Chapter 6

(zeneral Formulation of Statistical

Mechanics

6.1 The density matrix

6.1.1 Definition

Up to now we have assumed that

e the energy eigenvalues E, and eigenstates |n) of the many-particle system

are known, i.e. the many-particle problem has been solved;

e the system is in thermodynamic equilibrium , where the distribution prob-
ability W(n) for an eigenstate |n) to be realized depends on its energy £,

only and is, in particular, time dependent.

In realistic situations neither the energy eigenvalues FE,, are known in general nor
is the system in equilibrium, i.e. in general the thermodynamic (mixed) state
cannot simply be represented in terms of energy eigenstates. In such situations
it is useful to have a basis independent formulation of the statistical formalism.
We consider a general mixed state M of a system, represented by a statistical
ensemble in which the many-particle states |¢;) of the system (not necessarily

energy eigenstates!) occur with the relative frequencies h;, i = 1,2,3,. ...

127



128CHAPTER 6. GENERAL FORMULATION OF STATISTICAL MECHANICS
The thermodynamic average of an observable quantity A in this mixed state is

(4) = ZM%\EWJ@) ; (6.1)

where A is the quantum mechanic operator representing A. Using an arbitrary,

complete many-body basis set {|n)} of the system one can write
(4) = Zh > (iln) (n| Alm) (mld;) (6.2)
= S S ) ol (6:3)
AR )

_ Z<n E(; hiﬁ) n>

where we have defined the operator P, = [¢;)(¢;]. P, is the projector in Hilbert

space onto the (arbitrary, normalized) state |1;):

—~

6.5)

1.
Pj|g) = |¢3)(shi]¢)  for arbitrary |¢), and (6.6)
2.
P2=g) (il (il = [ (W] = B (6.7)
N——

=1 (normalization)

We define the operator

W= ZM%)(@M (6.8)

as the density matriz or density operator of the mixed state M and one has from

equation (*) above

(A) =" (n|AW|n) = tr(AW) (6.9)

n
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Remarks:

1. The density operator is the sum of the projectors ﬁz onto the states [1;) in
the mixed state M, weighted with the relative frequencies (probabilities) h,

with which these states occur in M.

2. The above expression for (A) is independent of the chosen basis set {|n)}

because of the basis independent of the trace tr.

3. If {|¢);)} is chosen to be an (orthonormal) energy eigenbasis of the system
and [¢;) = |i) and the mixed state M is an equilibrium state, then the
formalism reduces to the one used previously, with

E;

kT B;
= ZB , Ze=Y ekt (6.10)

in the canonical ensemble, and

W = 3l A wiln) (6.11)
n7i ‘ 6in

oy 4] 6.12

= A (6.12)

6.1.2 The time dependence of the density matrix

The time dependence of W is derived from the Schrodinger equation for the states

|93):

L d ~
Zh@h@ = Hlyy) (6.13)
L d ~
_Zh%@/&‘ = W%“H (6-14)
d ~ ~
ih@|¢i><wi| = H) (| — i) (il H (6.15)

= [H,P]. (6.16)
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It follows
RO = il S b (6.17)
= = W i|Yi) (Wi .
dt dt -
= Y _hli. P (6.18)
= [HW()] (6.19)
Note:
The values h; are chosen as initial conditions at t = 0, i.e. they are time inde-
pendent.
O _
zhEW(t) = [H,W(t)]| von Neumann equation (6.20)

The von Neumann equation is analogous to the Heisenberg equation of motion

%

of an operator in the Heisenberg picture, however with a relative sign.

Using the formal solution of the time dependent Schrédinger equation

[i(1)) = e F145,(0)) (6.21)
we obtain
W(t) = e # 7 (0)eti At (6.22)

By preparing a system in a given (non-equilibrium) mixed state, /W(O) (i.e. hy)

is given, and

6.2 The reduced density matrix

In many situations one is only interested in the properties of a subsystem of the
complete system S;,; or a physical quantity A depends only on the states of a

subsystem.
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Examples are

1. system S and reservoir R forming together the total system S;,;. A complete
basis of S;,; can be chosen as the set of direct product states ("product of
WF”)

Ins) ® [ng) = |ng,ng) = |n) (6.23)

where {|ng)} and {|ng)} are complete basis sets of S and of R, respectively

(without coupling between the two).

2. a single particle as a subsystem in a many-particle system Sy.

The observable operators A we are interested in act only on the states |ng) of
the system and not on the states of the reservoir |ng). Therefore, it is useful in a

thermodynamic average to perform the averaging over the reservoir states first:

(n|Alm) = (ns,np|Ajms, mr) (6.24)
= (ns|Alms) - (nr|mg) (6.25)

= <ns|g|ns>5nﬁ»ms (6.26)

(4) = tr(AW) (6.27)

= Y (n]AW|n) (6.28)

= > (nlAlm) (m|W|n) (6.29)

- > (ns| Alm5)0n g (M| W ngn) (6.30)

= Z (ns|Alms) Z<mSnR|W\nSnR> (6.31)

(A) =Y (ns|AWs|ns) = trs(AWs) (6.32)

ns
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with

Ws =Y (ng|Wlng) = tra(Wg) (6.33)

nR

the reduced density matrix in the system S.

Note:

Let the system have a dg dimensional Hilbert space, and the reservoir a di di-
mensional Hilbert space. Then the total Hilbert space is dg - dr = d dimensional.
W corresponds to a dg - dg dimensional matrix.

/WS corresponds to a dg dimensional matrix and acts only in the Hilbert space of

S, since the reservoir states have been "traced out”.

6.3 Thermodynamic perturbation theory for the

canonical ensemble

— __H
In general, the trace Z. = tr W, = tr e *s7 cannot be evaluated in a straight-

forward way, because the eigenvalues of H are not known. To develop a pertur-

bation theory, we separate the total Hamiltonian H as

H=Hy+V, (6.34)

where

- the eigenstate problem of I;AIO is assumed to be solved exactly, and
~Visa perturbation assumed to be small.

_ o — -~ ~
The expansion of e 8T = W, in powers of g is still nontrivial, because [HO, V] =+

0 in general. A perturbation theory can be developed, however, by observing the
formal analogy of the canonical density matrix W,.(7T) with the time evolution

operator U(t) of quantum mechanics:
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‘m

ZW(T) = e F5T (6.35)
Ut) = el (6.36)
() = U@)[v(0)) (6.37)

with the identification
1 't
- (6.38)

i.e. the inverse temperature plays the role of an imaginary time ! (in appropriate
units, h =1, kg =1).

Thus, we will first recall the quantum mechanical time dependent perturbation
theory and then set if = kBLT at the end.

Time-dependent perturbation theory

1. The interaction picture is chosen such that the arbitrary operator A obeys

the time evolution according to }AIO, i.e. it is known:

WAAE) = (W (0)]erT A et |y(0)) (6.39)
[4(2))
= (¢(0)|eéﬁt6_;ﬁ°te%ﬁoifle_éﬁot (6.40)
Aq(t)

e ()
le(tl)
= ()| A(D)lun(r) (6.41)

with
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Al(t) = enHot fomiHot (6.42)
() = etfote i 4(0)) = §(1)[1(0)) (6.43)

In the interaction picture, the operators and the states obey the equations

of motion (assuming no explicit ¢-dependence of the Schrédinger operators

A, H, H):
z'hditfh(t) - [/Ah(t),flo] (6.44)
and (6.45)
il = (=g e H I g 1 7) (6.46)
eI (o))
R e T () (6.47)
i) [er(6)

d N
i ln(t) = Vi) (t)) (6.48)
or (6.49)
md%§(t) = Wi(H)S(@®), S(t=0)=1. (6.50)

Knowing that g(t), the total time evolution operator is given by

U(t) = e it = =13 (1) (6.51)

2. Formal integration and iterative solution of (x):

.t
Si) = 1—% / At Vi(#)S(t) (6.52)
0
_ 1—%/dtVI ( ) /dt/ At Vi(£ ) Vi (£")(6.53)
0
+...
_ Pt B (6.54)

(power series of S in terms of V)
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with the ¢t-ordering operator T.

3. Replacing %t by the “inverse temperature” [ = we obtain a power

series for W.(T):

1
kpT’

S'\(ﬁ) — %e—foﬁdﬁlf/l(ﬁl) (6.55)
— 11— | a8V d 48" Vi(8)Vi(5"06.56
/Oﬁl< /ﬂ/ﬁl Ui(56.56)
+...
where
Di(8) = /PPt 5= kB% (6.57)

ZWAT) = e Pig(p)
_ B8
— e PBHo_—BHo fdﬂ,VI(ﬂ)+
0
g B(n)

_1)nfdﬁ(1) [ds@ ... [ ABMVL(BW) -+ - V3 (3M)
0 0

0

We obtain explicitly in first order in the perturbation:

e Partition sum:

ZO0 = gy Ao (6.58)
8
Z, = 70—t e—ﬁf%/dﬁ’f/l(ﬁ’) (6.59)
0
B
= 79 _tr /dﬂl {e‘ﬁﬁoeﬁ/ﬁof/e_ﬁlﬁo} (6.60)
0

cyclic
invariance of tr

(6.61)

8
= 79 _tr /dﬁ’e—ﬁﬁﬂfﬂro&?) (6.62)
0
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(‘72 ) (6.63)

-
=
®
>
oy}
~
<)

~

with (V) = 70 } = tr {WC(O)‘A/} the canonical thermal aver-
age of V with respect to }AIO.

(1)
Zo = 20 (14 % (6.64)
C C ZC(O)
Vo N
70— _z0f (7) 6.65
{ oo (7 (6.65)
e Density operator
] B
We = e?|1- / agvid) | +0(72) (6.66)
‘ 0
B
7 1 Z(l) 1 1S ’
_  _—BHo _ . _ d8 V; 6.67
N 7 T ng>0/ S (067

B
W= e (1= a5 [10) = (7] + 0 (V) || (569

e Free energy:

Z
Z(O)

[

F=—kgThZ,=—kgTInZ® — kgT - (6.69)

F=—kgTnZ© + (V) (6.70)
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Expressions of higher order in V can be obtained successively.

From F' all other thermodynamic quantities can be obtained.

Remark:

Based on the analogy %t — k;,%T and using the time dependent

perturbation theory for Green’s functions ( QMII), a field theory for
finite T" can be developed.

6.4 The classical limit: equipartition theorem and

virial theorem

For the classical limit it is crucial that the kinetic energy and the potential energy

effectively commute in the high-temperature limit.

The thermal average of the commutator is in a momentum eigenbasis:

ﬁ> (6.71)

with
~2
7 v = i(ﬁﬁx/(f)ﬂ%x/(f)ﬁ—x/(f)ﬁv) (6.72)
2m’ 2mi
h o~ = 2
- %<p~VV+VV($)-p> (6.73)

Using a typical thermal momentum
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2mh
(p>T ~<pr = —— =V ka‘BT (674)

~2
<p~T

P v
h d
= —2pr <]9T
2ma

Q
2

2m

ﬁT> (6.75)

vV

ﬁT> (6.76)

with VV ~ %f) and ag: typical length scale on which V' varies:

_ h
c ~ pbr

o v 6.77
2ma a0< )7 ( )
2 (2 2
Y (e gy L (A (6.78)
2m 21 \ ag

This estimate can be extended to many-particle systems and to interacting par-
ticles. Then

ap = min{range of interaction potential, average particle spacing} (6.79)

Conclusion:
In the T" — oo limit, ’L\l—g < 1, the commutator [f]kin,f/} approaches oo more

slowly than the product of the thermal averages and can, therefore, be neglected
_Hki\17V

in { ¢ *8T ). Note that the criterion ’C\L—Z < 1 for this classical limit coincides

with the heuristic argument given in the section about Bose systems.

In the T" — oo limit, the canonical partition sum for a single particle reads:

p

P V@
Z. = tr{e 2mkpT e kBT}. (6.80)

It can be evaluated using complete basis sets of momentum and position eigen-

states:



6.4.

3 ~2 Z
7 = [ Geip @()
v
d3p _
J e ol

THE CLASSICAL LIMIT

— 17 #17) = 85— 7
- @) (#17) = 8% )
=1
=1

’)
A

d3p _ B /2mav(@)
— d3 EnT — —
ot [ e E m e
[¥p(2)>=5
(density)
7 / dp [dz _moo
= S ———— _— ‘B
¢ (2wh)? v
P
Hp,Z) = o + V(&) classical Hamiltonian function
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(6.81)
(6.82)

(6.83)

(6.84)
(6.85)

(6.86)

(6.87)

(6.88)

(6.89)

In the classical limit, the canonical partition function Z,. is the classical Boltz-

mann factor integrated over the complete phase space of (Z,p).

Liouville theorem:

The “volume of a classical system in phase space” I', is conserved in time:
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r = /%h/d%p ) (6.90)
e (6.91)
dt

p(#,7) = Zé?’(f—fi)é?’(ﬁ—ﬁi) (6.92)

Can be proved using the classical Hamiltonian equations of motion.

6.4.1 Equipartition and virial theorems

In the canonical ensemble for one particle in 1 dimension one has in the classical

limit:
OH (p, %) B / dpdzx 8]—[ __T
<p Op > N 2mh - v 0p . (6.93)
dpd:c 0 _ _H_
- —kpT)p—e FBT 94
/27?71 v kuT)p 8]96 (6.94)
i dpdx _L
S / k5 6.95
b 27h - v ( )

(6.96)

For the quadratic momentum dependence of the classical H function,

H= % + V(z), this implies

(Hyin) = <%> = % <p%—;]> - %kBT- (6.97)

Similarly, one can show the Virial theorem:

OH

ov

(6.98)
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For a harmonic potential Vj,(z) ~ 22, it follows:

(o)) = 5 (5 ) = ghaT (6.99)

Generalizing this to many-particle systems, this proves the

Equipartition theorem (classical thermodynamics):

Each degree of freedom (momentum, position, or other) which appears

quadratically in the Hamilton function, gives a contribution %kBT to the in-

ternal energy.

This result has already been obtained for several explicit systems in the high-

T-limit of the specific heat (e.g. Fermi gas, classical gas).
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