Condensed Matter Theory I — WS09/10

Exercise 1

(Please return your solutions before Mo. 26.10., 12:00 h)

1.1. Bravais Lattices and Symmetries(I) (10 points) In the lecture the *Bravais lattice*, the *space group*, i.e. the set S of all symmetry transformations, which map the lattice onto itself, and its subgroup \mathcal{P} the *point group*, whose elements additionally have at least one fixed point, were defined.

- a) Prove that the two-dimensional honeycomb lattice (Fig. 1) is not a Bravais lattice.
- b) Give an example, how the honeycomb lattice can be described as a Bravais lattice with basis.
- c) Show that \mathcal{P} can only contain rotations with 1-,2-,3-,4- or 6-fold symmetries. **Hint:** Rotate a lattice point \vec{v} by $\pm \phi$ and consider the sum of the two new vectors. Which condition must ϕ fulfil?

1.2. Reciprocal Lattice and Symmetries(II) (10 points) Consider a Bravais lattice \mathcal{B} spanned by $\vec{v}_1, \vec{v}_2, \vec{v}_3$. The reciprocal lattice \mathcal{R} is the Bravais lattice spanned by $\vec{w}_1, \vec{w}_2, \vec{w}_3$, which fulfil $\vec{v}_i \cdot \vec{w}_j = 2\pi \delta_{i,j}$

- a) Give one possible realization of $\vec{w}_1, \vec{w}_2, \vec{w}_3$. What is the reciprocal lattice of \mathcal{R} ?
- b) Consider a function $f(\vec{x})$ which has the same symmetry as the Bravais lattice. Show that f is given by

$$f(\vec{x}) = \sum_{\vec{k} \in \mathcal{R}} \hat{f}(\vec{k}) e^{i\vec{k}\cdot\vec{x}}$$

In that sense, \mathcal{R} is the "Fourier transform of \mathcal{B} ".

c) Prove: \mathcal{P} is the point group of $\mathcal{B} \Leftrightarrow \mathcal{P}$ is the point group \mathcal{R} .

1.3. Symmetries(III): Quasicrystals

(10 points)

In exercise 1.1 you proved that lattices never have a 5-fold symmetry. Nevertheless such *quasicrystals* can be observed in nature. These objects have a local rotational symmetry but no translational symmetry and are built from at least two different unit cells. We will construct an example of such a one-dimensional quasicrystal in the following.

Consider a two-dimensional cubic lattice and choose a coordinate system $(e_{\parallel}, e_{\perp})$, which is rotated by an angle $\alpha = 30^{\circ}$ (Fig. 3). We will project now all lattice points in a stripe around the e_{\parallel} axis onto this axis. As we will see, the result will be a 1-dimensional quasicrystal.

To perform the projection we have to work a little bit more formally: For each lattice point $\vec{n} = (n_1, n_2) \in \mathbb{Z}^2$ its unit cell is given by $C(\vec{n}) := \{(x_1, x_2) \in \mathbb{R}^2 | x_i \in [n_i, n_i + 1), i = 1, 2\}$ (Fig. 2). Denote further the e_{\parallel} axis by l and define $S := \{\vec{n} \in \mathbb{Z}^2 | l \cap C(\vec{n}) \neq \emptyset\}$. S is the set of all lower left-handed vertices of all square cells cut by l (open dots in Fig. 3).

- a) Project all points of S onto l and show that the result is a non-periodic intersection of l. What does happen for $\alpha = 45^{\circ}$? Which condition must α fulfil to ensure non-periodicity?
- b) Show that the intersection of l is built up by two different unit cells (Fig. 4), i.e. the distance between two projected, neighbouring points on l is either a or b. Express a and b as functions of α .

Figure 1: part of a honeycomb lattice

Figure 2: unit cell

Figure 3: projection scheme

a a b a b b a b

Figure 4: 1-d quasicrystal