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Condensed Matter Theory I — WS05/06

Exercise 3

(Please return your solutions before 22.11., 13:00 h)

3.1 Density of states (DOS) (4 points)

a) Derive the DOS N(E) for a general dispersion relation ¢; in d dimensions,
starting with the definition:

N(E) = 3 8(E - &) (1)

(hint: Use the equation for the group velocity, given in the lecture.)

b) Calculate N(E) for the 1d chain (¢, = —2tcos(ka)).

3.2 Green’s functions - equation of motion (8 points)

a) Derive an equation of motion for an operator A, which does not depend ex-
plicitely on time, in the Heisenberg picture.

b) Determine the time-dependence of ¢4, (t) and ¢l (t) for the free electron gas
with H =), ekczackg.

c¢) Compute the free retarded Green’s function G2 (t — '), using the result of b).
d) Derive the Fourier transform Gy (w) = [drGyE(r)e! @7 with |n| — 0.

What is the sign of n? Why?

3.3 Equation of motion for the Green’s function with local pair interaction

(10 points)

If one considers an electron gas with a local pair interaction between two electrons,
the Hamiltonian in position representation in 2nd quantization looks like this:



2 s o
Hy = 5 Xaz/d VYU (2)VV,(2)

V=3 X [ Bttt W@ (0 () )

(2)
where the pair interaction is given by: v(z,z’) = (27)*Vyd(z — 2') - 0410

In a real system, the local pair interaction can be explained be a strongly screended
Coulomb interaction.

a) Transform the Hamiltonian (Eqn.2) to momentum space and show,

using €, = —%, that:
1
H=Hy+V =Y ecd,ci+ 5V > Gor—aCl a0 Ch g Cpo Cho (3)
ko kpq

O'G'/

b) The equation of motion of the retarded Green’s function for the Hamiltonian
H was shown in the lecture to be:

ho Gy (8, 1) = ho(t —t')[car, cli]o) — 0t — ) [[ewr, Hol-(8), ¢l (t)]:)
— 0t — ) {[[enr, VI-(8), cl ()]

Write down the equation of motion for the Hamiltonian of part a) and show
that the interaction term depends on the higher Green’s function

Ly = =it = ){[(chs g rCprCurar) (1), ek ()]) (4)

c¢) For the following approximation, fluctuations of the operators A and B around
their expectation values are neglected, i.e. one considers A—(A) = B—(B) = 0.
Thus show that in general the following relation holds: AB = (4)B + (B)A —
(A)(B).

d) Use the approximation of part ¢) with A = cIT, 4 qoCpo> B = Criqr and show that
the retarded Green’s function for the Hamiltonian of Eqn. (2) in momentum
space becomes:

1
GF (w) =
A A T S N

In this case the approximation of part c¢) is called mean field approximation.

e) Derive an expression for the magnetization m := (n;) — (n|) and the particle
number n := (n;) + (n;) and show, that m = 0 is always a solution. One can
show, that for 1 < VN (ep) there exist (numerical) solutions (Fig. 1) with finite
magnetization.



m(T)

TIK]

Figure 1: Example for the numerical solution of the magnetization in the mean-field
approximation



