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Condensed Matter Theory I — WS09/10

Exercise 2

(Please return your solutions before Fr. 6.11., 12:00 h)

2.1. Reciprocal lattice and scattering experiments (12 points)
For a crystal with basis the differential scattering cross section is, as discussed in the
lecture,
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where q = ky — k; is the momentum transfer during the scattering process.
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is the scattering potential created by the atoms of the basis located at positions r; (it
is assumed for simplicity that each atom creates a é-like potential of strength V;). R;
are the position vectors of the Bravais lattice B and V' is the volume of the crystal.

Figure 1: NaCl structure

a) We consider the NaCl structure as shown in Fig. 1. This crystal can be de-
scribed as an fcc-lattice with lattice constant a and a basis which consists of
a (negatively charged) Cl ion at the origin an a (positively charged) Na ion at

5X. A set of basis vectors for the fec-lattice is given by
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Calculate the the basis vectors of the corresponding reciprocal lattice by
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What kind of lattice is spanned by ki, ko and k3? We consider electron diffrac-
tion, i.e. Vo = —V;. Calculate the scattering amplitude M for this crystal and
show that all Bragg reflexes with q = K = m 1k + moks + msks, with

(my + ma + mg3) = even
vanish. Why does this happen?

b) Sketch the q dependence of the scattering cross section along the x-axis.

The forward scattering cross section for a diffraction experiment on a one-dimensional
crystal is shown in Fig. 2, i.e. every 3rd Bragg reflex is extinguished by the basis.
Again, the atomic potentials are expected to be pointlike (2). Furthermore we assume
that the atoms are placed equidistantly.

c) Use (1) to investigate the structure of the basis and calculate the potential
strengths V.
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Figure 2: Observed cross section

2.2. Bandstructure calculation: weak periodic potential (10 points)
In this exercise we want to study the effect of a periodic potential in the limit of a
very weak one. We will see that it creates a band structure with energy gaps at the
Brillouin zone boundaries in k-space.

We start our calculation with a free electron system (£ = %) and treat the periodic
potential in 2nd order perturbation theory.

a) Use Bloch’s theorem to express the potential and the electron wave function
as a Fourier series over all reciprocal lattice vectors and over all k-vectors in
the 1st Brillouin zone, respectively. Write down the Schrodinger equation in
k-space (compare lecture).



b) Calculate the energy shift AE,S) in 1st order perturbation theory and show that
it is a constant, which we will define to be 0.

¢) Continue with 2nd order perturbation theory: Is there an energy degeneracy
for some values of k? Diagonalize the Hamiltonian in the degenerate Hilbert
subspace and show that the potential creates an energy gap at the Brillouin
zone boundaries. Calculate this gap.

d) Draw the dispersion relation ¢ in the presence of a weak periodic potential in
the extended and in the reduced zone scheme.

2.3. Bloch Functions and Wannier Functions (8 points)
In the lecture the Bloch functions 1), () were introduced. These functions are a

mixed representation depending both on k and on . Additionally we introduce now
a pure real space representation by Fourier transform of ¢ () (Wannier function):
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a) Show W, () = W, (7 — R) and prove that both {1, (")} and {W, (")} are
a complete set of orthonormal functions.

b) What follows for W, #(7) in the case that {1, ()} are nearly plane waves? In
which case are these Wannier functions therefore relevant?



