Chapter 4
Ideal Systems: Some Examples

In this chapter we consider some examples which visualize the statistical physics
approach of chapter 2 to describing many-particle systems. This will also demon-

strate characteristic thermodynamical and statistical properties of such systems.

4.1 2-level systems

A 2-level system is a quantum mechanical system whose Hilbert space consists

of exactly 2 states, e.g. a spin % in a magnetic field B= (0,0, B).

H;, = —guyo; - B = —2490, ;B (4.1)

with the Landé factor g = 2 and the spin components along the z-axis s; = j:%.

We consider a system of N > 1 such non-interacting spins,

H = ZHZ (4.2)

which has the energy eigenvalues

E((ma}) = =3 2msiB, i %. (4.3)
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Figure 4.1: System of many independent spins
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Figure 4.2: Two-level system

The possible energy eigenvalues of the system with N independent spins are

E, = —nuyB (4.4)
n = —N,—-N+2,...,N (4.5)
n = ny—n (46)

= number of up-spins - number of down-spins

4.1.1 Microcanonical treatment (isolated system)

The energy has a fixed value. To calculate the equlibrium distribution of the

isolated system, the number of microstates with a given energy FE, must be

enumerated:
nT — nl = n (48)

For given N, n, there are

ny = %(N+n) spins | (4.9)

1
n, = §(N—n) spins | (4.10)
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Note: ny,n; € Ny for N even or odd.

Thus,
number of possibilities to
QE,) = QN,n)= select ny = 2(N +n) spins
from N spins without ordering
N (N—=1)-...-(N—=ny +1)
n ’/LT!
N!
nil(N —ny)!
N!
(55 (55)!
and
Wir(N.n) = 5
n) = .
QN )

The average value of one spin (e.g. s1) in the system with energy FE,, is

(1) =

1 1
N <sl = :i:—) = number of spin configurations with s; = +—

Thus,

(1) =

%Q(]\lf,n) [N (31 - %) - (Sl B _%)}

and total energy F,

= QN-1,nF1)
(N—1)!

(2 ()
(N=1)!

(B2 ) (F==2)!

2N 2 2 2N

11 [(N+n) (N—n)]zln 1(ny —ny)
2N 2(ny+mny)

The average fluctuations (variance) about this mean value are

((s1 =

) = - o2 = 1 (135,

2
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(4.11)

(4.12)
(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)
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where we have used

(s2) = im [N (sl - %) LN (81 _ —%)} _ i (4.22)

The fluctuations never vanish for N — oo, unless FE,, has its maximum absolute
value, i.e. all spins point in the same direction, n = +/N. This is clear, because

any energy |E,| < |Enax| = NpuoB can be realized by several spin configurations

1

with s; = +% or §; = —3.

Entropy and temperature

The entropy of the microcanonical ensemble is

S(E) =  kplnQ(N,n) (4.23)
Nix(2)" N+n (N+n\ N-n_ (N-n
D [V, (Yen) N om (Vony]

With £ = —npuoB,n = —N,—N +2,..., N as above and dF = dU = T dS we

can calculate the temperature

1 0s 1 0s kg 1—-=2 kg _ 2B

= = o= ! L) =—l 2 4.25

T OF — o B On 2,uOBn<1—|—%) A n<1+% ( )
or

E = —N% tanh (%/;) : (4.26)

Hence we have

f
T{>o or B <0 (.27

<0 forE >0

It is a general feature of systems whose energy spectrum is bounded from above,
that their entropy is zero both for the minimum and the maximum energy value,
since these two microstates are non-degenerate. Therefore, S must have a maxi-
mum for an intermediate energy, as shown in figure 22, and T" = (g—g)_l can be
>0 or <0.

The physical meaning of negative temperatures will become more evident in the

canonical ensemble.
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Figure 4.3: Entropy of an ideal spin system in the microcanonical ensemble

We see from the above calculations that for the microcanonical treatment the
enumeration of the states (N, n) is crucial. This can be a cumbersome task,
because the counting is constrained by the fact that the energy is fixed, i.e. that
n = ny —n; has a fixed value. Therefore, in most cases it is more efficient to
calculate in the canonical ensemble, where the summation in Z, runs over all

microstates, irrespective of their energy.

4.1.2 Canonical treatment and thermodynamic properties

of a 2-level system

The canonical partition function is

=Y S Y Y (4.28)

4l 41 —41
51—:|:2 52—:|:2 sN—:I:2

where the total energy of the N-spin system is

E,=E(sy,...,sy) = Z E'(s;) = Z(—2si,uoB). (4.29)
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s1) (s ()

Ze = Z Z e_Eli;% e_Ele%)...e_E’iB%r (4.30)

sl—j:% SNZ:I:%

N

N0

= (& leT = (ZCJ)N’ (431)
s::l:%
where
_—2sp0B MoB A/Q
Ty = st = 2cosh [ 297} = 2cosh [ =£2 ) . 4.32
1 ~ e *m oS (kBT) Ccos (kBT (4.32)
S=+3

It is generally true:

Note: For a system of N independent subsystems (i.e. not interacting
with each other) the canonical partition sum Z,. factorizes into the

product of the canonical partition sums of each subsystem, Z, ;.

This is because for non-interacting subsystems the total energy is simply the
sum of the energies of the subsystems.

The Boltzmann distribution function is then
1 sy 1 A N
Wen) = — e 7 [ —— ema™ = [ [ Wea(s:). (4.33)
i=1
The average value of the spin s; is

(s) = > ... D siWealst) . Weia(si) ... Waa(sw)  (4.34)

slz:t% si=t1 sN::I:%

2
= Z SiWc,l(Si) (435)
si=:|:%
1 1] 22 _A/2 4
— _ EgT _ kT
Zer2 {e 5T — ¢ Fp } (4.36)
1 AJ2
= —tanh | — . 4.37
o (k:BT) (4.37)

It is seen that the average spin (s;) is independent of the other spins in the

canonical ensemble, since the total energy is not fixed.
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Figure 4.4: Canonical partition sum of a two-level system
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Figure 4.5: Average spin per site

The magnetization of the system is

1 A/2 B
M = Ngpo(si) = Ngu0§ tanh (kB—/T) = N tanh (IZ,(;—T) . (4.38)

Thermodynamics of spin systems (2-level systems)
The free energy can be calculated microscopically from the canonical partition

sum:

F(T) = —kTn Z, = —NkgTIn <2 cosh <%/;)) (4.39)

The entropy is

(1) = -2 = i i (e (222)) - 222 (B2]
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and the specific heat for B = const.,

/2
kT

can (), 1(5), () gy o

Discussion of the T-dependence of cp:
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Nkg
Schottky anomaly
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Figure 4.6: Specific heat of an ideal two-level system

For kgT < A/2,cp ~ (,ﬁg—@)z e_ks% vanishes exponentially in a nonan-
alytical way (all derivatives are zero). This is typical for systems with an
excitation gap A between the ground state and the first excited state:

At low T, the occupation of the excited state(s) is exponentially small due

to the Boltzmann distribution, making the T-dependence of the internal

energy U and of the specific heat cg = (g—g)B exponential.
For kgT > A/2,cp ~ % =),

This is typical for systems whose energy spectrum is bounded from above:
For kgT > Enax = A/2 ground state and excited state(s) are equally
oU

occupied, and increasing 7" does not increase U anymore.— cg = (W)B —
0.

From (1) and (2) it follows ¢p(7") must have a maximum. This maximum is
called Schottky anomaly and is characteristic for a discrete 2-level system.

It is therefore often used to detect 2-level systems in experiments.
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The internal energy is calculated from the above expressions as,

B
U=F+TS=—Npytanh (222 ) = M B (4.42)
kT

or equivalently

U= Z(—2u03)<si> = —2Npuo(s;) B. (4.43)

The magnetization can also be calculated by thermodynamic derivative:

OF
M = — (& .
=), .
0
0
= _8—3 (Nk’BTlIl qu) (446)
1 0Z..
= — : 4.4
NkBTZC,l 55 (4.47)
Y ooNpe Y se wer (4.48)
s::l:%
= 2Npg(s) (4.49)
poB
_ 4
N po tanh (kBT) (4.50)
(4)  Zer = (4.51)
s=+1

as in the direct calculation, Eqs. (4.34)-(4.38).

This shows how statistical averages are generated by thermodynamic deriva-
tives of F.

The magnetic susceptibility y of a system of distinguishable (e.g. localized)

spins is

oM e 1
0B S,V,N keT cosh? <M)

kpT
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Hence, for vanishing B-field the susceptibility is

oM 15
= [ == =N . 4.53
X ( oB )S,V,N;B:O kT ( )

This so-called Curie behavior, xp—¢ ~ 1/T, is characteristic for localized spins
and is used experimentally to detect local magnetic moments in solids, as com-
pared to the T — independent low-temperature susceptibility of the mobile spins

of electrons in a metal (see section 5.2.2).
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Negative “temperature’:

T < 0 leads to nondiverging occupation probabilities, if the spectrum is bounded
from above, and corresponds to an occupation inversion, as shown in figure 26,
i.e. to a nonequilibrium state. In the case T' < 0, T should, therefore, be under-
stood as a mere parameter to describe a special (non-equilibrium) distribution
rather than an actual temperature. The latter is defined only in thermodynamic

equilibrium and must be positive semidefinite. The inversion can be realized ex-

Uz exp(-E/KT)

w2 o a2 E
Figure 4.7: Occupation probability for T' < 0

perimentally by adiabatically (i.e. quickly) inverting the magnetic field B — —B,

so that no relaxation of the average occupation numbers W (E) is possible:

1

1

Adiabatic demagnetization:

By quickly (adiabatically) reducing the external magnetic field B — B’ < B, such
that no change of the occupation probabilities W (E) occurs during this process,
the temperature 7" is reduced by the factor B’/B. This is because in W (FE)
the quantities B and T" appear as the ratio B/T only, and because W (FE), and

hence B/T remains unchanged. This method is called adiabatic demagnetization.
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The lowest, technically reachable temperatures (7' &~ 1uK) are realized in spin

systems by using this method.

4.2 A system of independent harmonic oscillators

We consider a system of N identical, uncoupled harmonic oscillators with eigen-

frequency w:

H= Z hw <aja,~ + %) (4.56)

i=1

with possible energy eigenvalues of a microstate
|n> = |n1an27"'anN> (457)

are

N
B, =) hw (n + %) => EY, (4.58)
] i=1

i=1
where n; is the number of excitation quanta ("phonons") of the i-th oscillator,
1=1,...,N.

The canonical partition sum factorizes like for any system of non-interacting

subsystems:
> P18 N
Z. = ZN = (Z e‘w> (4.59)
n=0
N
__hw 1
= (6 2kBTﬁ> (460)
1— e k57
N
1

B DAY (4.61)

2 Slnh <m>
It is seen that in the canonical ensemble the summation over all microstates
is easily performed, because one can sum over all eigenstates of the individual
oscillators independently, without the restriction that the total energy of the

N-oscillator system is constant, which would be there in the microcanonical en-

semble.
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All physical quantities can be computed from Z..:

e Internal energy U:

]_ __En
U = (B)=— > E, e FeT (4.62)
210
o0 N -4
e kBT
— Z (Bp, + By + ...+ E,y) Z (4.63)
S0y =1
e
> “E&pT
= N[ EY—— | =N(EY), (4.64)
n1=0 c,1

where the expression in brackets in the last line is the internal energy of a
single oscillator. It can be calculated directly from the partition sum as a

derivative, as seen from:

0
EMY = —ZinzW 4.65
cosh ( =2
= QSinh< i ) <2kBT) e (4.66)
2kpT 2 sinh? <2£‘;’T> 2
1
ith = — 4.67
with 6 = (4.67)

huw hw
(€5 A
(EW) 5 coth (QkBT) : (4.68)
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Figure 4.8: Internal energy of a system of N harmonic oscillators

e The internal energy has for 7" — 0 a finite value N% because of the

zero-point energy of the harmonic oscillator.

e The T-dependence for kT < hw/2 is exponential because there is an
excitation gap to the next excited state.

e For kT > hw/2 (E)~T
This can be understood by calculating the average number of oscillator

quanta per oscillator:

. _hw(n1+%)
e kT
(n) = ;::Onlizﬂ (4.69)
0 1
_ 1 _ 4.70
a7 o
1 Fuw
_ 1 _ 4.71
5 [coth <2kBT) 1] (4.71)
1
(n) = 44— (4.72)
eksT —1

(EW) = hw <<n) + 3) : (4.73)
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The average number of quanta at a given temperature T is propor-
tional to T for kgt > hw/2, where each quantum has a fixed T-
independent energy fiw. Hence, (EW) ~ T, kT > .

e Free energy F:

F = —kzThhZ, (4.74)
= —NkgTlnZ., (4.75)
hw
= NkgTln (2 sinh (2kBT)) (4.76)
_ hw hw
— N [l{:BTln (1 e kBT) n 7} (4.77)
e Entropy S:
OF
__or 4,
S 5T (4.78)
— —Nkg |In (1 - e‘&“’T) _ he/ksT (4.79)
eksT — 1]
Nkp——oe F8T| kT < hw
kg
_ (4.80)

kgT
N In | — 1 T
kB(n<hw)+)’ kgT > hw

The internal energy can be calculated from the thermodynamic relation,

U = F+TS (4.81)
2 eksT — 1
~ Nhw {(n) +%] (4.83)

in agreement with the above direct calculation.
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Figure 4.9: Entropy of a system of N independent harmonic oscillators

e Specific heat:

ou
aT

)
= N

()
Nkg Z’“BTEW
Slnh (m)

Nka kBT > FL(U

\

or equivalently,

0S
C = Ta_T

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)
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44— maximum of d<E>/dT

kgT/hw

Figure 4.10: Specific heat of a system of N harmonic oscillators

The result for " — oo is in agreement with the virial and the equipar-

tition theorems (see Chapter 5.5).

The high-temperature behavior ¢(7T) = const. is characteristic for sys-
tems with a spectrum unbounded from above and is in agreement with

the equipartition theorem.

"In the classical limit (7, (E) > hw) each degree of freedom
which appears quadratically in the Hamiltonian, contributes %k‘g

to the specific heat ¢."

(Here the degrees of freedom are p; and z;,i =1,..., N.)
The general equipartition theorem will be discussed later.

From the above calculation one can learn that
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- thermodynamic expectation values, like (E), (n) etc. can often be
calculated directly as derivatives of Z. with respect to appropriate
variables.

— for non-interacting systems which do not share the same volume,
derivatives of In Z. wrt. an intensive variable (e.g. T') are extensive,

trivially. This will be different for a classical ideal gas.

4.3 The ideal Boltzmann gas and the Gibbs

paradox

As the third important example we consider a system of N non-interacting par-
ticles in a large cubic box of length L and volume V = L9, where d is the spatial

dimension. This example will serve two purposes:

(1) The fact that these particles share the same volume V' means that they
are indistinguishable in the quantum mechanical sense - in contrast to the
spins or harmonic oscillators of the previous sections, which are not mobile
and therefore distinguishable. The treatment as distinguishable particles
familiar from classical mechanics will lead to an unresolvable inconsistency,
which will motivate the treatment as a quantum gas, introducing quantum

statistics.

(2) By deriving the ideal gas law from a microscopic statistical basis, we will be
able to make the identification of the Boltzmann constant kg of statistical

physics with the proportionality factor kg of the gas law.

4.3.1 Statistics of the ideal gas

As usual, we define first the Hamiltonian H, the energy eigenstates |n), and the

possible total energy eigenvalues F,, of the N-particle system:

- LN (2 4 p2 2 4.89
;m ;2m(pm+py+pz) (4.89)

1 .
Up (7)) = —=ehT (4.90)
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with quantization

- 27 ~ ~ ~
ki = - (nip€s + niyey + ni€)
nim,niy,niz = —00,...,00

and in position representation

1 27rh)2 [ N
E, = — (= (ni2 +nis +n2) |
2m L —
with
A 272 h?
mL?
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(4.93)

(4.94)

(4.95)

Note: This corresponds to the treatment of classical distinguishable par-

ticles, since in the many-body wave function ({Z'}|n) the particles

are distinguishable, particle 1 (with coordinate #;) being in state

/Zl, etc. The representation of the states in terms of wave functions

is chosen here only make the k-states discrete and, thus, to make it

easy to enumerate the states. Otherwise the treatment is classical.

In the canonical ensemble the partition function factorizes, because the particles

and their momentum components are independent,

N-d
Z. = (Zl)
IO a2 n2 = 23,
with 7, = E e mL%kpT" — E e 2"
n=—o0 n=—o0

being the canonical partition function per particle and spatial direction.
The "thermal de Broglie wavelength" Ar is defined through the relation

1 /27 \?
T=— (2=
kB 2m ()\Th)

AT

B 2mh B A I
- \2mksT kT

thermal wavelength

(4.96)

(4.97)

(4.98)

(4.99)
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/\

L

Figure 4.11: Wave functions of free particles in a box of length L

In the thermodynamic limit, L > Ar, where we must have T' > 0, the sum in Z;
can be replaced by an integral and can be evaluated,
Hoo _(>\?, L
lim Z; = / dn e (F) " _ )\—ﬁ (4.100)
_ T

—
L—oco 00

and

7, = (ﬁ%)w (4.101)

In the limit 7" — 0 the evaluation as an integral breaks down, and a quantum

mechanical treatment in terms of discrete states is required.

The thermodynamic quantities of the ideal Boltzmann gas follow in a straight-

forward way:

(1) Free energy:

F = —NkgTln (ﬁd%) (4.102)
T
d kpT

= —5NkpTIn <7T—A ) (4.103)
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(2) Entropy:

s = (% (4.104)
T )y
d kgT d
= 5 Nkgln (w%) + 5 Nk (4.105)
(3) Internal energy:
d
U=F+TS= iNkBT (4.106)
(4) Specific heat:
ou oS d
= (57) =7 (57),, 50 1
equipartition rule (see above)
(5) Pressure:
OF NkgT
=— (=) = 4.108
r== (), = s
pV = NkgT Ideal gas law (4.109)

Note that the proportionality constant kg in this equation is the (still arbi-
trary) Boltzmann constant & = kp as defined in the context of the statistical
entropy. By comparison this statistical law with the thermodynamic defi-
nition of the temperature through the gas law (see chapter 1), the value of
kp is now fixed.

(The Maxwell distribution of the velocities in an ideal gas will be computed

as an exercise.)
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4.3.2 The Gibbs paradox
T,p T,p T
. . e o ° ° e - e .0
R e o ..0 ‘. ' 3 ' ] .'
e o . o’ Le,
. » e o . .
. . M °’ o,
b4 . o ® . L4 o ®
e ® o © e -0 0o -0 °* ..
my m, my, N5 my, N,
N1 Vy N2V V=V, Y,

Figure 4.12: Mixing of two gases

We consider two ideal Boltzmann gases (mq, N1, V1), (mg, Na, V) with particle
mass my and ma, respectively, in volumina V; and V5, separated by a wall, at the
same temperature T = T} = T, and pressure p = p; = ps. At a time ¢t = 0 the

wall is removed, and the two gases mix; 1" = const..

Before the mixing the total entropy is (d = 3)

S S1+ 5 (4.110)
3 V3 /3
“kp |2Nn [ VIE— | +2Noln | V/T-2— | £ Ny + No| . (4.111)
2 )\Tl >\T2
After the mixing the entropy is
S = S48 (4.112)
3 V1/3 V1/3
—kg {2N11n (\/7? ) + 2N,ln (ﬁ ) + Ny + Ng] . (4.113)
2 Ay A1,
i.e. the entropy changes by
3 Vi+Va\ ' Vi+Va\ '
AS =8'=8 = ks [2N11n ( Lt 2) + 2N,ln ( s 2) > 0. (4.114)
1 2

The increase of entropy is expected, if the gases are different (my # my), because
the mixing process is irreversible in this case (entropy of mixing).
However, if the two gases consist of the same kind of particles (m; = msy), the

mixing process is reversible, since it actually constitutes no change of state at
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all. Therefore, we must have AS = 0 for m; = ms, 71 = T, p1 = po. But in our
classical treatment the entropy change would still be given by (4.116), AS > 0.
This is called Gibbs paradoz of classical statistics. It shows that it is incorrect to
consider the identical particles (m; = ms) as distinguishable.

The paradox is resolved by quantum statistics:

The states of a many-particle system comprised of particles of the same kind

(identical particles) are counted such that the particles are indistinguishable.
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