
Chapter 4
Ideal Systems: Some Examples
In this 
hapter we 
onsider some examples whi
h visualize the statisti
al physi
sapproa
h of 
hapter 2 to des
ribing many-parti
le systems. This will also demon-strate 
hara
teristi
 thermodynami
al and statisti
al properties of su
h systems.4.1 2-level systemsA 2-level system is a quantum me
hani
al system whose Hilbert spa
e 
onsistsof exa
tly 2 states, e.g. a spin 1

2
in a magneti
 �eld ~B = (0, 0, B).

Hi = −gµ0~σi · ~B = −2µ0σz,iB (4.1)with the Landé fa
tor g = 2 and the spin 
omponents along the z-axis si = ±1
2
.We 
onsider a system of N ≫ 1 su
h non-intera
ting spins,

H =

N∑

i=1

Hi (4.2)whi
h has the energy eigenvalues
E ({mi}) = −

N∑

i=1

2µ0siB, si = ±1

2
. (4.3)
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70 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLES
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Figure 4.1: System of many independent spins
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Figure 4.2: Two-level systemThe possible energy eigenvalues of the system with N independent spins are
En = −nµ0B (4.4)
n = −N,−N + 2, . . . , N (4.5)
n = n↑ − n↓ (4.6)

= number of up-spins - number of down-spins4.1.1 Mi
ro
anoni
al treatment (isolated system)The energy has a �xed value. To 
al
ulate the equlibrium distribution of theisolated system, the number of mi
rostates with a given energy En must beenumerated:
n↑ + n↓ = N (4.7)
n↑ − n↓ = n (4.8)For given N, n, there are
n↑ =

1

2
(N + n) spins ↑ (4.9)

n↓ =
1

2
(N − n) spins ↓ (4.10)



4.1. 2-LEVEL SYSTEMS 71Note: n↑, n↓ ∈ N0 for N even or odd.Thus,
Ω(En) ≡ Ω(N, n) =




number of possibilities tosele
t n↑ = 1

2
(N + n) spins ↑from N spins without ordering  (4.11)

=
N · (N − 1) · . . . · (N − n↑ + 1)

n↑!
(4.12)

=
N !

n↑!(N − n↑)!
(4.13)

=
N !(

N+n
2

)
!
(

N−n
2

)
!

(4.14)and
WM(N, n) =

1

Ω(N, n)
. (4.15)The average value of one spin (e.g. s1) in the system with energy En is

〈s1〉 =
1

2

1

Ω(N, n)

[
N

(
s1 =

1

2

)
−N

(
s1 = −1

2

)] (4.16)with
N

(
s1 = ±1

2

)
= number of spin 
on�gurations with s1 = ±1

2
(4.17)and total energy En

= Ω(N − 1, n∓ 1) (4.18)
=






(N−1)!

(N+n−2
2 )!(N−n

2 )!

(N−1)!

(N+n
2 )!(N−n−2

2 )!

. (4.19)Thus,
〈s1〉 =

1

2

1

N

[
(N + n)

2
− (N − n)

2

]
=

1

2

n

N
=

1

2

(n↑ − n↓)

(n↑ + n↓)
. (4.20)The average �u
tuations (varian
e) about this mean value are

〈
(s1 − 〈s1〉)2

〉
= 〈s2

1〉 − 〈s1〉2 =
1

4

(
1 − n2

N2

)
, (4.21)



72 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLESwhere we have used
〈s2

1〉 =
1

4

1

Ω(N, n)

[
N

(
s1 =

1

2

)
+N

(
s1 = −1

2

)]
=

1

4
. (4.22)The �u
tuations never vanish for N → ∞, unless En has its maximum absolutevalue, i.e. all spins point in the same dire
tion, n = ±N . This is 
lear, be
auseany energy |En| < |Emax| = Nµ0B 
an be realized by several spin 
on�gurationswith s1 = +1

2
or s1 = −1

2
.Entropy and temperatureThe entropy of the mi
ro
anoni
al ensemble is

S(E) = kBlnΩ(N, n) (4.23)
N !≈(N

e )
N

≈ −kB

[
N + n

2
ln(N + n

2

)
+
N − n

2
ln(N − n

2

)]
. (4.24)With E = −nµ0B, n = −N,−N + 2, . . . , N as above and dE ≡ dU = T dS we
an 
al
ulate the temperature

1

T
=
∂S

∂E
=

1

−µ0B

∂S

∂n
=

kB

2µ0B
ln(1 − n

N

1 + n
N

)
=
kB

∆
ln(1 − 2E

∆

1 + 2E
∆

) (4.25)or
E = −N∆

2
tanh

(
∆/2

kBT

)
. (4.26)Hen
e we have

T

{
> 0 forE < 0

< 0 forE > 0
(4.27)It is a general feature of systems whose energy spe
trum is bounded from above,that their entropy is zero both for the minimum and the maximum energy value,sin
e these two mi
rostates are non-degenerate. Therefore, S must have a maxi-mum for an intermediate energy, as shown in �gure 22, and T =

(
∂S
∂E

)−1 
an be
> 0 or < 0.The physi
al meaning of negative temperatures will be
ome more evident in the
anoni
al ensemble.
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S(E)

E
+N   /2−N   /2∆ ∆Figure 4.3: Entropy of an ideal spin system in the mi
ro
anoni
al ensemble

We see from the above 
al
ulations that for the mi
ro
anoni
al treatment theenumeration of the states Ω(N, n) is 
ru
ial. This 
an be a 
umbersome task,be
ause the 
ounting is 
onstrained by the fa
t that the energy is �xed, i.e. that
n = n↑ − n↓ has a �xed value. Therefore, in most 
ases it is more e�
ient to
al
ulate in the 
anoni
al ensemble, where the summation in Zc runs over allmi
rostates, irrespe
tive of their energy.
4.1.2 Canoni
al treatment and thermodynami
 propertiesof a 2-level systemThe 
anoni
al partition fun
tion is

Zc =
∑

s1=± 1
2

∑

s2=± 1
2

. . .
∑

sN=± 1
2

e
−

E(s1,...,sN )

kBT , (4.28)where the total energy of the N-spin system is
En = E(s1, . . . , sN) =

N∑

i=1

E1(si) =

N∑

i=1

(−2siµ0B). (4.29)
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Zc =

∑

s1=± 1
2

. . .
∑

sN=± 1
2

e
−

E1(s1)
kBT e

−
E1(s2)
kBT . . . e

−
E1(sN )

kBT (4.30)
=




∑

s=± 1
2

e
−

E1(s)
kBT




N

= (Zc,1)
N , (4.31)where

Zc,1 =
∑

s=± 1
2

e
−

−2sµ0B
kBT = 2 cosh

(
µ0B

kBT

)
= 2 cosh

(
∆/2

kBT

)
. (4.32)It is generally true:Note: For a system of N independent subsystems (i.e. not intera
tingwith ea
h other) the 
anoni
al partition sum Zc fa
torizes into theprodu
t of the 
anoni
al partition sums of ea
h subsystem, Zc,1.This is be
ause for non-intera
ting subsystems the total energy is simply thesum of the energies of the subsystems.The Boltzmann distribution fun
tion is then

Wc(n) =
1

Zc
e
− En

kBT

N∏

i=1

1

Zc,1
e

∆
kBT

si =

N∏

i=1

Wc,1(si). (4.33)The average value of the spin si is
〈si〉 =

∑

s1=± 1
2

. . .
∑

si=± 1
2

. . .
∑

sN=± 1
2

siWc,1(s1) . . .Wc,1(si) . . .Wc,1(sN) (4.34)
=

∑

si=± 1
2

siWc,1(si) (4.35)
=

1

Zc,1

1

2

[
e

∆/2
kBT − e

−
∆/2
kBT

] (4.36)
=

1

2
tanh

(
∆/2

kBT

)
. (4.37)It is seen that the average spin 〈si〉 is independent of the other spins in the
anoni
al ensemble, sin
e the total energy is not �xed.
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Figure 4.4: Canoni
al partition sum of a two-level system
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Figure 4.5: Average spin per siteThe magnetization of the system is
M = Ngµ0〈si〉 = Ngµ0

1

2
tanh

(
∆/2

kBT

)
= Nµ0 tanh

(
µ0B

kBT

)
. (4.38)Thermodynami
s of spin systems (2-level systems)The free energy 
an be 
al
ulated mi
ros
opi
ally from the 
anoni
al partitionsum:

F (T ) = −kBT lnZc = −NkBT ln(2 cosh

(
∆/2

kBT

)) (4.39)The entropy is
S(T ) = −∂F

∂T
= NkB

[ln(2 cosh

(
∆/2

kBT

))
− ∆/2

kBT
tanh

(
∆/2

kBT

)] (4.40)
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i�
 heat for B = 
onst.,
CB(T ) =

(
δQ

∂T

)

B

= T

(
∂S

∂T

)

B

= NkB

(
∆/2

kBT

)2
1

cosh2
(

∆/2
kBT

) . (4.41)Dis
ussion of the T -dependen
e of cB:
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Figure 4.6: Spe
i�
 heat of an ideal two-level system(1) For kBT ≪ ∆/2, cB ∼
(

∆/2
kBT

)2

e
− ∆

kBT vanishes exponentially in a nonan-alyti
al way (all derivatives are zero). This is typi
al for systems with anex
itation gap ∆ between the ground state and the �rst ex
ited state:At low T , the o

upation of the ex
ited state(s) is exponentially small dueto the Boltzmann distribution, making the T -dependen
e of the internalenergy U and of the spe
i�
 heat cB =
(

∂U
∂T

)
B
exponential.(2) For kBT ≫ ∆/2, cB ∼ 1

T 2

T→∞−→ 0.This is typi
al for systems whose energy spe
trum is bounded from above:For kBT ≫ Emax = ∆/2 ground state and ex
ited state(s) are equallyo

upied, and in
reasing T does not in
rease U anymore.−→ cB =
(

∂U
∂T

)
B
→

0.(3) From (1) and (2) it follows cB(T ) must have a maximum. This maximum is
alled S
hottky anomaly and is 
hara
teristi
 for a dis
rete 2-level system.It is therefore often used to dete
t 2-level systems in experiments.



4.1. 2-LEVEL SYSTEMS 77The internal energy is 
al
ulated from the above expressions as,
U = F + TS = −Nµ0 tanh

(
µ0B

kBT

)
= −MB (4.42)or equivalently

U =
∑

i

(−2µ0B)〈si〉 = − 2Nµ0〈si〉︸ ︷︷ ︸
M

B. (4.43)The magnetization 
an also be 
al
ulated by thermodynami
 derivative:
M = −

(
∂F

∂B

)

T

(4.44)
= − ∂

∂B
(kBT lnZc) (4.45)

= − ∂

∂B
(NkBT lnZc,1) (4.46)

= −NkBT
1

Zc,1

∂Zc,1

∂B
(4.47)

(∗)
= 2Nµ0

∑

s=± 1
2

s e
−

2sµ0B
kBT (4.48)

= 2Nµ0〈s〉 (4.49)
= Nµ0 tanh

(
µ0B

kBT

) (4.50)
(∗) Zc,1 =

∑

s=± 1
2

e
−

2sµ0B
kBT , (4.51)as in the dire
t 
al
ulation, Eqs. (4.34)�(4.38).This shows how statisti
al averages are generated by thermodynami
 deriva-tives of F .The magneti
 sus
eptibility χ of a system of distinguishable (e.g. lo
alized)spins is

χ =

(
∂M

∂B

)

S,V,N

= N
µ2

0

kBT

1

cosh2
(

µ0B
kBT

) . (4.52)
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e, for vanishing B-�eld the sus
eptibility is
χ =

(
∂M

∂B

)

S,V,N ;B=0

= N
µ2

0

kBT
. (4.53)This so-
alled Curie behavior, χB=0 ∼ 1/T , is 
hara
teristi
 for lo
alized spinsand is used experimentally to dete
t lo
al magneti
 moments in solids, as 
om-pared to the T − independent low-temperature sus
eptibility of the mobile spinsof ele
trons in a metal (see se
tion 5.2.2).



4.1. 2-LEVEL SYSTEMS 79Negative �temperature�:
T < 0 leads to nondiverging o

upation probabilities, if the spe
trum is boundedfrom above, and 
orresponds to an o

upation inversion, as shown in �gure 26,i.e. to a nonequilibrium state. In the 
ase T < 0, T should, therefore, be under-stood as a mere parameter to des
ribe a spe
ial (non-equilibrium) distributionrather than an a
tual temperature. The latter is de�ned only in thermodynami
equilibrium and must be positive semide�nite. The inversion 
an be realized ex-

E

1/Zc exp(−E/kBT)

0/2∆− ∆/2Figure 4.7: O

upation probability for T < 0perimentally by adiabati
ally (i.e. qui
kly) inverting the magneti
 �eld B → −B,so that no relaxation of the average o

upation numbers WC(E) is possible:
E

(
si = +

1

2

)
= −µ0B → +µ0B (4.54)

E

(
si = −1

2

)
= +µ0B → −µ0B (4.55)Adiabati
 demagnetization:By qui
kly (adiabati
ally) redu
ing the external magneti
 �eld B → B′ < B, su
hthat no 
hange of the o

upation probabilitiesWC(E) o

urs during this pro
ess,the temperature T is redu
ed by the fa
tor B′/B. This is be
ause in WC(E)the quantities B and T appear as the ratio B/T only, and be
ause WC(E), andhen
e B/T remains un
hanged. This method is 
alled adiabati
 demagnetization.



80 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLESThe lowest, te
hni
ally rea
hable temperatures (T ≈ 1µK) are realized in spinsystems by using this method.4.2 A system of independent harmoni
 os
illatorsWe 
onsider a system of N identi
al, un
oupled harmoni
 os
illators with eigen-frequen
y ω:
H =

N∑

i=1

~ω

(
a†iai +

1

2

) (4.56)with possible energy eigenvalues of a mi
rostate
|n〉 = |n1, n2, . . . , nN〉 (4.57)are
En =

N∑

i=1

~ω

(
ni +

1

2

)
=

N∑

i=1

E(1)
ni
, (4.58)where ni is the number of ex
itation quanta ("phonons") of the i-th os
illator,

i = 1, . . . , N .The 
anoni
al partition sum fa
torizes like for any system of non-intera
tingsubsystems:
Zc = ZN

c,1 =

(
∞∑

n=0

e
−

E
(1)
ni

kBT

)N (4.59)
=

(

e
− ~ω

2kBT
1

1 − e
− ~ω

kBT

)N (4.60)
=



 1

2 sinh
(

~ω
2kBT

)




N (4.61)It is seen that in the 
anoni
al ensemble the summation over all mi
rostatesis easily performed, be
ause one 
an sum over all eigenstates of the individualos
illators independently, without the restri
tion that the total energy of the

N-os
illator system is 
onstant, whi
h would be there in the mi
ro
anoni
al en-semble.



4.2. A SYSTEM OF INDEPENDENT HARMONIC OSCILLATORS 81All physi
al quantities 
an be 
omputed from Zc:
• Internal energy U :

U = 〈E〉 =
1

Zc

∑

n

En e
− En

kBT (4.62)
=

∞∑

ni=0
i=1,...,N

(En1 + En2 + . . .+ EnN
)

N∏

j=1

e
−

E
(1)
nj

kBT

Zc,1

(4.63)
= N




∞∑

n1=0

E(1)
n1

e
−

E
(1)
n1

kBT

Zc,1



 = N
〈
E(1)

〉
, (4.64)where the expression in bra
kets in the last line is the internal energy of asingle os
illator. It 
an be 
al
ulated dire
tly from the partition sum as aderivative, as seen from:

〈
E(1)

〉
= − ∂

∂β
lnZ(1)

c (4.65)
= 2 sinh

(
~ω

2kBT

) cosh
(

~ω
2kBT

)

2 sinh2
(

~ω
2kBT

) ~ω

2
(4.66)with β =

1

kBT
(4.67)

〈
E(1)

〉
=

~ω

2
coth

(
~ω

2kBT

)
. (4.68)
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Figure 4.8: Internal energy of a system of N harmoni
 os
illators
• The internal energy has for T → 0 a �nite value N ~ω

2
be
ause of thezero-point energy of the harmoni
 os
illator.

• The T -dependen
e for kBT < ~ω/2 is exponential be
ause there is anex
itation gap to the next ex
ited state.
• For kBT ≫ ~ω/2 〈E〉 ∼ TThis 
an be understood by 
al
ulating the average number of os
illatorquanta per os
illator:

〈n〉 =

∞∑

n1=0

n1
e
−

~ω(n1+1
2)

kBT

Zc,1
(4.69)

= − ∂

∂(β~ω)
lnZc,1 −

1

2
(4.70)

=
1

2

[
coth

(
~ω

2kBT

)
− 1

] (4.71)
〈n〉 =

1

e
~ω

kBT − 1
(4.72)Thus,

〈
E(1)

〉
= ~ω

(
〈n〉 +

1

2

)
. (4.73)



4.2. A SYSTEM OF INDEPENDENT HARMONIC OSCILLATORS 83The average number of quanta at a given temperature T is propor-tional to T for kBt ≫ ~ω/2, where ea
h quantum has a �xed T-independent energy ~ω. Hen
e, 〈E(1)
〉
∼ T, kBT ≫ ~ω

2
.

• Free energy F :
F = −kBT lnZc (4.74)

= −NkBT lnZc,1 (4.75)
= NkBT ln(2 sinh

(
~ω

2kBT

)) (4.76)
= N

[
kBT ln(1 − e

− ~ω
kBT

)
+

~ω

2

] (4.77)
• Entropy S:

S = −∂F
∂T

(4.78)
= −NkB

[ln(1 − e
− ~ω

kBT

)
− ~ω/kBT

e
~ω

kBT − 1

] (4.79)
=






NkB
~ω

kBT
e
− ~ω

kBT , kBT ≪ ~ω

NkB

(ln(kBT

~ω

)
+ 1

)
, kBT ≫ ~ω

(4.80)
The internal energy 
an be 
al
ulated from the thermodynami
 relation,

U = F + TS (4.81)
= N

[
~ω

2
+ ~ω

1

e
~ω

kBT − 1

] (4.82)
= N~ω

[
〈n〉 +

1

2

] (4.83)in agreement with the above dire
t 
al
ulation.
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Figure 4.9: Entropy of a system of N independent harmoni
 os
illators
• Spe
i�
 heat:

c =
∂U

∂T
(4.84)

= N~ω
∂〈n〉
∂T

(4.85)
= NkB

(
~ω

2kBT

)2

sinh2
(

~ω
2kBT

) (4.86)
=






NkB, kBT ≫ ~ω

NkB

(
~ω

2kBT

)2

e
− ~ω

kBT , kBT ≪ ~ω

(4.87)
or equivalently,

c = T
∂S

∂T
. (4.88)
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c/NkB

kBT/h

maximum of d<E>/dT

1

ωFigure 4.10: Spe
i�
 heat of a system of N harmoni
 os
illators
The result for T → ∞ is in agreement with the virial and the equipar-tition theorems (see Chapter 5.5).The high-temperature behavior c(T ) = 
onst. is 
hara
teristi
 for sys-tems with a spe
trum unbounded from above and is in agreement withthe equipartition theorem."In the 
lassi
al limit (T, 〈E〉 ≫ ~ω) ea
h degree of freedomwhi
h appears quadrati
ally in the Hamiltonian, 
ontributes 1

2
kBto the spe
i�
 heat c."(Here the degrees of freedom are pi and xi, i = 1, . . . , N.)The general equipartition theorem will be dis
ussed later.From the above 
al
ulation one 
an learn that
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 expe
tation values, like 〈E〉, 〈n〉 et
. 
an often be
al
ulated dire
tly as derivatives of Zc with respe
t to appropriatevariables.� for non-intera
ting systems whi
h do not share the same volume,derivatives of lnZc wrt. an intensive variable (e.g. T ) are extensive,trivially. This will be di�erent for a 
lassi
al ideal gas.4.3 The ideal Boltzmann gas and the GibbsparadoxAs the third important example we 
onsider a system of N non-intera
ting par-ti
les in a large 
ubi
 box of length L and volume V = Ld, where d is the spatialdimension. This example will serve two purposes:(1) The fa
t that these parti
les share the same volume V means that theyare indistinguishable in the quantum me
hani
al sense - in 
ontrast to thespins or harmoni
 os
illators of the previous se
tions, whi
h are not mobileand therefore distinguishable. The treatment as distinguishable parti
lesfamiliar from 
lassi
al me
hani
s will lead to an unresolvable in
onsisten
y,whi
h will motivate the treatment as a quantum gas, introdu
ing quantumstatisti
s.(2) By deriving the ideal gas law from a mi
ros
opi
 statisti
al basis, we will beable to make the identi�
ation of the Boltzmann 
onstant kB of statisti
alphysi
s with the proportionality fa
tor kB of the gas law.4.3.1 Statisti
s of the ideal gasAs usual, we de�ne �rst the Hamiltonian H , the energy eigenstates |n〉, and thepossible total energy eigenvalues En of the N-parti
le system:
H =

N∑

i=1

~p2
i

2m
=

N∑

i=1

1

2m

(
pi

2
x + pi

2
y + pi

2
z

) (4.89)
ψ~ki

(~xi) =
1√
V
ei~ki~xi (4.90)
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~ki =

2π

L

(
nixêx + niy êy + niz êz

) (4.91)
nix, niy, niz = −∞, . . . ,∞ (4.92)and in position representation
〈{~x}|n〉 = ψ~k1

(~x1)ψ~k2
(~x2) . . . ψ~kN

(~xN ) (4.93)
En =

1

2m

(
2π~

L

)2
[

N∑

i=1

(
ni

2
x + ni

2
y + ni

2
z

)
]
, (4.94)with

∆ :=
2π2

~
2

mL2
(4.95)Note: This 
orresponds to the treatment of 
lassi
al distinguishable par-ti
les, sin
e in the many-body wave fun
tion 〈{~x}|n〉 the parti
lesare distinguishable, parti
le 1 (with 
oordinate ~x1) being in state

~k1, et
. The representation of the states in terms of wave fun
tionsis 
hosen here only make the ~k-states dis
rete and, thus, to make iteasy to enumerate the states. Otherwise the treatment is 
lassi
al.In the 
anoni
al ensemble the partition fun
tion fa
torizes, be
ause the parti
lesand their momentum 
omponents are independent,
Zc = (Z1)

N ·d (4.96)with Z1 =

+∞∑

n=−∞

e
− 2π2

~
2

mL2kBT
n2

=

+∞∑

n=−∞

e−
−λ2

T
L2 n2 (4.97)being the 
anoni
al partition fun
tion per parti
le and spatial dire
tion.The "thermal de Broglie wavelength" λT is de�ned through the relation

kBT =
1

2m

(
2π

λT
~

)2 (4.98)
λT =

2π~√
2mkBT

=

√
∆

kBT
·L thermal wavelength (4.99)
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L

Re ψ

Figure 4.11: Wave fun
tions of free parti
les in a box of length LIn the thermodynami
 limit, L≫ λT , where we must have T > 0, the sum in Z1
an be repla
ed by an integral and 
an be evaluated,
lim

L→∞
Z1 =

∫ +∞

−∞

dn e
−

“

λT
L

”2
n2

=
L

λT

√
π (4.100)and

Zc =

(√
π
L

λT

)Nd (4.101)In the limit T → 0 the evaluation as an integral breaks down, and a quantumme
hani
al treatment in terms of dis
rete states is required.The thermodynami
 quantities of the ideal Boltzmann gas follow in a straight-forward way:(1) Free energy:
F = −NkBT ln(√πd V

λd
T

) (4.102)
= −d

2
NkBT ln(πkBT

∆

) (4.103)
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S = −

(
∂F

∂T

)

V,N

(4.104)
=

d

2
NkBln(πkBT

∆

)
+
d

2
NkB (4.105)(3) Internal energy:

U = F + TS =
d

2
NkBT (4.106)(4) Spe
i�
 heat:

cV =

(
∂U

∂T

)

V,N

= T

(
∂S

∂T

)

V,N

=
d

2
NkB (4.107)equipartition rule (see above)(5) Pressure:

p = −
(
∂F

∂V

)

T

=
NkBT

V
(4.108)

pV = NkBT
Ideal gas law (4.109)Note that the proportionality 
onstant kB in this equation is the (still arbi-trary) Boltzmann 
onstant k = kB as de�ned in the 
ontext of the statisti
alentropy. By 
omparison this statisti
al law with the thermodynami
 de�-nition of the temperature through the gas law (see 
hapter 1), the value of

kB is now �xed.(The Maxwell distribution of the velo
ities in an ideal gas will be 
omputedas an exer
ise.)
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T,p T,p

m1
N1,V1

m2
N2,V2

T

m1, N1 ; m2, N2
V=V1+V2Figure 4.12: Mixing of two gasesWe 
onsider two ideal Boltzmann gases (m1, N1, V1), (m2, N2, V2) with parti
lemass m1 and m2, respe
tively, in volumina V1 and V2, separated by a wall, at thesame temperature T = T1 = T2 and pressure p = p1 = p2. At a time t = 0 thewall is removed, and the two gases mix; T = 
onst..Before the mixing the total entropy is (d = 3)

S = S1 + S2 (4.110)
=

3

2
kB

[
2N1ln(√πV 1/3

1

λT1

)
+ 2N2ln(√πV 1/3

2

λT2

)
+N1 +N2

]
. (4.111)After the mixing the entropy is

S ′ = S ′
1 + S ′

2 (4.112)
=

3

2
kB

[
2N1ln(√πV 1/3

λT1

)
+ 2N2ln(√πV 1/3

λT2

)
+N1 +N2

]
. (4.113)i.e. the entropy 
hanges by

∆S = S ′−S =
3

2
kB

[

2N1ln(V1 + V2

V1

)1/3

+ 2N2ln(V1 + V2

V2

)1/3
]

> 0. (4.114)The in
rease of entropy is expe
ted, if the gases are di�erent (m1 6= m2), be
ausethe mixing pro
ess is irreversible in this 
ase (entropy of mixing).However, if the two gases 
onsist of the same kind of parti
les (m1 = m2), themixing pro
ess is reversible, sin
e it a
tually 
onstitutes no 
hange of state at



4.3. THE IDEAL BOLTZMANN GAS AND THE GIBBS PARADOX 91all. Therefore, we must have ∆S = 0 for m1 = m2, T1 = T2, p1 = p2. But in our
lassi
al treatment the entropy 
hange would still be given by (4.116), ∆S > 0.This is 
alled Gibbs paradox of 
lassi
al statisti
s. It shows that it is in
orre
t to
onsider the identi
al parti
les (m1 = m2) as distinguishable.The paradox is resolved by quantum statisti
s:The states of a many-parti
le system 
omprised of parti
les of the same kind(identi
al parti
les) are 
ounted su
h that the parti
les are indistinguishable.
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