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Condensed Matter Theory I — WS09/10

Exercise 4

(Please return your solutions before Fr., 4.12.; 12:00h)

4.1 Thermodynamic properties of a Fermi liquid at low T (15 points)
In the lecture the concept of quasiparticles was introduced. The thermodynamic
properties of a Fermi liquid are determined by the properties of the quasiparticle gas.
For one quasiparticle above the groundstate the energy can be linearly approached
by

€k — Up(k — k?F) s

with vp = kr/m*. For more than one excited quasiparticle, interactions come into
play. For the energy correction resulting from these quasiparticle interactions we
derived
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with F}"* the dimensionless Landau parameters. dn =Y, (nk, —ny,) is the particle
density correction and dns = Y, o(nk, — ny,) the spin density correction. For the
particle current density it holds j = (1/m)g = (1/m) >, knk,.

The internal energy of the system is
U= Z Ekan(Eka) )
ko

with n(FE) the Fermi-Dirac distribution. By differentiation with respect to the tem-
perature 1" we can calculate the specific heat:
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(a) Derive
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(b) Show that the specific heat in leading order of T is given by
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with Np = (kpm*)/7? the density of states at the Fermi level.
Hint: Start with equation (2), transform the k-sum into an integral over ¢ and
use a Sommerfeld expansion for the integral of the type [ de F(e)n(e).



Therefore, the specific heat is proportional to the temperature for all metals. The
second term in (3) would lead to a correction dey oc T? In(T/Er). In the lecture the
spin susceptibility x was derived by considering the system under the influence of a
magnetic field. It was shown that yx is related to the Landau parameter F as
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In the following we want to derive the relation between the compressibility x and £
analogously. Therefore we consider the system under pressure.
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Hint: Use dG = —SdT — Ndu + VdP = 0 and the fact that the chemical
potential only depends on N/V, i.e. u(N/V).

(c) The compressibility is given by k = Show that x can be expressed by

Due to the change of the particle density the energy is shifted by u and the particle
density is therefore changed by

1= 2 3 (1 Fi (1)) ~ n(Fir(0))

Since the energy itself depends on the particle density, dn results in an additional
correction 0 Ey,. Thus, the energy reads

Fys (ﬂ) = Eko'(o) —p+ 5Ek0' .

(d) Expand n(Ey,(u)) for small x4 around p = 0 up to second order.

(e) dFx, is given by the first term in (1). Plug this into your expansion and finally

derive
1 Np
n?l+F§
4.2 Quasiparticle distribution in equilibrium (5 points)

The Boltzmann equation reads (see lecture)
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with the collision integral
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Show that for the distribution functions
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"+ for fermions, '—’ for bosons) the collision integral vanishes: I{n) = 0}.

Conclude that n{_ is an r- and ¢-independent solution of the Boltzmann equation and
that, therefore, n)  is the equilibrium distribution. Are other equilibrium distribu-
tions mathematically possible?

4.3 Sound waves in a Fermi liquid (part 1) (10 points)
Collision-less regime (zero sound): hwsy > 1/7
The zero sound dispersion was found in the lecture in the undamped regime
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Using an analogous ansatz for damped sound waves in the regime s < 1
Mo (1, 1) = 8( B — €p) a(k) ellksor—wsot)

with a complex frequency wys (damping), determine the zero sound velocity and
damping rate. The damping in this collisionless regime is called Landau damping.



