Condensed Matter Theory I - WS05/06

Exercise 3

(Please return your solutions before 22.11., 13:00 h)

3.1 Density of states (DOS)

a) Derive the $\operatorname{DOS} N(E)$ for a general dispersion relation ϵ_{k} in d dimensions, starting with the definition:

$$
\begin{equation*}
N(E):=\sum_{k} \delta\left(E-\epsilon_{k}\right) \tag{1}
\end{equation*}
$$

(hint: Use the equation for the group velocity, given in the lecture.)
b) Calculate $N(E)$ for the $1 d$ chain $\left(\epsilon_{k}=-2 t \cos (k a)\right)$.

3.2 Green's functions - equation of motion

a) Derive an equation of motion for an operator A, which does not depend explicitely on time, in the Heisenberg picture.
b) Determine the time-dependence of $c_{k \sigma}(t)$ and $c_{k \sigma}^{\dagger}(t)$ for the free electron gas with $H=\sum_{k \sigma} \epsilon_{k} c_{k \sigma}^{\dagger} c_{k \sigma}$.
c) Compute the free retarded Green's function $G_{k \sigma}^{0, R}\left(t-t^{\prime}\right)$, using the result of b).
d) Derive the Fourier transform $G_{k \sigma}^{0, R}(\omega)=\int d \tau G_{k \sigma}^{0, R}(\tau) e^{i(\omega+i \eta) \tau}$ with $|\eta| \rightarrow 0$. What is the sign of η ? Why?

3.3 Equation of motion for the Green's function with local pair interaction

(10 points)

If one considers an electron gas with a local pair interaction between two electrons, the Hamiltonian in position representation in 2nd quantization looks like this:

$$
\begin{align*}
& H_{0}=\frac{\hbar^{2}}{2 m} \sum_{\sigma} \int d^{3} x \nabla \Psi_{\sigma}^{\dagger}(x) \nabla \Psi_{\sigma}(x) \\
& V=\frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3} x d^{3} x^{\prime} v\left(x, x^{\prime}\right) \Psi_{\sigma}^{\dagger}(x) \Psi_{\sigma^{\prime}}^{\dagger}\left(x^{\prime}\right) \Psi_{\sigma^{\prime}}\left(x^{\prime}\right) \Psi_{\sigma}(x) \tag{2}
\end{align*}
$$

where the pair interaction is given by: $v\left(x, x^{\prime}\right)=(2 \pi)^{3} V_{0} \delta\left(x-x^{\prime}\right) \cdot \delta_{\sigma^{\prime}-\sigma}$.
In a real system, the local pair interaction can be explained be a strongly screended Coulomb interaction.
a) Transform the Hamiltonian (Eqn.2) to momentum space and show, using $\epsilon_{k}=-\frac{\hbar^{2} k^{2}}{2 m}$, that:

$$
\begin{equation*}
H=H_{0}+V=\sum_{k \sigma} \epsilon_{k} c_{k \sigma}^{\dagger} c_{k \sigma}+\frac{1}{2} V_{0} \sum_{\substack{k p q \\ \sigma \sigma^{\prime}}} \delta_{\sigma^{\prime}-\sigma} c_{k+q \sigma}^{\dagger} c_{p-q \sigma^{\prime}}^{\dagger} c_{p \sigma^{\prime}} c_{k \sigma} \tag{3}
\end{equation*}
$$

b) The equation of motion of the retarded Green's function for the Hamiltonian H was shown in the lecture to be:

$$
\begin{aligned}
i \hbar \partial_{t} G_{\kappa \tau}^{\mathrm{R}}\left(t, t^{\prime}\right) & =\hbar \delta\left(t-t^{\prime}\right)\left\langle\left[c_{\kappa \tau}, c_{\kappa \tau}^{\dagger}\right]_{+}\right\rangle-i \theta\left(t-t^{\prime}\right)\left\langle\left[\left[c_{\kappa \tau}, H_{0}\right]_{-}(t), c_{\kappa \tau}^{\dagger}\left(t^{\prime}\right)\right]_{+}\right\rangle \\
& -i \theta\left(t-t^{\prime}\right)\left\langle\left[\left[c_{\kappa \tau}, V\right]_{-}(t), c_{\kappa \tau}^{\dagger}\left(t^{\prime}\right)\right]_{+}\right\rangle
\end{aligned}
$$

Write down the equation of motion for the Hamiltonian of part a) and show that the interaction term depends on the higher Green's function

$$
\begin{equation*}
\Gamma_{p q \kappa}^{-\tau \tau}=-i \theta\left(t-t^{\prime}\right)\left\langle\left[\left(c_{p+q-\tau}^{\dagger} c_{p-\tau} c_{\kappa+q \tau}\right)(t), c_{\kappa \tau}^{\dagger}\left(t^{\prime}\right)\right]_{+}\right\rangle \tag{4}
\end{equation*}
$$

c) For the following approximation, fluctuations of the operators A and B around their expectation values are neglected, i.e. one considers $A-\langle A\rangle=B-\langle B\rangle=0$. Thus show that in general the following relation holds: $A B=\langle A\rangle B+\langle B\rangle A-$ $\langle A\rangle\langle B\rangle$.
d) Use the approximation of part c) with $A=c_{p+q \sigma}^{\dagger} c_{p \sigma}, B=c_{\kappa+q \tau}$ and show that the retarded Green's function for the Hamiltonian of Eqn. (2) in momentum space becomes:

$$
G_{\kappa \tau}^{\mathrm{R}}(\omega)=\frac{1}{\omega-\epsilon_{\kappa}-V_{0} \sum_{p}\left\langle n_{p-\tau}\right\rangle+i \eta}
$$

In this case the approximation of part c) is called mean field approximation.
e) Derive an expression for the magnetization $m:=\left\langle n_{\uparrow}\right\rangle-\left\langle n_{\downarrow}\right\rangle$ and the particle number $n:=\left\langle n_{\uparrow}\right\rangle+\left\langle n_{\downarrow}\right\rangle$ and show, that $m=0$ is always a solution. One can show, that for $1 \leq V_{0} N\left(\epsilon_{F}\right)$ there exist (numerical) solutions (Fig. 1) with finite magnetization.

Figure 1: Example for the numerical solution of the magnetization in the mean-field approximation

