
Chapter 4
Ideal Systems: Some Examples
In this hapter we onsider some examples whih visualize the statistial physisapproah of hapter 2 to desribing many-partile systems. This will also demon-strate harateristi thermodynamial and statistial properties of suh systems.4.1 2-level systemsA 2-level system is a quantum mehanial system whose Hilbert spae onsistsof exatly 2 states, e.g. a spin 1

2
in a magneti �eld ~B = (0, 0, B).

Hi = −gµ0~σi · ~B = −2µ0σz,iB (4.1)with the Landé fator g = 2 and the spin omponents along the z-axis si = ±1
2
.We onsider a system of N ≫ 1 suh non-interating spins,

H =

N∑

i=1

Hi (4.2)whih has the energy eigenvalues
E ({mi}) = −

N∑

i=1

2µ0siB, si = ±1

2
. (4.3)
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70 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLES
i= 1 2 3 N...........

Figure 4.1: System of many independent spins
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Figure 4.2: Two-level systemThe possible energy eigenvalues of the system with N independent spins are
En = −nµ0B (4.4)
n = −N,−N + 2, . . . , N (4.5)
n = n↑ − n↓ (4.6)

= number of up-spins - number of down-spins4.1.1 Miroanonial treatment (isolated system)The energy has a �xed value. To alulate the equlibrium distribution of theisolated system, the number of mirostates with a given energy En must beenumerated:
n↑ + n↓ = N (4.7)
n↑ − n↓ = n (4.8)For given N, n, there are
n↑ =

1

2
(N + n) spins ↑ (4.9)

n↓ =
1

2
(N − n) spins ↓ (4.10)



4.1. 2-LEVEL SYSTEMS 71Note: n↑, n↓ ∈ N0 for N even or odd.Thus,
Ω(En) ≡ Ω(N, n) =




number of possibilities toselet n↑ = 1

2
(N + n) spins ↑from N spins without ordering  (4.11)

=
N · (N − 1) · . . . · (N − n↑ + 1)

n↑!
(4.12)

=
N !

n↑!(N − n↑)!
(4.13)

=
N !(

N+n
2

)
!
(

N−n
2

)
!

(4.14)and
WM(N, n) =

1

Ω(N, n)
. (4.15)The average value of one spin (e.g. s1) in the system with energy En is

〈s1〉 =
1

2

1

Ω(N, n)

[
N

(
s1 =

1

2

)
−N

(
s1 = −1

2

)] (4.16)with
N

(
s1 = ±1

2

)
= number of spin on�gurations with s1 = ±1

2
(4.17)and total energy En

= Ω(N − 1, n∓ 1) (4.18)
=






(N−1)!

(N+n−2
2 )!(N−n

2 )!

(N−1)!

(N+n
2 )!(N−n−2

2 )!

. (4.19)Thus,
〈s1〉 =

1

2

1

N

[
(N + n)

2
− (N − n)

2

]
=

1

2

n

N
=

1

2

(n↑ − n↓)

(n↑ + n↓)
. (4.20)The average �utuations (variane) about this mean value are

〈
(s1 − 〈s1〉)2

〉
= 〈s2

1〉 − 〈s1〉2 =
1

4

(
1 − n2

N2

)
, (4.21)



72 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLESwhere we have used
〈s2

1〉 =
1

4

1

Ω(N, n)

[
N

(
s1 =

1

2

)
+N

(
s1 = −1

2

)]
=

1

4
. (4.22)The �utuations never vanish for N → ∞, unless En has its maximum absolutevalue, i.e. all spins point in the same diretion, n = ±N . This is lear, beauseany energy |En| < |Emax| = Nµ0B an be realized by several spin on�gurationswith s1 = +1

2
or s1 = −1

2
.Entropy and temperatureThe entropy of the miroanonial ensemble is

S(E) = kBlnΩ(N, n) (4.23)
N !≈(N

e )
N

≈ −kB

[
N + n

2
ln(N + n

2

)
+
N − n

2
ln(N − n

2

)]
. (4.24)With E = −nµ0B, n = −N,−N + 2, . . . , N as above and dE ≡ dU = T dS wean alulate the temperature

1

T
=
∂S

∂E
=

1

−µ0B

∂S

∂n
=

kB

2µ0B
ln(1 − n

N

1 + n
N

)
=
kB

∆
ln(1 − 2E

∆

1 + 2E
∆

) (4.25)or
E = −N∆

2
tanh

(
∆/2

kBT

)
. (4.26)Hene we have

T

{
> 0 forE < 0

< 0 forE > 0
(4.27)It is a general feature of systems whose energy spetrum is bounded from above,that their entropy is zero both for the minimum and the maximum energy value,sine these two mirostates are non-degenerate. Therefore, S must have a maxi-mum for an intermediate energy, as shown in �gure 22, and T =

(
∂S
∂E

)−1 an be
> 0 or < 0.The physial meaning of negative temperatures will beome more evident in theanonial ensemble.
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S(E)

E
+N   /2−N   /2∆ ∆Figure 4.3: Entropy of an ideal spin system in the miroanonial ensemble

We see from the above alulations that for the miroanonial treatment theenumeration of the states Ω(N, n) is ruial. This an be a umbersome task,beause the ounting is onstrained by the fat that the energy is �xed, i.e. that
n = n↑ − n↓ has a �xed value. Therefore, in most ases it is more e�ient toalulate in the anonial ensemble, where the summation in Zc runs over allmirostates, irrespetive of their energy.
4.1.2 Canonial treatment and thermodynami propertiesof a 2-level systemThe anonial partition funtion is

Zc =
∑

s1=± 1
2

∑

s2=± 1
2

. . .
∑

sN=± 1
2

e
−

E(s1,...,sN )

kBT , (4.28)where the total energy of the N-spin system is
En = E(s1, . . . , sN) =

N∑

i=1

E1(si) =

N∑

i=1

(−2siµ0B). (4.29)
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Zc =

∑

s1=± 1
2

. . .
∑

sN=± 1
2

e
−

E1(s1)
kBT e

−
E1(s2)
kBT . . . e

−
E1(sN )

kBT (4.30)
=




∑

s=± 1
2

e
−

E1(s)
kBT




N

= (Zc,1)
N , (4.31)where

Zc,1 =
∑

s=± 1
2

e
−

−2sµ0B
kBT = 2 cosh

(
µ0B

kBT

)
= 2 cosh

(
∆/2

kBT

)
. (4.32)It is generally true:Note: For a system of N independent subsystems (i.e. not interatingwith eah other) the anonial partition sum Zc fatorizes into theprodut of the anonial partition sums of eah subsystem, Zc,1.This is beause for non-interating subsystems the total energy is simply thesum of the energies of the subsystems.The Boltzmann distribution funtion is then

Wc(n) =
1

Zc
e
− En

kBT

N∏

i=1

1

Zc,1
e

∆
kBT

si =

N∏

i=1

Wc,1(si). (4.33)The average value of the spin si is
〈si〉 =

∑

s1=± 1
2

. . .
∑

si=± 1
2

. . .
∑

sN=± 1
2

siWc,1(s1) . . .Wc,1(si) . . .Wc,1(sN) (4.34)
=

∑

si=± 1
2

siWc,1(si) (4.35)
=

1

Zc,1

1

2

[
e

∆/2
kBT − e

−
∆/2
kBT

] (4.36)
=

1

2
tanh

(
∆/2

kBT

)
. (4.37)It is seen that the average spin 〈si〉 is independent of the other spins in theanonial ensemble, sine the total energy is not �xed.
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Figure 4.4: Canonial partition sum of a two-level system
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Figure 4.5: Average spin per siteThe magnetization of the system is
M = Ngµ0〈si〉 = Ngµ0

1

2
tanh

(
∆/2

kBT

)
= Nµ0 tanh

(
µ0B

kBT

)
. (4.38)Thermodynamis of spin systems (2-level systems)The free energy an be alulated mirosopially from the anonial partitionsum:

F (T ) = −kBT lnZc = −NkBT ln(2 cosh

(
∆/2

kBT

)) (4.39)The entropy is
S(T ) = −∂F

∂T
= NkB

[ln(2 cosh

(
∆/2

kBT

))
− ∆/2

kBT
tanh

(
∆/2

kBT

)] (4.40)
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CB(T ) =

(
δQ

∂T

)

B

= T

(
∂S

∂T

)

B

= NkB

(
∆/2

kBT

)2
1

cosh2
(

∆/2
kBT

) . (4.41)Disussion of the T -dependene of cB:
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Figure 4.6: Spei� heat of an ideal two-level system(1) For kBT ≪ ∆/2, cB ∼
(

∆/2
kBT

)2

e
− ∆

kBT vanishes exponentially in a nonan-alytial way (all derivatives are zero). This is typial for systems with anexitation gap ∆ between the ground state and the �rst exited state:At low T , the oupation of the exited state(s) is exponentially small dueto the Boltzmann distribution, making the T -dependene of the internalenergy U and of the spei� heat cB =
(

∂U
∂T

)
B
exponential.(2) For kBT ≫ ∆/2, cB ∼ 1

T 2

T→∞−→ 0.This is typial for systems whose energy spetrum is bounded from above:For kBT ≫ Emax = ∆/2 ground state and exited state(s) are equallyoupied, and inreasing T does not inrease U anymore.−→ cB =
(

∂U
∂T

)
B
→

0.(3) From (1) and (2) it follows cB(T ) must have a maximum. This maximum isalled Shottky anomaly and is harateristi for a disrete 2-level system.It is therefore often used to detet 2-level systems in experiments.



4.1. 2-LEVEL SYSTEMS 77The internal energy is alulated from the above expressions as,
U = F + TS = −Nµ0 tanh

(
µ0B

kBT

)
= −MB (4.42)or equivalently

U =
∑

i

(−2µ0B)〈si〉 = − 2Nµ0〈si〉︸ ︷︷ ︸
M

B. (4.43)The magnetization an also be alulated by thermodynami derivative:
M = −

(
∂F

∂B

)

T

(4.44)
= − ∂

∂B
(kBT lnZc) (4.45)

= − ∂

∂B
(NkBT lnZc,1) (4.46)

= −NkBT
1

Zc,1

∂Zc,1

∂B
(4.47)

(∗)
= 2Nµ0

∑

s=± 1
2

s e
−

2sµ0B
kBT (4.48)

= 2Nµ0〈s〉 (4.49)
= Nµ0 tanh

(
µ0B

kBT

) (4.50)
(∗) Zc,1 =

∑

s=± 1
2

e
−

2sµ0B
kBT , (4.51)as in the diret alulation, Eqs. (4.34)�(4.38).This shows how statistial averages are generated by thermodynami deriva-tives of F .The magneti suseptibility χ of a system of distinguishable (e.g. loalized)spins is

χ =

(
∂M

∂B

)

S,V,N

= N
µ2

0

kBT

1

cosh2
(

µ0B
kBT

) . (4.52)



78 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLESHene, for vanishing B-�eld the suseptibility is
χ =

(
∂M

∂B

)

S,V,N ;B=0

= N
µ2

0

kBT
. (4.53)This so-alled Curie behavior, χB=0 ∼ 1/T , is harateristi for loalized spinsand is used experimentally to detet loal magneti moments in solids, as om-pared to the T − independent low-temperature suseptibility of the mobile spinsof eletrons in a metal (see setion 5.2.2).



4.1. 2-LEVEL SYSTEMS 79Negative �temperature�:
T < 0 leads to nondiverging oupation probabilities, if the spetrum is boundedfrom above, and orresponds to an oupation inversion, as shown in �gure 26,i.e. to a nonequilibrium state. In the ase T < 0, T should, therefore, be under-stood as a mere parameter to desribe a speial (non-equilibrium) distributionrather than an atual temperature. The latter is de�ned only in thermodynamiequilibrium and must be positive semide�nite. The inversion an be realized ex-

E

1/Zc exp(−E/kBT)

0/2∆− ∆/2Figure 4.7: Oupation probability for T < 0perimentally by adiabatially (i.e. quikly) inverting the magneti �eld B → −B,so that no relaxation of the average oupation numbers WC(E) is possible:
E

(
si = +

1

2

)
= −µ0B → +µ0B (4.54)

E

(
si = −1

2

)
= +µ0B → −µ0B (4.55)Adiabati demagnetization:By quikly (adiabatially) reduing the external magneti �eld B → B′ < B, suhthat no hange of the oupation probabilitiesWC(E) ours during this proess,the temperature T is redued by the fator B′/B. This is beause in WC(E)the quantities B and T appear as the ratio B/T only, and beause WC(E), andhene B/T remains unhanged. This method is alled adiabati demagnetization.



80 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLESThe lowest, tehnially reahable temperatures (T ≈ 1µK) are realized in spinsystems by using this method.4.2 A system of independent harmoni osillatorsWe onsider a system of N idential, unoupled harmoni osillators with eigen-frequeny ω:
H =

N∑

i=1

~ω

(
a†iai +

1

2

) (4.56)with possible energy eigenvalues of a mirostate
|n〉 = |n1, n2, . . . , nN〉 (4.57)are
En =

N∑

i=1

~ω

(
ni +

1

2

)
=

N∑

i=1

E(1)
ni
, (4.58)where ni is the number of exitation quanta ("phonons") of the i-th osillator,

i = 1, . . . , N .The anonial partition sum fatorizes like for any system of non-interatingsubsystems:
Zc = ZN

c,1 =

(
∞∑

n=0

e
−

E
(1)
ni

kBT

)N (4.59)
=

(

e
− ~ω

2kBT
1

1 − e
− ~ω

kBT

)N (4.60)
=



 1

2 sinh
(

~ω
2kBT

)




N (4.61)It is seen that in the anonial ensemble the summation over all mirostatesis easily performed, beause one an sum over all eigenstates of the individualosillators independently, without the restrition that the total energy of the

N-osillator system is onstant, whih would be there in the miroanonial en-semble.



4.2. A SYSTEM OF INDEPENDENT HARMONIC OSCILLATORS 81All physial quantities an be omputed from Zc:
• Internal energy U :

U = 〈E〉 =
1

Zc

∑

n

En e
− En

kBT (4.62)
=

∞∑

ni=0
i=1,...,N

(En1 + En2 + . . .+ EnN
)

N∏

j=1

e
−

E
(1)
nj

kBT

Zc,1

(4.63)
= N




∞∑

n1=0

E(1)
n1

e
−

E
(1)
n1

kBT

Zc,1



 = N
〈
E(1)

〉
, (4.64)where the expression in brakets in the last line is the internal energy of asingle osillator. It an be alulated diretly from the partition sum as aderivative, as seen from:

〈
E(1)

〉
= − ∂

∂β
lnZ(1)

c (4.65)
= 2 sinh

(
~ω

2kBT

) cosh
(

~ω
2kBT

)

2 sinh2
(

~ω
2kBT

) ~ω

2
(4.66)with β =

1

kBT
(4.67)

〈
E(1)

〉
=

~ω

2
coth

(
~ω

2kBT

)
. (4.68)
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Figure 4.8: Internal energy of a system of N harmoni osillators
• The internal energy has for T → 0 a �nite value N ~ω

2
beause of thezero-point energy of the harmoni osillator.

• The T -dependene for kBT < ~ω/2 is exponential beause there is anexitation gap to the next exited state.
• For kBT ≫ ~ω/2 〈E〉 ∼ TThis an be understood by alulating the average number of osillatorquanta per osillator:

〈n〉 =

∞∑

n1=0

n1
e
−

~ω(n1+1
2)

kBT

Zc,1
(4.69)

= − ∂

∂(β~ω)
lnZc,1 −

1

2
(4.70)

=
1

2

[
coth

(
~ω

2kBT

)
− 1

] (4.71)
〈n〉 =

1

e
~ω

kBT − 1
(4.72)Thus,

〈
E(1)

〉
= ~ω

(
〈n〉 +

1

2

)
. (4.73)



4.2. A SYSTEM OF INDEPENDENT HARMONIC OSCILLATORS 83The average number of quanta at a given temperature T is propor-tional to T for kBt ≫ ~ω/2, where eah quantum has a �xed T-independent energy ~ω. Hene, 〈E(1)
〉
∼ T, kBT ≫ ~ω

2
.

• Free energy F :
F = −kBT lnZc (4.74)

= −NkBT lnZc,1 (4.75)
= NkBT ln(2 sinh

(
~ω

2kBT

)) (4.76)
= N

[
kBT ln(1 − e

− ~ω
kBT

)
+

~ω

2

] (4.77)
• Entropy S:

S = −∂F
∂T

(4.78)
= −NkB

[ln(1 − e
− ~ω

kBT

)
− ~ω/kBT

e
~ω

kBT − 1

] (4.79)
=






NkB
~ω

kBT
e
− ~ω

kBT , kBT ≪ ~ω

NkB

(ln(kBT

~ω

)
+ 1

)
, kBT ≫ ~ω

(4.80)
The internal energy an be alulated from the thermodynami relation,

U = F + TS (4.81)
= N

[
~ω

2
+ ~ω

1

e
~ω

kBT − 1

] (4.82)
= N~ω

[
〈n〉 +

1

2

] (4.83)in agreement with the above diret alulation.
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Figure 4.9: Entropy of a system of N independent harmoni osillators
• Spei� heat:

c =
∂U

∂T
(4.84)

= N~ω
∂〈n〉
∂T

(4.85)
= NkB

(
~ω

2kBT

)2

sinh2
(

~ω
2kBT

) (4.86)
=






NkB, kBT ≫ ~ω

NkB

(
~ω

2kBT

)2

e
− ~ω

kBT , kBT ≪ ~ω

(4.87)
or equivalently,

c = T
∂S

∂T
. (4.88)
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c/NkB

kBT/h

maximum of d<E>/dT

1

ωFigure 4.10: Spei� heat of a system of N harmoni osillators
The result for T → ∞ is in agreement with the virial and the equipar-tition theorems (see Chapter 5.5).The high-temperature behavior c(T ) = onst. is harateristi for sys-tems with a spetrum unbounded from above and is in agreement withthe equipartition theorem."In the lassial limit (T, 〈E〉 ≫ ~ω) eah degree of freedomwhih appears quadratially in the Hamiltonian, ontributes 1

2
kBto the spei� heat c."(Here the degrees of freedom are pi and xi, i = 1, . . . , N.)The general equipartition theorem will be disussed later.From the above alulation one an learn that



86 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLES- thermodynami expetation values, like 〈E〉, 〈n〉 et. an often bealulated diretly as derivatives of Zc with respet to appropriatevariables.� for non-interating systems whih do not share the same volume,derivatives of lnZc wrt. an intensive variable (e.g. T ) are extensive,trivially. This will be di�erent for a lassial ideal gas.4.3 The ideal Boltzmann gas and the GibbsparadoxAs the third important example we onsider a system of N non-interating par-tiles in a large ubi box of length L and volume V = Ld, where d is the spatialdimension. This example will serve two purposes:(1) The fat that these partiles share the same volume V means that theyare indistinguishable in the quantum mehanial sense - in ontrast to thespins or harmoni osillators of the previous setions, whih are not mobileand therefore distinguishable. The treatment as distinguishable partilesfamiliar from lassial mehanis will lead to an unresolvable inonsisteny,whih will motivate the treatment as a quantum gas, introduing quantumstatistis.(2) By deriving the ideal gas law from a mirosopi statistial basis, we will beable to make the identi�ation of the Boltzmann onstant kB of statistialphysis with the proportionality fator kB of the gas law.4.3.1 Statistis of the ideal gasAs usual, we de�ne �rst the Hamiltonian H , the energy eigenstates |n〉, and thepossible total energy eigenvalues En of the N-partile system:
H =

N∑

i=1

~p2
i

2m
=

N∑

i=1

1

2m

(
pi

2
x + pi

2
y + pi

2
z

) (4.89)
ψ~ki

(~xi) =
1√
V
ei~ki~xi (4.90)



4.3. THE IDEAL BOLTZMANN GAS AND THE GIBBS PARADOX 87with quantization
~ki =

2π

L

(
nixêx + niy êy + niz êz

) (4.91)
nix, niy, niz = −∞, . . . ,∞ (4.92)and in position representation
〈{~x}|n〉 = ψ~k1

(~x1)ψ~k2
(~x2) . . . ψ~kN

(~xN ) (4.93)
En =

1

2m

(
2π~

L

)2
[

N∑

i=1

(
ni

2
x + ni

2
y + ni

2
z

)
]
, (4.94)with

∆ :=
2π2

~
2

mL2
(4.95)Note: This orresponds to the treatment of lassial distinguishable par-tiles, sine in the many-body wave funtion 〈{~x}|n〉 the partilesare distinguishable, partile 1 (with oordinate ~x1) being in state

~k1, et. The representation of the states in terms of wave funtionsis hosen here only make the ~k-states disrete and, thus, to make iteasy to enumerate the states. Otherwise the treatment is lassial.In the anonial ensemble the partition funtion fatorizes, beause the partilesand their momentum omponents are independent,
Zc = (Z1)

N ·d (4.96)with Z1 =

+∞∑

n=−∞

e
− 2π2

~
2

mL2kBT
n2

=

+∞∑

n=−∞

e−
−λ2

T
L2 n2 (4.97)being the anonial partition funtion per partile and spatial diretion.The "thermal de Broglie wavelength" λT is de�ned through the relation

kBT =
1

2m

(
2π

λT
~

)2 (4.98)
λT =

2π~√
2mkBT

=

√
∆

kBT
·L thermal wavelength (4.99)
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L

Re ψ

Figure 4.11: Wave funtions of free partiles in a box of length LIn the thermodynami limit, L≫ λT , where we must have T > 0, the sum in Z1an be replaed by an integral and an be evaluated,
lim

L→∞
Z1 =

∫ +∞

−∞

dn e
−

“

λT
L

”2
n2

=
L

λT

√
π (4.100)and

Zc =

(√
π
L

λT

)Nd (4.101)In the limit T → 0 the evaluation as an integral breaks down, and a quantummehanial treatment in terms of disrete states is required.The thermodynami quantities of the ideal Boltzmann gas follow in a straight-forward way:(1) Free energy:
F = −NkBT ln(√πd V

λd
T

) (4.102)
= −d

2
NkBT ln(πkBT

∆

) (4.103)
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S = −

(
∂F

∂T

)

V,N

(4.104)
=

d

2
NkBln(πkBT

∆

)
+
d

2
NkB (4.105)(3) Internal energy:

U = F + TS =
d

2
NkBT (4.106)(4) Spei� heat:

cV =

(
∂U

∂T

)

V,N

= T

(
∂S

∂T

)

V,N

=
d

2
NkB (4.107)equipartition rule (see above)(5) Pressure:

p = −
(
∂F

∂V

)

T

=
NkBT

V
(4.108)

pV = NkBT
Ideal gas law (4.109)Note that the proportionality onstant kB in this equation is the (still arbi-trary) Boltzmann onstant k = kB as de�ned in the ontext of the statistialentropy. By omparison this statistial law with the thermodynami de�-nition of the temperature through the gas law (see hapter 1), the value of

kB is now �xed.(The Maxwell distribution of the veloities in an ideal gas will be omputedas an exerise.)
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T,p T,p

m1
N1,V1

m2
N2,V2

T

m1, N1 ; m2, N2
V=V1+V2Figure 4.12: Mixing of two gasesWe onsider two ideal Boltzmann gases (m1, N1, V1), (m2, N2, V2) with partilemass m1 and m2, respetively, in volumina V1 and V2, separated by a wall, at thesame temperature T = T1 = T2 and pressure p = p1 = p2. At a time t = 0 thewall is removed, and the two gases mix; T = onst..Before the mixing the total entropy is (d = 3)

S = S1 + S2 (4.110)
=

3

2
kB

[
2N1ln(√πV 1/3

1

λT1

)
+ 2N2ln(√πV 1/3

2

λT2

)
+N1 +N2

]
. (4.111)After the mixing the entropy is

S ′ = S ′
1 + S ′

2 (4.112)
=

3

2
kB

[
2N1ln(√πV 1/3

λT1

)
+ 2N2ln(√πV 1/3

λT2

)
+N1 +N2

]
. (4.113)i.e. the entropy hanges by

∆S = S ′−S =
3

2
kB

[

2N1ln(V1 + V2

V1

)1/3

+ 2N2ln(V1 + V2

V2

)1/3
]

> 0. (4.114)The inrease of entropy is expeted, if the gases are di�erent (m1 6= m2), beausethe mixing proess is irreversible in this ase (entropy of mixing).However, if the two gases onsist of the same kind of partiles (m1 = m2), themixing proess is reversible, sine it atually onstitutes no hange of state at



4.3. THE IDEAL BOLTZMANN GAS AND THE GIBBS PARADOX 91all. Therefore, we must have ∆S = 0 for m1 = m2, T1 = T2, p1 = p2. But in ourlassial treatment the entropy hange would still be given by (4.116), ∆S > 0.This is alled Gibbs paradox of lassial statistis. It shows that it is inorret toonsider the idential partiles (m1 = m2) as distinguishable.The paradox is resolved by quantum statistis:The states of a many-partile system omprised of partiles of the same kind(idential partiles) are ounted suh that the partiles are indistinguishable.



92 CHAPTER 4. IDEAL SYSTEMS: SOME EXAMPLES


