Chapter 5

Quantum Statistical Mechanics:

Systems of Identical Particles

5.1 The correct enumeration of states

In the previous chapter we had seen that unphysical results can arise, if in count-

ing the states, the particles are treated as classically distinguishable.

In a system of N localized spins (which have no motional degree of freedom)
the individual spins are distinguishable since each one can be thought of as sit-
ting on a different, distinguishable site of the lattice. This gives each spin its
own identity. The lattice site can be identified in principle, e.g. by absorbing a
v quantum and thereby going to an excited state which distinguishes that site

from the others.

By contrast, particles of the same kind in a gas or liquid sharing the same volume
cannot be distinguished: Suppose the particles number 1 and number 2, pq, po,
are of the same kind, i.e. they have no internal quantum number(s) which would
allow to distinguish them. Then there is no experiment - not even in principle
- which would allow to distinguish the two-particle state |a,b) with p; in the
single-particle state |a) and p, in the single-particle state |b) from the state |b, a)
where p; is in the state |b) and po is in the state |a). Hence the particles py, po

are indistinguishable. The states |a, b) and |b, a) can differ only by a “—” sign (in
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94 CHAPTER 5. SYSTEMS OF IDENTICAL PARTICLES

3 spatial dimensions), as discussed in many-particle quantum mechanics.

As a first step, we will consider only non-interacting particles (ideal systems).

The general case will be discussed in suceeding chapters.

In the correct enumeration of states for indistinguishable particles, states which
“differ” only by a permutation (interchange) of particles must not be counted as
being different. The correct counting is conveniently done not in the coordinate
representation (where the coordinates and other quantum numbers are specified
for each particle) but rather in the occupation number representation (where first
a complete basis of single-particle states {|a)} is chosen and then the number n,,

of particles in each single-particle state |«) is specified):
|(I)> = |na17na27’”> (51)

In this representation the double counting of identical states is automatically

avoided.

Enumerating the states by the occupation numbers n, is, however, difficult in

the canonical ensemble, because here the total number of particles is fixed;
N =14, +Nay + Moy + -+ -, (5.2)

and thus the summations over the occupation numbers n,, cannot be done in-
dependently of each other. Therefore, in quantum statistics, it is convenient to
calculate in the grand canonical ensemble, which is equivalent in the thermo-
dynamic limit. Since the grand canonical ensemble contains all the states with
arbitrary total particle numbers, N = 0,1,2,3,...,00, the sums over the occu-

pation numbers n,, are independent of each other.

5.2 The ideal Fermi gas

5.2.1 General expressions

Because of the antisymmetry of the total wave function with respect to parti-

cle exchange the occupation numbers of a single-particle state are restricted to
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g, = 0,1 withi =1,2,.. .,

The total energy eigenvalues of the many-particle system are

[e.9]
E(NaysNay,--.) = ZnaiEai
i=1
where E,, = energy of the single-particle state |«;).

The grand canonical partition function is

E({na; ) —nN

Zac = E e kBT
nai:O,l
1=1,2,3,...
e Moy (Ea; —
— || § Tl

=1 Na ;=

:Z[j[ZGC1 ai, 1, T)
()

i=1
where N =30 n,,.

Eo,;—

1+4e faT

The grand canonical potential is:

0= —]{IBTll’l ZGC = _kBTZhl ZGCJ(O(Z',,M,T).

i=1
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(5.3)

(5.8)

The average occupation number of the single particle state |«;) is computed as,

nal(Eal I»L)
kgT
Neg,) = N, Wi « N, 5.9
() naz—:()l aeltas}) = az_:m ZGCl (a, i1, T) (5:9)
=12,
kgT 0 InZ ( T) (5.10)
- - n ay, W, .
B 5Eai GC,1 H
Eai*/i
e kBT 1
= o = (5.11)
1+e *8T e kBT +1
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= f(E,,), (=-—| Fermi distribution function

(5.12)

f(E)

- 2KkgT

: B

Figure 5.1: Fermi-Dirac distribution function

() = % {1 ~ tanh (%B(Eai - M)) } (5.13)

(Nay) =% O(p — Ea,) (5.14)

Note the difference:

The Boltzmann distribution

E—uN
ﬁe *sT is the probability that a many-particle

state with energy F and average total particle number N is realized in the grand
canonical ensemble.
The Fermi distribution f,(E,,) is the average occupation number (n,,) (or oc-

cupation probability) of a single-particle state |o;) within a many-particle state.
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The correct counting of indistinguishable particles and the restriction n,, = 0,1

induces the non-trivial form of f(E,,).

In the limit 7" — 0 w is called Fermi energy:
Wl =0)=¢ep. (5.15)

According to Equation (5.15) it is the energy up to which the single-particle states
are occupied in a Fermi gas with total particle number N at 7" = 0. The Fermi
momentum prg is the momentum of the highest occupied single-particle state, i.e.

defined by ep = p%/2m.

The chemical potential 4 is determined so as to fix the average total particle

number:
() =50t = [ BB 1(E), 510
i=1
where p(E) =32, §(E — E,,) is the density of states (DOS).
This is an implicit equation for pu.
The occupation number fluctuations in state a are (with n? = n, for fermions),

((na = (na))*) = (n2) = (na)? (5.17)
= (1) = (na)” (5.18)
= [(Ea) (1= f(Ea)) (5.19)

The relative fluctuations of the total particle number are, thus,

. B 1/2
(AN?) _ [JAEp(E)(E) (L= [(E)]" 1 vee (5.20)

(NV) JAEp(E) f(E) vV
since p(F) ~ V.

This shows that grand canonical and canonical ensembles are equivalent in the
thermodynamic limit V' — oo: Although the formulas for physical quantities
may look different in the canonical and in the grand canonical treatment, their

numerical values are the same in both treatments.
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1/4 ¢

Ea

Figure 5.2: Occupation number fluctuations in a Fermi gas

Thermodynamic properties of the free electron gas

To be specific, we will consider the free electron gas with single-particle ener-

gies

P
Eﬁo— - % (521)
2rh,. - —~
p o= %[mxex + mye, + m.e,) (5.22)
L = system length. (5.23)
The DOS per spin orientation is
9 47Tp2 (dEﬁa>_1
_ dmpidp dp
po(E)dE = (27{/@3 = k)’ VdE (5.24)
E 3/2
po(B) = L) T E v VE (5.25)

o2m2h3 \/571'2 h3
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p(E)

Figure 5.3: Density of states (DOS) of the free electron gas in d3 dimensions

For the free electron gas (spin 1/2) in d = 3 dimensions the Fermi energy e is

determined by

Sy 2
N = 2V / dE\/E=2Vc3§gf;/2 (5.26)
0
3n\*/? s oy 12
U T /3 5.27
°r (403) (37°n) 2m ( )

with the particle density n = N/V.

The density of states per spin orientation and volume is then, expressing c3 in
Eq. (5.25) using Eq. (5.27),

(5.28)

= —N—

po(E) 3 1 JE
\% 4 EF EF

It can be expressed in units of the Fermi energy e, the only characteristic energy

scale of the free Fermi gas, and in terms of the particle density n only.

e Extensitivity in the grand canonical ensemble:
Since p,(E) ~ V and quantities like the grand potential {2 involving a sum
over all single-particle eigenstates can be writtenas > _(...) =, [ dEp,(E),

these quantities are explicitly extensive.
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e Entropy, internal energy and specific heat:

Using the grand potential

_Ea—p
Q= —kgTnZoo = —kpT Y In (1 4 it ) (5.29)

the entropy of the Fermi gas is obtained as ( with ov =single-particle eigen-
state)

0
5 _<8_T)W (5.30)
_Ba—p E,—pu T
=k In{l+e *7 |+ P 5.31
O R v
= —kBZ[E;;‘B_T“ [1—f<Ea>]+1n<f<Ea>>] >0 (5.32)
0 Eo—
S — _?MB; kBT’uf(Ea) (5.33)

The internal energy (for a fixed volume V) is then using N = (N) =
> o [(Eq) in the thermodynamic limit,

U = Q+TS+puN (5.34)
= Y (Bo— ) f(Ea) + pN = Eof(E,) = (E) (5.35)

«

This agrees with the expression used for calculating (£) from the average

occupation numbers f(E,).

The specific heat (for constant volume) is:

_ (@) __p(9%
o = (ﬁ)_ T((,),T)W (5.36)
B Q E,—u 1 /09
— T{ﬁ_z@; — f(Ea)—?<a—T)w (5.37)
Ea_,u af(Ea)
“@%3 knT ( T )W}
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where we made in equation (5.36) use of equation (5.32).

Note that in this development g is kept constant according to the grand
canonical treatment, i.e. the T-dependence of u is not taken into account

in taking the 7" derivative.

Using the general expression for the entropy, (g—g)‘/u = —S we have
Of (Eq) 0
_ E, — = —(E — 5.39
v ; ( ,u) 8T (8T < ,u>) V,u=const. ( )
0 ou
- D () a0
orT ar Vi

The specific heat for constant volume is the T-derivative of the ( internal)
energy of the system, measured relative to the ( constant) chemical potential
w. Since (u) = const.(7'), this shows that the grand canonical and the

canonical calculation of ¢y are equivalent.

cy obeys the following properties:

1. ey >0
(- () e o
_ (_823;3)) E; a (5.42)
%
Y A I
2. T = 0 limit: a
(_%) _ _%9@_@ — 5 (E - p) (5.44)

= cV(T:?)()] = 0. (5.45)



102

CHAPTER 5. SYSTEMS OF IDENTICAL PARTICLES

e Pressure:

In calculating the pressure p = —(9€Q/0V )y, from the grand potential €2,

Q0 = —]{JBTZIIl(l—l—e_%) (5.46)

— —kBTZ/dEapU(Ea)ln (1 +e‘%), (5.47)

one can either use the first expression, taking into account the dependence

of the eigenenergies on the volume V|

1 (2mh)* 2 2
E, = 5V (n2 +n2 +n?) (5.48)
with a = (ng,ny,n,) (5.49)
L = VY3, (5.50)

or the second expression, where E is a volume independent integration

variable and p,(F) is explicitly proportional to V.

Hence, one obtains:

ofd QO
— === N — 5.51
» (av)m oy (5.51)

This should be compared to the pressure of the ideal Boltzmann gas:

B N]{ZBT B %Uclassical
v V

p (5.52)

with Ucssieal — 3N,

The spin susceptibility of the electron gas (s = %)

is defined as,

Y = (%—]\;)T,u (5.53)
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with the spin magnetization,

M = 2u0) of(Ea) (5.54)

- uo%: [f (Em) —f (Ekl>:| (5.55)

and

Figure 5.4: Spin magnetization of a free electron gas

a = (/;, 0) : single-particle quantum number (5.56)
o = :|:§ : spin orientation of one electron (5.57)
By, = E(B=0)-20uB = E0)F nB (5.58)

Er_ is the energy of an electron in the magnetic field B with Zeeman split-
ting A = 2u0B

Note that orbital effects (“Lorentz force”, Landau levels) have been ne-

glected in £ . These would lead to diamagnetism and are not considered
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here.

For small magnetic field (B < ep, kgT) we have:

M = 2By (—af (Eg(,ﬁ:o))> +O(B?) (5.59)
> (—a’;(E?) i [ (~55)|. (60

/

DOS per spin orientation
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5.2.2 The low-temperature region kg1 < ep

From the expressions derived in section 4.2.1 it is clear that physical quanti-
ties of Fermi systems usually involve integrals over the Fermi distribution or its
derivative (e.g. (E) or M).

-f(E)
R

f(E)

2kgT

Figure 5.5: Fermi distribution and its derivative

Knowing that for kgT < ep  f(F) is essentially a constant function except

near the Fermi edge I = 1 = ¢y, we see that partial integration transforms the

integrand from f(FE) to aggj) which is strongly peaked near £ = p.

Therefore, the integrals are effectively limited to the region of width 2k5T around
ep. This demonstrates that for Fermi systems all physical properties are domi-

nated by contributions from the Fermi edge only.

This observation can be formalized to develop a low-temperature expansion in

the width 2kgT', the so-called Sommerfeld expansion.

We perform the Sommerfeld expansion for the grand potential €2 and then derive

the low-T" behaviour of physical quantities from it.

The expression

Q=—kpTy /W dEp,(E)In [1 + e_%] (5.61)
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requires one partial integration to bring out f(FE):

Q - —Z/_Jroodan(E)f(E) (5.62)
where a,(E) = /E de p,(€) (5.63)
8%111 [1+e w] - —kB—Tf( ) (5.64)

and the boundary terms vanish because a(E) = 0 for E < 0 (lower band edge)
E—p
and In <1 —l—e_kB—T> — 0 for £ — oo.

One more partial integration yields

O = —Z/deb ( 8J(;(E)) (5.65)

with by (E) — /_ de’a, (e / de / de po (e (5.66)

The double integral b(E) is a weakly varying function compared to % for kpT <

er and can therefore be expanded with respect to ' = p ~ cp:

bo(B) = bo(p) + by () (E = 1) + 50, () (B — p)* + ... (5.67)

= bo(p) + ag(u)(E = 1) + 5po(1)(E — p)? (5.68)

Using the Fermi integrals (derived using function theory):

I, = /_:O dE(E — p)" (—%) (5.69)
1 . n=0

]{IBT2 s n:2
(
™ (kgT)* , n=4
, n=1,3,5,...

(5.70)

3 |

e}

We can write the Sommerfeld expansion of €0 as:
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Q-3 {—bo(ﬂ) — = peW)(kaT)? + O [(ksT )" } (5.71)

The chemical potential p(7") is T-dependent as well ( see below). However, when
taking thermodynamic derivatives of €2, u is kept constant. Therefore one can

put 1 = p(0) = ep in the above expression for €.

e Chemical potential (for fixed particle number N):
It is evident from figure 37 that u(7") is a decreasing function if the DOS

po(E) is a monotonically increasing function of energy E:

=0 E ] TS0 )

i _py(EY(E) - i —PR(BM(E)

0 H(0)=¢- E 0 WT) &
Figure 5.6: The temperature dependence of the chemical potential in a Fermi gas

The shaded area represents the particle number

N=>" / dEp,(E)f(E) (5.72)

and must stay constant as function of 7.

= w(T>0)<u(T=0). (5.73)

E
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The low-T" expansion of u(7") follows as

2
N:COHSt_:—@:Q M+W_8p—(m

2
o0 o0 6 op (kgT)*+ ...

where we have assumed spin degeneracy,

bo() = b(p),
po() = plp),

) =200

o

Ob
% = a(p)
= a(er) + d (ep)(u(T) — &)
= a(er) + pler)(W(T) — er),
where
a (ep) = 3E /_OO de p(e) L aler) = 53 N

3

)
—_
5

6 pler) gg)“fBTV +O (k7))

(5.74)

(5.75)
(5.76)
(5.77)

(5.81)

(5.82)

(5.83)
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e Entropy:

0N 72
== =2— 2T
s ( 8T)W ek

explicitly extensive — Gibbs paradox resolved

e Specific heat:

oS\
Cy = T (a_T)V“u = S

2

m
= 2§p(€F)k,2BT

= 7T+ O(T?)

109

(5.84)

(5.85)

The linear temperature coefficient of ¢y is a measure of the DOS at the

Fermi energy in a Fermi gas.

Physically: U(t) ~ E(ex. state) - n(ex. states) ~T-T = ¢y ~T

e Magnetization and spin susceptibility:

M = QMSB/dE p(E) (—a—E)

p(E) = p(p) + p (1) (E — p) + %p”(ﬂ)(E — )t

.W_(

M = 2B {p(u)ﬂLp"(u)

= QMOB |:p(€F> B %p(iF>
+%p” (er)(kpT)? + 0(T4)]

: kpT)? + O(T‘*)]

F )] sy

(5.86)
(5.87)

(5.88)

(5.89)

(5.90)
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_ (oM
Y= \eB),,

= 2uppler) — W—z [ ! [pl(EF)]z —p"(ep)] (kpT)? (5.91)

Pauli susceptibility

For indistinguishable (mobile) fermionic spins the susceptibility is x(0) = const.
for T'— 0 (Pauli behaviour).

Sl

For distinguishable (localized) spins the susceptibility diverges x(7) ~
for T'— 0 (Curie behaviour)

5.2.3 The high-temperature region kgT > e (Classical or

Boltzmann limit)

In the limit 7" — oo the Fermi distribution

1 1
E) = — for all ies E 5.92
f(E) o (B~ ) /haT) 11 — 5 for all energies (5.92)

which differ from p by a finite amount (less than kgT). In order to keep the
average particle number finite, the chemical potential ;1 must therefore approach
—oo faster than —7". This means that for any possible single-particle energy £ >
0, the average occupation number of a single-particle state becomes a Boltzmann
factor:

1 Tooo _E—n
fB)=——— — ¢ ™" (5.93)
ersT 4+ 1 '

WlthEEO T>>Ep or )\T<<Cl().
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Anticipating this limiting behaviour of f(E), the T-dependence of u can be given

explicitly.
_E—p
V=Y [am pe)se) 2 [ e gyt (5.1
3
With p,(E) = V\/EmTth\/E = V%£1 /= in d=3 dimensions we obtain (z = kBLT),
_n 3V o
N = QekBT(k:BT)g——Z,l/ da/ze™ (5.95)
3
3vm (kT2
— NZNT ompT .
2263<€F) (5.96)
and:
2
3 3 3 kT
w(T) = —§kBT In ((Tﬁ) %) kT > ep (5.97)
F

It is seen that p(7") — —oo faster than -T', in agreement with the argument above.

In the high-T limit all other quantities cross over to the behaviour of the classical
E—
Boltzmann gas, using f(E) — e *T < 1for F > 0.

The grand potential €2 is:

0 = —kBT-Q/dE po(E)n (1 +e‘%) (5.98)
_E—p _E-p\2

~ —kBT~2/dE po(E)e *5T +0 (e kBT> (5.99)

~ —kBT~2/dE po(E)F(E) = —NkyT (5.100)

Using the thermodynamic relation
Q=U-TS —uN = —pV (5.101)

the ideal gas follows:

OV = NkgT (5.102)
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e Internal energy in d=1,2,3 dimensions

E—p
U~ 2/dE pao(E)E - e F5T (5.103)
with
~ VE, d=3
pir(E) =cqE21 S ~ 0, d=2 . (5.104)
1 _
~ —E, d = 1
Using the substitution x = kg% and the partial integration
> 1 [~ d
/ dr d* e = —/ de —zx%e™™ (5.105)
0 a Jo dx
1 e e}
= —/ dx z%e™" (5.106)
@ Jo
U can be reduced to the integral of the particle number (with ov = g)
d d_q _E—p d
U= (k:BT)§2 dE cq B2 e *8T = §NkBT . (5.107)

in agreement with expression for classical gas.

e Entropy
Since in the grand canonical ensemble the particle number N is not a fixed
quantity, its T-dependence for fixed g must be taken into account when

taking the T-derivative

o9 d AN

(Y _d _ o 1
s ( aT) = qp(NkaT) = Nk + ks ( 8T)W (5.108)
— Nk + kT [ dE p(B)2 (efﬁ) (5.109)

oT Viu
= Nkg +/dE pU(E)E;“e‘ﬂe# (5.110)
U p

_ v_p 111
Nkp+ = — &N (5.111)

T
S = Nkp {C—l +1-— L} = %lNkBln <k;iF) + const. (5.112)
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where the first term ist the grand canonical expression with N = N(T,V, u)

and the second term is the canonical expression with N = const.
Specific heat

Grand canonical evaluation (process with changing N, u = const.)

oS ON d 1 1
722 — 7T = — 1= = Nkp—— A1
v (aT)V,u (8T)V,u o {2 " kBT} VR kgT (5 3)

Note concerning thermodynamic derivatives:

In % 1 is kept const. according to the grand canonical ensemble.

With (?9_11\{)\/“ as above:
U p d p P
_ (Y _nr ¢y _H 114
cy (T TN) {2 +1 kBT} +NkBk:BT (5 )
B d(d 1 1
= Nkg {5 <§ + 1) _dk:BT + (k‘BT)?} (5.115)
1

By increasing 1" the Fermi gas takes up additional energy, if there is particle

exchange with p = const.

Canoncial evaluation
Alternatively, we can conceive the expression for S as obtained in the canon-
ical ensemble, i.e. we keep N fixed, but take the T-dependence of u(T") into

account in a%. Then we have

oS 0 (d kT d ou
Cy T(8T>V’N TaT (2N]{ZB n p ) 2N]€B (8T)V’N (5 7)

in explicit agreement with the classical result.
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e Spin susceptibility and magnetization

0
M = 2,u§B/dE 0o (E) (—8—2) (5.118)
9 1 _B@
~ 2uyB [ dF p,(F)—=e *57T (5.119)
kT
1
= 2NuiB—— 5.120
/J/O ]CBT ( )
oM T
X(B=0) = i =2N 0.121
( ) < OB )B:O kpT ( )
umo ‘ ‘ ‘ ‘ S(M)
EF L 7
i ge-0(T2) i | In(kgT/eg) -
o L |
; =T In(lgT/eF) , T
| | | | kgT “‘ | | | | I‘<BT
cu(m) ‘ X(T)

d/2:Nkg j ] I ]

; , , X(0)-0(1?) ,

j yT 7 \

L | L L L L kBT L | L | L | L | L | kaT

Figure 5.7: T-dependence of u(T), S(T), cy(T),andx(T)
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5.3 The ideal Bose gas

Fermion number conservation and Boson number non-conservation:
In any closed system there does not exist any interaction process which would
only create or destroy a single fermion, because this would change the total an-
gular momentum J of the system by a half-integer value, while J is a conserved
quantity (Fermion number conservation). Therefore, in an isolated system the
fermion number N is fixed (canonical ensemble) and in a system with particle
number (V) is fixed by means of the Lagragne multiplier ;1 (grand canonical en-
semble). This has been naturally assumed in section 4.2.

By contrast, creating or destroying a boson changes the total angular momentum
J=L+S8S by an integer value. This can be compensated by a corresponding integer
change of the orbital angular momentum L of the system. Hence, it is not for-
bidden that a bosonic particle is destroyed or created, e.g. absorbed or emitted
by the wall of the container. The (integer) spin of the boson is then taken up as
an orbital angular momentum of the container.

Indeed, there exists two types of bosonic particles, (1) those with conserved parti-
cle number N, whose average number (N) is fixed by a chemical potential p in the
grand canonical ensemble, and (2) those whose particle number is not conserved
and which, therefore, do not have a chemical potential, i.e. g = 0 in the grand
canoncial ensemble. These different constraints lead to different thermodynami-

cal behaviour.

Statistical behaviour of particles:

1. Fermions (half integer spin):
ne = 0,1 occupation number of single-particle state

N conserved implied by angular momentum conservation
— u(T)
Examples: Electrons, atoms with half-integer total spin, *He, neutrons

2. Bosons (integer spin)
ne =0,1,2, ...

(a) N conserved in a physical process
— pu(T)
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Example: Atoms, *He

(b) N not conserved

=0

Example: Photons, oscillator quanta of a h.o. (phonons), quantized

collective excitations in a solid (magnons etc.)

5.3.1 Bosons with conserved particle number: Bose-Einstein

condensation

We calculate the grand canonical partition sum with arbitrary occupation number

N, of the single-particle states |o;) with energies E,,

oo
Zj:l (Eaj *H)”laj

Zoo = Z e FBT (5.122)
—0,1,2
(Ba; —p)n
= Hze BT (5.123)
i=1 n=0
= [[——== Ea,M =[] Zeca (o) (5.124)
i=1 1 —e *BT i=1

Zaca (o) = Ze_ Bl = —— (5.125)

In order for this geometrical series to converge, one must have

E,,

(3

—pu>0 V) (5.126)

which means for E,, € [0, 00l

W(T) <0 for bosonic systems (5.127)
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The grand potential is

_Ea—p
1—e k5T

= —kBTIIl ZGC’ = —k‘BTIIl <;> (5128)

Q=kpT Y In (1~ e‘%) (5.129)

The sum runs over all single-particle states.

The average occupation number of the single-particle state |«;) is

00 0 —Eaki#n
e kpT "%
Ne;) = N, _ 5.130
LI VRN | &ty (5.130)
j=0.1,2 | S —
WGC({n&k})
0 _Ea;—p
e kT na.
— Mgy, 2 5.131
n;@ ZGC,1(042') ( )
0 In Zgeo (o) (5.132)
= —arae oiZaeila; :
OB(Ea, — )~
b b(E
(na;) = By —p = b(Eo,) Bose-Einstein distribution
e k8T —1
(5.133)
The entropy and the internal energy are
o0 Q E,—pu
s = (= - = b(E, 5.134
(W)W p e (5134
U = Q+TS+uN=> (Eo—p)b(E) =) EubE,) (5.135)

with

N=> b(E,). (5.136)
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Figure 5.8: Bose-Einstein distribution function

T-dependence of the chemical potential ;(7') and Bose-Einstein conde-
nation
We expect generally that quantum effects due to indistinguishability become im-

portant when the wavelength Ay = 27” of a particle with typical thermal excitation
(hk)?
2m

the particles, i.e. when the thermal wavelength

Np=— ™ Zoagn= | — —n"3 5.137
T 2mkgT o <N) " (+) ( )

the condition for quantum behaviour.

energy Ej = = kgT becomes longer than the average spacing ay between

This is because the length scale within which a particle can be localized in prin-
ciple by a scattering experiment is at best its wavelength A\p.

If A\ < ap the particles can be identified in space (by a scattering experiment),
i.e. they behave classically as distinguishable particles.

If A\r > ag the regions in which a particle can be localized necessarily overlap,
the particles become indistinguishable and quantum statistical effects become

important.

Fermi system: Ap > aqy degenerate Fermi gas

Bose system:  Ap > ay Bose condensation
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Note: The wave functions still penetrate each other for Ay < ag, since they are

= M AT \ R

™~

AVA

%@;\E i
T %
= AT K- k——

AVA

Figure 5.9: Classical regime Ay < ag and quantum regime Ay > ag of a gas

extended over the whole system, but a scattering experiment can localize them.

For low temeratures, deep in the quantum regime of a Bose gas (spin 0) we

have
2mh?
A > a9 or kT < T 5 (5.138)
2mag
and the particle density is
N 1 1
4 4 ; eikBT —1
No(T) 1 /°° 1
V-0 0
- + = dE p(E)———— 5.140
= V v 0 p( )e% B 1 ( )

where No(T') = (ng—o) is the occupation number of the lowest single-particle state
(k =0, E, = 0 for a free Bose gas).

In going over to the thermodynamic limit, V' — oo, the energies E} become
continuous and the sum »°, can be replaced by the integral [ dE p(E)(...)", if
the spacing of successive energy levels AE;, < Fj. In the thermodynamic limit

this is always achieved for Ey > 0, since AE), ~ %

However, it can never be achieved for the lowest state Ey = 0. Therefore, the
occupation number n of the Ey = 0 state must be counted separately in the above

expression. For massive bosons (m>0) in d=3 dimensions p(E) = VesVE (as for
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electrons), and one can estimate the number of particles in the ezcited states as

1 1
N = [ B p(B)— < [ dB o(B)—— (5.141)
eksT — 1 eFsT — 1

*° 2
= Ves(kgT)? / dx Ve (using N = —;T) (5.142)

0 e’ —1 cy

——
Vvze T(l+e %+..)
2nV (3 2V 3 T—0

= ——(|=]|~=2,612— ~T2—790! 0.143
e(3) mro o (5.143)

For high T (A < ag) the total number of particles in excited states is N, >> no,

o w

b(E)

T a

p(E)

Figure 5.10: Number of particles N,, in the excited single-particle states of a free

Bose gas

i.e. ng ~ 1~V (non-extensive) and can be neglected for V' — 0.

Then N = N, for V. — oo. However, below a critical temperature T < Tj
the fixed N particles of the system cannot all be fit into the excited states, and ny
must become an extensive quantity Ny ~ V', i.e. the lowest single-particle state

(single-particle ground state) becomes macroscopically occupied.

No 2w (3 N 1
2 ()= 5.144
" V )\%C (2) ( )
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Thus, one obtains for the ground state occupation

3
_ No 3\ ad - B z 2
=3t =i (5) ] =0 1 (7)

with Ap = Z22 and T < T

(5.145)

No

Hence, the critical temperature Ty below which ng = 37 > 0 1is

V—oo

) =)

h2 (27r>
a0 . . .
kpTy = —r Bose-Einstein condensation temperature
[27¢ (3)]

(5.147)

The state in which the single-particle ground state is macroscopically occupied,
i.e. its occupation number scales with the system volume, nyg = % > 0, is
called Bose-Einstein-condensate. The T-dependence of the chemical potential

for T' > T} is extracted from the condition
N = /d&? p(e)b(e) = const. (5.148)

by implicit differentiation:

db —e*BT e—p B
= d —=[d — — L 5.149
0 = [deper g = [deae) T (5.149)

d,u 1 fdéf p(€>4sinh26§;’¥)
-~ - B forT —1T,+0, 0—0)(5.150
dT de&f p(€> . zl(sfu) ( . - + M - ) ( )
4 sinh (%BT)
f(]oo d€€§ : ! €
. _l smh2(2kBTc) -0 (5151)
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2nd implicit differentiation yields a finite value of % <OatT =T, ForT —
e—p(T)

+00 b(e) — e FBT  for the same reason as for fermions, and pu(7) — —TInT

takes on the same classical behavior.

Figure 5.11: Verlauf p gegen T

Properties of the Bose-Einstein-condensate

1. The Bose condensation transition occurs when Ar = ag, i.e. when the

bosons become indistinguishable in space. This can be seen from equation

2. The Bose condensate is described by a macroscopic wave function (%)
with a single, macroscopic phase ¢:
In position representation, the condensate state |ng) is a simple product

wave function

¢0($L’1,...,LL’N0) = <SL’1...SL’NO‘TL0> (5152)
No
= []wolzi)e™ (5.153)
=1
. —Ng No
= 2= % [ wo(:) (5.154)
=1

where og(z;)e'® is the ground state wave fuction of particle i with
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e an arbitrary phase ¢;
e ©o(z) the same wave function for all particles and

o = Zf\g ; the macroscopic phase.

The expectation value of any single-particle operator ﬁ(a:l,...,atNo) =

SV f(z;) in the condensate is

(Yofwi}] ZJ?(%)I%{%D = No(wo()| [ ()| po(w)) (5.155)

Therefore, 1o{x;} can be written as

Yo(z) =/ Noe'Ppo () (5.156)

with a single, macroscopic coordinate x and a macroscopic phase ¢.
1o(z) is normalized to Ny, the occupation number of the condensate. It
leads to the same expectation values of single-particle operators as the

many-particle wave function of the condensate.!

3. The Bose condensation depends on the spatial dimension. For massive

particles, F, = %, there is no condensation transition in d = 1,2 for
T > 0:
In dimensions d = 1,2 the integral
[e'e) 4 1
N., = Vey de e — (5.157)
0 ekBT

diverges, i.e. an arbitrary number of particles can be put into the excited
states, and the ground state is not macroscopically occupied for any finite

temperature 7" > 0.

4. The place wherence of all particles in the condensate implies that there is

no scattering in the condensate; the condensate has viscosity 0.

Entropy and specific heat of the Bose gas

Grand canonical potential:

0= k:BT/dE,o(E) In (1 . e‘%) (5.158)

IFor a free Bose gas () is the k = 0 wave function, ¢o(z) = const., and ¥o(z) = g is a

single complex number.
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Entropy:
= —kB/}wannn<1_e%ﬁ) (5.160)
o [ aEoB)-uE) (7 (5.161)

in agreement with the general thermodynamic relation Q@ = U —T'S — uN.

For T' < T only the excited states contribute to the entropy, since the conden-
sate state ¢y is unique and, thus, has entropy Sy = 0. Therefore, the summation

over states in the above expression can be written as an integral, neglecting the
2

ground state. One can show for massive particles with dispersion £, = ;—m in
d = 3 dimensions (p(E) ~ VE):
S(T)~T2  for T — 0. (5.163)
The specific heat for fixed volume V and particle number N is
08
=T — 5.164
=7 (5), 5109

Remark:

In calculating S from the grand canonical potential Q, u is kept fixed (i.e. not
differentiation wrt. T), since 2 is a function of p by definition (thermodynamic
derivative). S is a general function of T, both through the explicit dependence
and through the implicit dependence of (7)) on T. In calculating ¢y one can,
therefore choose to keep N fixed (as is usually done) and differentiate %. Since
u 0 , T<T,
Ml <0, T>T,
discontinuity at the condensation transition:

discontinuous at 1" = Ty, the T-derivative of ¢, has a
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Figure 5.12: Verlauf ¢y gegen T

5.3.2 Bosons without particle number conservation: Black

body radiation

Photons are an example of bosons (spin 1) which can be absorbed or emitted e.g.
by the walls of a container, i.e. whose particle number is not conserved: © = 0. A
body which can absorb or emit photons with equal probability for all frequencies
is called black body. We consider a system of photons (the electromagnetic field)

in thermodynamic equilibrium with a black body at temperature 7" and calculate

dE,
dw

frequency interval dw at frequency w:

its spectral energy density |, i.e. the energy content dE, in a given photon

T

Figure 5.13: Black body radiation
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For d = 3 and w = ck the photon density of states is
4y k? 2

w
Polarization V
and with z = kBﬂT
(kBT)4 > 2 —x 4
0= v7r2(hc)3 i drzIn[l —e ] = —AVT (5.166)
T4

T 45

7T2 4 . . .
with v = ﬁ. The pressure of the photon gas (radiation pressure) is

Bon = — (a_gz) =T, (5.167)

and the spectral energy density

dE, WP

. (5.168)

The radiation law has been historically one of the first signatures of the quantum

dE,, /do[ T T ]
Fo w’ exp(<lo /KT) |

Figure 5.14: Planck’s radiation law with maximum at hw,; = 2.822 kgT

nature of light. It lead Planck to postulate the light quantum with energy hw for
light of frequency w.
Measuring the Planck radiation law of e.g. light from a distant star, one can

measure the star’s surface temperature.



