment, two variables x,y can be measured (note: = =y

is included).

Event spaces M, = {z;]i=1,...,Nes} (3.5)
M, = {y|i=1,...,Nep} (3.6)

Conditioned probability W (z;|y;)
W (z;|y;) = probability that result z = x; is obtained in one measurement,

if result y = y; has already occured for sure:

M(xh y])
M,

Yj

Wi(zily:) = (3.7)

with M, : number of draws for y; and M(z;,y;) = number of events with

x; and y; realized in M experiments.

Normalization:

ZW(mi\yj) = 1 and (3.8)

> Wiaily) = 1. (3.9)
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The probability of finding results x; and y; in one measurement is

Wz y;) = Wlwly;)W(y;) (3.10)

(from definition of W (z;|y;))

Normalization:

> Wi y;) = <Z W(fﬂi\yj)) : (Z W(yj)) =1 (3.11)

J
v N~
=1

=1

S

The two variables x,y are called statistically independent if:

Wix;ly;) = W(z;) | (result x; independent of y;) (3.12)

= | W (xy,y;) = W(x;)-W(y;) | statistical independence (3.13)




50 CHAPTER 3. FOUNDATIONS OF STATISTICAL PHYSICS

3.3 Pure and mixed states: definition of

thermodynamic averages and state variables
Intuitively, it is clear :

The macroscopic, thermodynamic state of a system, characterized by definite
values of the state variables, can usually be realized by a large number of micro-

scopic states of the system, defined by the microscopic coordinates.

Example: A given amount of gas with particle number N at p,V,T can be
realized by realizations of the individual coordinates {(z}, p;)|i =
1... N} of the particles.

This motivates the definitions:

e Pure State or microstate [n)qu or |(Z7, Pi))class:
Quantum mechanical (or classical state), defined uniquely by definite values

of the set of quantum numbers (or classical coordinates) {n}.

e Mixed (or statistical) state u

Set of pure states |n), each one occurring with a certain probability W, (n)

in the set wu.

A mixed state is characterized by both:

- microscopic states |n) and

- probability W, (n) with which |n) occurs in the set .

Hence, a mixed state does not have a single quantum mechanical wave func-
tion, and cannot in particular be written as a (coherent) sum of microscopic

states |n). It is rather a set of microstates.

e Statistical (or thermodynamic) average
The value of a physical observable A ascribed to a mixed state u is calculated
as the weighted average of the quantum mechanical expectation values of

A in the states |n) which comprise the mixed state wu:

A= (A) =Y Wa(n)(n|An) (3.14)
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Figure 3.1: Mixed state

Example: A = H =total energy of the system.

Note: |n) need not to be an energy eigenstate.

Of special importance is the case that u corresponds to an equilibrium state
with certain constrain conditions, e.g. fixed energy, temperature, particle
number etc. In this case, A = (A) is called thermodynamic average.

Below we will derive the probability distribution W(n) corresponding to
the equilibrium states. In order to formalize the concept of equilibrium

statistical average, we first introduce the statistical ensemble.

e A statistical ensemble (Statistische Gesamtheit)
A statistical ensemble is a set of Ng copies of a system, with Ng — oo,
which all satisfy the same constraint conditions, e.g. fixed energy, particle
number, etc.
Among the Ng copies, a number Ng, systems occur in the microstate
In), >, Nan = Ng. The probability that in the ensemble that system is

in the state |n) is then

(3.15)
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Note: A mixed state can be viewed as a special case of an ensemble.
However, the term "ensemble” is usually used for the case that the
constraint conditions correspond to fixing the values of certain but
not all (equilibrium) state variables, e.g. energy F and particle
number N, but pressure P and Volume V' are still undetermined.
The mixed state (set of microstates) which is obtained, when all
variables are fixed, is called thermodynamic state, as defined in

thermodynamics.

The ensemble is realized physically in the thermodynamic limit (Volume
V' — o0) of macroscopic systems, in that the system can be divided into
N¢ subsystems, where each subsystem is large enough to represent the
whole system (in particular that state variables are well-defined for each

subsystem) and is thus a copy of the system.

Vl V2 V3
v

v, A Vg

v Vg A

Figure 3.2: Visualization of a statistical ensemble

Deviations from the average values:
It will be shown explicitly that in a statistical ensemble in the thermo-
dynamic limit the quadratic variations of a physical quantity A about its

average value (A) are small:

(A= (4)7) < (4", (3.16)
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where
(4) = 3 Waln)(n|Aln) (317

Only if this condition is fulfilled it is meaningful to represent a physical

quantity by its thermal average.

3.4 The entropy in Statistical Physics

In thermodynamics the entropy was introduced as a state variable associated with
reversible heat exchange. The 2nd law of thermodynamics gave us an intuitive
understanding that entropy is a measure of how "undetermined/disordered” a
state is.

This concept will now be formulated mathematically. It will be shown that it is
equivalent to the thermodynamic definition of entropy.

Observable quantities like energy, particle number, etc. are well defined for each
microstate in an ensemble and therefore their values in a thermodynamic state
(= state variables) can be calculated as the thermal averages defined above.

In contrast, the entropy is a measure of how undetermined a thermodynamic
state is by fixing its macroscopic state variables, i.e. a measure of how many
microstates realize one and the same thermodynamic macrostate. Thus, entropy
cannot be defined for a single microstate (like energy) but must be a functional
of the probability distribution W (n) of microstates |n) in a macrostate u. In the

following the subscript u is dropped.
Definition and basic properties of entropy:

The entropy S is a (real) functional of the probability distribution W (n),

S: [0,1% —R
W(n)— S{W(n)} e R

(3.18)

which satisfies the following properties:

1. S>0 and S =0 for W(n) = 0,, (= 3rd law of thermodynamics)
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2. S can be seen as a function of the N, variables W (1), ... W (N,):

S =S(W(1),...W(N.)). S is symmetrical in the W(n).

. S is an extensive variable.

For statistical independent events (i.e. microstates) e.g. microstates |n;), |ng)
in different independent subvolumes V;, V5 of the complete system this

S{W (ni,mqe)} = S{W(n1)} + S{W(my)}, (3.19)

where |n1) and |ng) are realized and W(ny, me) = Wi(ny) - W(ms).

W(n,) W(m,)

Figure 3.3: Two independent events

For the microstates which are not statistically independent we demand the

more general relation

S{W (n,m)} = S{W(n }+ZW ) - S{W (m|n)} (3.20)

where S{W(n)} is the measure of probability for state |n), > W(n) the
weighted sum over all the measures S{W (m|n)} for which |m) is realized
and S{W(m|n)} is the measure probability for state |m) under the condi-

tion that |n) is realized.
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Figure 3.4: Two statistically dependent events

Condition (3.22) includes (3.21) trivially, since for independent states W (m|n) =
W(m) and ) W(n) = 1. The conditions 1., 2. and equation (3.21) determine
the functional S{W (n)} essentially uniquely, as will be derived now.

We consider S as a function of the N, variables W (n),n = 1,..., N, and keep
all the W (n) with n > 2 fixed (without loss of generality).

The event n = 1 can be comprised of several subevents:

n=1 m =a with condition probability W(1)-W(a|l)
n=1{ n=1 m=> with condition probability W (1) W (b|1)

Thus, we have using (3.22):

SEW Q) - W(m|1)}, W (2),..,W(N,)) = SW(1),W(2),.., W(Ne)()S_Ql)
+W (1) - S{W(m|1)}

Since the dependence holds for any of the variables W (1), W(2), ..., it is natural

to assume

symmjtry(Z) Z f(W(n)) (323)
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where f is a universal function. This implies the functional equation for f:

> 1OV () Wmin) = FOV X Vi) (3.24)
Because of the dependence on the product in the argument of f we make the
Ansatz:

f(z) = g(z)-In(z) with g(z) to be determined (3.25)
In (3.26):

Zg W(m[1)) - In(W(1) - W(m|1)) (3.26)
= g(W(@))-In(W Zg (m|1)) - In(W(m|1)) (3.27)
In(W(1)) - [>_ g(W (1) - W(m|1)) — g(W(1))] (3.28)
+ ;IH(W(W\T)) [g(W (1) - W(m[1)) =W (1) - g(W(m|1))] =0 (3.29)

This is fulfilled for g(z) ~ x, since:

ZW W(m|1) =W (1) =0 (1st [..]) (3.30)

Zln (m|1)) - [W(L) - W(m|l) — W(1)- W(m|1)] =0 (2nd[...]) (3.31)

It follows the general entropy functional:

S{W(n)} = —k Z W(n (n)) (3.32)

Since 0 < W(n) <1, In(W(n)) < 0, the constant k& must be k& > 0.
As seen below in equilibrium, this definition is equivalent to the thermodynamic

= % Therefore we choose

one, i.e. S has units [%]

k = kp = Boltzmann constant = 1,38 - 10_23% (3.33)
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the value known from the ideal gas law.

Maximum of the entropy S:
For N, different events n, S assumes its absolute maximum for the equidistribu-

tion (Gleichverteilung):

1
Winae(n) = N = const.(n) and hence Sy = kp-InN, (3.34)

Proof: Consider the difference, for any S = S(W(n))

Swax — S = kp-ImN.+kz Y W(n) InW(n) (3.35)

— kp [ S Wn) N, + S W(n) - InW(n) (3.36)

= ks W(n)- [m(Ne W)+ —— — 1 (3.37)

With 2 := N, - W(n), and —Inz <1 —1, 2 > 0 (square bracket) it follows

Siax > S (3.38)

S{W () = bpn} =0 (3.39)

Since S is a measure of the “undeterminedness” of a thermodynamic state, i.e. S

increases with the number of microstates realizing a thermodynamic state, it is
intuitively clear that on average a system (without external forces applied) makes
transitions only from one thermodynamic state with fewer micro-realizations to
a thermodynamic state with more or equal micro-realizations, since the latter is
more probable. In the thermodynamic limit, variations around this behaviour
vanish. Hence, the entropy does not decrease in any thermodynamical state
change (2nd law).

However, a rigorous proof is still missing to date.
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Figure 3.5: Maximum of the entropy S

3.4.1 Thermodynamic equilibrium for an isolated system:

microcanonical ensemble

We now want to find the statistical ensembles for thermodynamic equlilibrium
states. From the preceding consideration, this amounts to finding the proba-
bility distribution characterizing the ensemble, for which the entropy functional
S{W(n)} is maximal.

The maximization must be done under the constraint conditions applied from
outside. If W (n) in known, all thermodynamic quantities can be calculated from
microscopics. We first consider an ensemble of completely isolated systems, i.e.
all systems in the ensemble have exactly the same energy F.

The ensemble is called

Microcanonical ensemble:
Energy fixed exactly to E,, = F
W(n)=0 for E,#FE (3.40)

Hence, S{W(n)} must be maximized with the constraint

W(n) = ,W(n) =1 where £, = E. (3.41)
2. 2
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This task is performed by means of the method of the Lagrange multiplier (see
appendix A):

max [S{W(n)}}z,w(n)_lzo (3.42)
— max| — kBZ'W(n) “InW(n) + A (Z/W(n) — 1) ] (3.43)
= max [S{W(nn),)\}] " (3.44)

The extremum conditions are

0Sm Ry

U 0 = En Wi(n)—1 (3.45)
0m__ g —_y InW(n)—kp+A, n=12 (3.46)
8W(n) B n B ) y Ly eee .

The second set of equations determines the number W(n) for each n and is
independent of n. Therefore W (n) is an equidistribution for |n) with E, = F

and because of normalization

QE)

o = const. B, =FE
const- microcanonical ensemble (3.47)
0 E,+E

where ((F) is the number of microstates |n) with energy E.

The entropy is then

equilibrium entropy for
S(E) = k- InQ(E) (3.48)

microcanonical ensemble

and depends only on the fixed energy.
3.4.2 Thermodynamical equilibrium for open systems with
energy exchange

We now consider the ensemble of systems which are in contact with a heat bath,

i.e. the temperature is fixed but there is energy exchange possible between the
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system and the bath. This fixes the average value of the energy of the system.

This ensemble is called canonical ensemble: (E) fixed.

Note: In the statistical treatment we don’t have defined the temperature
T yet. This will be achieved below. For the following treatment we
only need the condition (E) fixed.

(F) = U is identified with the internal energy of thermodynamics. We now
maximize the entropy S{WW(n)} under the constraints normalization and fixed

average value of energy:

> Wmn) = 1 (3.49)

(E) = ) E,-W(n) (3.50)

= Y (n|H|n)-W(n) (3.51)

n (3.52)

(3.53)

maX[S{W(n)}]Z e = max|[S.{W (n), A, n}] (3.54)

max [ —kp Y W(n)-InW(n)  (3.55)
+A (Z W(n) — 1)
+1 (Z E,-W(n)— <E>>

The extremum conditions are:

% = 0 = ;W(n) ~1 (3.56)
95S.
= 0 = ;En W (n) — (E) (3.57)
a5,
W () = 0 =—kg-mW(n)—kg+A—nkE, (3.58)

= W(n) = 6_1+% L — e_l B-¢ FB (359)
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The Lagrange multiplier A\ is determined by the normalization, which can be

written as

1 _=n
We(n) = ¢ Fn (3.60)

with

Z, = Ze_% . (3.61)

n

The parameter 7 is determined by Y E, - W(n) = (E).
We redefine

U
L =p=— 3.62
P = (3.62)

The new parameter T will now be identified with the temperature as defined in

thermodynamics:

Connection of the statistical treatment with thermodynamics:

Consider a reversible state change with

T—T+dT (3.63)
Change of energy due to change of distribution d W,(n):

d(E) = E,-dW.(n) (3.64)

Change of entropy:

dS = —kp Yy _ [nWe(n)+1]-dW,(n) (3.65)
= —kp )y [—kE’%—anC+1 - dWe(n) (3.66)

From normalization of W, (n) before and after the state change it follows Y d W,(n) =

0, i.e.

1 1
ds = = zn: E, - dWe(n) = = d(E) (3.67)
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or
d(E) = dU = TdS (3.68)

This relation is identical to the thermodynamic one if we identify the statistical
equilibrium entropy of the canonical ensemble with the thermodynamic one and
the parameter T with the temperature 7.

We then have the final result for the probability distribution W.(n) characterizing

the canonical ensemble

We.(n) = Zi ¢ Fat Boltzmann distribution (3.69)

_E . ..
Z,=3 e TsT Canonical partition sum

Remarks:

1. We(n) is the probability that in the canonical ensemble ((E) fixed from

outside) the microstate |n) is realized.
2. W,(n) depends only on the energy |n) for given temperature.

3. In the partition sum, the summation runs over all microscopic quantum
states (not over the energy) with a fixed particle number N, but arbitrary

energy.

Using the Boltzmann distribution, the free energy evaluated as

F = U-TS=(E)-TS (3.70)
6_%
— ; E,W,.(n) + kBT; W,(n)In ( 7 ) (3.71)
= > EW.(n)+ksTY Weln)— Wz, - En ] (3.72)
o~ kgT
n N , independent of n
=1
— —kpThnZ, (3.73)

F=—ksTlnZ, or 7. = ¢ FpT (3.74)
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These equations, together with the identifications of the thermodynamic temper-
ature T =T = %, constitute the connection between the microscopic theory and
the macroscopic thermodynamic theory, because the partition sum Z. can be cal-
culated, if the energy eigenvalues FE,, are known from a microscopic theory, and
the equilibrium free energy F' allows to calculate any thermodynamic quantity as
a thermodynamic derivative.

Z. depends explicitly on T through the Boltzmann factor (T-dependent average
occupation of the eigenstates with energies E,,) and depends on other thermody-
namic variables like volume V', particle number N etc. through the dependence
of E,, on V, N. For this reason, Z. is often called "partition function”. Knowl-
edge of Z.(T,V,N,...) allows to calculate the complete thermodynamics of a

system. Several examples will be considered later. In an exercise it is shown that

A

AN
\ o ElkeT

T/

r o
E, E, E; E, Eg E

Figure 3.6: Thermal occupation of the energy levels, assuming that the objects

(particles, spins etc.) are distinguishable.

in the thermodynamic limit N — oo the energy fluctuations per particle vanish:
((E — (E))?)/N — 0. This proves that the microcanonical and the canonical

ensemble are equivalent.

Stability properties of thermodynamic response functions

1. Specific heat: ¢y >0

(The energy content cannot decrease with increasing temperature.)
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Proof:
8< e kBT
cy = (W) aTZE (3.75)
B 1 9 e kE};’LT
= e 2 B BB = (3.76)
. 0 1 1 +E, _.Pn
USlng a—TZ = _Z_g kBT2e B (377)
_ 1 (E)
= T Z (3.78)
. 1
one obtains cy = k:BT2(<E2> —(E)?) (3.79)
1
- k:BT2<(E —(E))?) > 0. (3.80)

2. Compressibility: kr = —% (8—‘/) = —% [(3—5)_1} >0
T

T
Proof:
The pressure is calculated microscopically as
o(E) 0
- _ - E,W. 3.81
p=— %), = —aw LB (381

En
with (E) = U and W.(n) = e *s7 /Z.. Le. the pressure arises because of

the volume dependence of the energy eigenvalues of the system: E, ~ %;

assume F, > 0 without loss of generality. Then

p = -, (n) + nama/—if(n) >0 (3.82)
n ~—
N__lg<0 <0
B OE,\ OW.(n)
"= av2 2 < oV ) v (3.83)
2
+Enm >0 (3.84)

ovz  —
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3.4.3 Thermodynamical equilibrium for open systems with

energy and particle exchange

Often, a system is in contact with a reservoir with energy and particle exchange.

Example: Electrons in a wire connected to a battery.

In this case, only the average energy and the average particle number are fixed:

> Wmn) = 1 (3.85)
(E) = U=>_ EW(n)= const. (3.86)
(N) = > N,W(n) = const. (3.87)

The summation extends over all eigenstates |n) of the system with arbitrary par-
ticle number N, =1,2,3,..., 00.

The ensemble of systems with fixed (E) and (V) is called grand canonical en-
semble. To find the probability distribution of the grand canonical ensemble, we

maximize the entropy with these constraints:

SeA{W(n), An. &t = > [=ksW(n)InW(n) + AW (n) (3.88)

—nENW (n) + ENW (n)] = A+ n{E) — £(N)
0S¢

a5 = Zn: W(n)—1=0 (3.89)

% - zn: EW(n) — (E) =0 (3.90)

% = SN - () =0 (3.91)
aﬁf&) kel W(n) —kp+ A =B, +EN, =0 (3.92)
S W) = e (3.93)
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where the prefactor exp <1 — é) is fixed such that Wg(n) is normalized, i.e.:

_nEn—&Nn
— k
Za = Z € i grand canonical partition sum (3.94)
n
i prm— pr— L i pum— i 1 1
The parameters e = 0= T and Ry = T are determined in analogy to the

canonical case:

Connection of the grand canonical ensemble with thermodynamics:
Reversible state exchange with T — T+ dT and [ — [+ dp, leaving dynamics,

i.e. F,, unchanged:

Change of energy:
d(E) = E,dWg(n) (3.95)

Change of entropy:

dS = —kp Y [InWe(n) + 1]dWe(n) (3.96)

n

E, M
- _k —— 4+ =N, —InZg + 1]dWea(n 3.97
DN o+ UdWa(n)  (3.97)

> dWe(n) = 0 (3.98)

It follows

Y E,dWe(n) = d{E) = TdS + jid{N) (3.99)

i.e. the identification 7' = T the temperature and ;i = p the chemical potential.
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Note: The prefactor kg of S{IWW} is up to now still arbitrary. It will be fixed
later when calculating S for the ideal classical gas, which was used to
define the temperature scale, and in the course of this the value of the

Boltzmann constant.

Wea(n) = %e 5T grand canonical distribution (3.100)
Ze _ e—%”z{% grand canonical partition sum '
n

The sum runs over all particle numbers N and all eigenstates |n) for given particle
number V.

The grand canonical potential is given as follows:

Q = (BE)—TS—uN (3.101)
= Y Wa(n)[Ey — pNy+ kT InWg(n) | (3.102)
n
= —]{IBTII’IZG (3103)
Q = —kgTlnhZg grand canonical potential
__a . . (3.104)
Za = e F8T grand canonical partition sum

The grand canonical ensemble automatically includes the thermodynamical limit
N — oo, since infinite summation over n. As in the canonical case, it can be

shown that in the thermodynamical limit the fluctuations vanish:

) = (3.105)
<(E<]‘V><E>)2> Mo (3.106)

i.e. the microcanonical, canonical and grand canonical ensembles are equivalent.

We have the correspondence:
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ensemble thermodyn. potential | externally fixed variable
microcanonical | U = E = const. S, N

canonical F=(E)y-TS T, N and E fixed on average only
grand canonical | Q = (F) =TS —uN | T, and E, N fixed on average only

Remark: It is often useful for calculated many-particle systems to calculate
in the grand canonical ensemble, since the states are more easily
enumerated without fixing the total number of particles. This will
be seen explicitly for fermions and bosons, where the statistics im-

poses restrictions on the occupation of single particle states.



