What is Condensed Matter Physics about and why is it interesting?

Anna Posazhennikova

Physikalisches Institut, Uni Bonn 10. Juli, 2007

Condensed Matter Physics

- Main Goals
- Underlying Concepts and Methods
- Examples of collective behaviour

1) graphene

Cold Atoms – playground for condensed-matter physics

1) everything can be controlled

2) requires knowledge of different fields: ^a atomic physics, quantum optics, quantum mechanics, solid state, condensed-matter and even cosmology!

3) allows for rich fantasy :)

nanobosonics?

Goal of Modern Condensed Matter Research

- to understand what the microscopic laws of Nature are, what governs the collective behavior of many-body systems

How? - e.g. Reductionism

The reductionist hypothesis: everything obeys the same fundamental laws!

"... the answer to the ultimate question of life, the Universe and everything" is 42.

(The Hitchhiker's Guide to the Galaxy)

Scientists A: who derive those fundamental laws (e.g. astrophysicists, elementary particle physicists, mathematicians...) Scientists B: who apply those laws to explain various physical phenomena (e.g. solid state physicists, many-body physicists ...)

BUT: does synthetic approach (=constructivism) work?

can one start from those fundamental laws and reconstruct the universe??

More is different

P.W. Anderson, *Science*, 1972

".. at each level of complexity entirely new properties appear, and the understanding of the new behaviors requires research which is as fundamental in its nature as any other."

new laws, concepts, generalizations are necessary

Examples of emergent behavior

P. Coleman, Nature, 2007

1) Pressure of a gas (cooperative property of many particles, explanantion of which required a statistical description)

2) Au and Nb at the micrometer scale at low T (Au is a conductor and Nb is a superconductor)

3) organic molecules of micrometer size – emergence of life

Ordered phase is rigid and can be characterized by an

ORDER PARAMETER: magnetization in case of a ferromagnet, superconducting energy gap in case of a superconductor, phase stiffness (=superfluid density) in case of superfluid system etc...

Universality of collective behavior of different systems

<u>Universality:</u> when dissimilar systems exhibit similar critical behavior

dimensionality of the system+dimensionality of the order parameter define the universality class

XY universality class:

Order Parameter is complex (vector), U(1) symmetry is broken

vortex lattice in sc

Ferromagnet, Superconductor, Superfluid system, Bose-Einstein condensate

Concepts: scaling and renormalization approach

for review see P. Coleman, cond-mat/0206003