Condensed Matter Theory I - WS05/06

Exercise 1

(Please return your solutions before 25.10., 13:00 h)

1.1. Bravais Lattices and Symmetries(I)

In the lecture the Bravais lattice, the space group, i.e. the set \mathcal{S} of all symmetry transformations, which map the lattice onto itself, and its subgroup \mathcal{P} the point group, whose elements additionally have at least one fixed point, were defined.
a) Prove that the two-dimensional honeycomb lattice (Fig. 1) is not a Bravais lattice.
b) Give an example, how the honeycomb lattice can be described as a Bravais lattice with basis.
c) Show that \mathcal{P} can only contain rotations with $1-, 2-, 3-, 4$ - or 6 -fold symmetries.

Hint: Rotate a lattice point \vec{v} by $\pm \phi$ and consider the sum of the two new vectors. Which condition must ϕ fulfil?
1.2. Reciprocal Lattice and Symmetries(II)

Consider a Bravais lattice \mathcal{B} spanned by $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$. The reciprocal lattice \mathcal{R} is the Bravais lattice spanned by $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}$, which fulfil $\vec{v}_{i} \cdot \vec{w}_{j}=2 \pi \delta_{i, j}$
a) Give one possible realization of $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}$. What is the reciprocal lattice of \mathcal{R} ?
b) Consider a function $f(\vec{x})$ which has the same symmetry as the Bravais lattice. Show that f is given by

$$
f(\vec{x})=\sum_{\vec{k} \in \mathcal{R}} \hat{f}(\vec{k}) e^{i \vec{k} \cdot \vec{x}}
$$

In that sense, \mathcal{R} is the "Fourier transform of \mathcal{B} ".
c) Prove: \mathcal{P} is the point group of $\mathcal{B} \Leftrightarrow \mathcal{P}$ is the point group \mathcal{R}.

1.3. Symmetries(III): Quasicrystals

Consider a two-dimensional cubic lattice and choose a coordinate system $\left(e_{\|}, e_{\perp}\right)$, which is rotated by an angle $\alpha=30^{\circ}$ (Fig. 3). We will project now all lattice points in a stripe around the $e_{\|}$axis onto this axis. As we will see, the result will be a 1-dimensional quasicrystal.
To perform the projection we have to work a little bit more formally: For each lattice point $\vec{n}=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$ its unit cell is given by $C(\vec{n}):=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{i} \in\right.$ $\left.\left[n_{i}, n_{i}+1\right), i=1,2\right\}$ (Fig. 2). Denote further the $e_{\|}$axis by l and define $S:=\{\vec{n} \in$ $\left.\mathbb{Z}^{2} \mid l \cap C(\vec{n}) \neq \emptyset\right\} . S$ is the set of all lower left-handed vertices of all square cells cut by l (open dots in Fig. 3).
a) Project all points of S onto l and show that the result is a non-periodic intersection of l. What does happen for $\alpha=45^{\circ}$? Which condition must α fulfil to ensure non-periodicity?
b) Show that the intersection of l is built up by two different unit cells (Fig. 4), i.e. the distance between two projected, neighbouring points on l is either a or b. Express a and b as functions of α.

Figure 1: part of a honeycomb lattice

Figure 2: unit cell

Figure 3: projection scheme

Figure 4: 1-d quasicrystal

