Universität Bonn Physikalisches Institut Prof. Dr. H. Kroha, M. Arnold

http://www.th.physik.uni-bonn.de/th/Groups/kroha/

Übungen zur Festkörpertheorie II — SS04

3. Übungsblatt

1. Density Correlation Function - 1d

To complete the discussion about the density-density correlation function of the last exercise, calculate the following expression in 1d:

$$\chi_{\rho\rho}^{\sigma\sigma'}(q) = \delta_{\sigma\sigma'} \sum_{k} \frac{f(\epsilon_k) - f(\epsilon_{k+q})}{\epsilon_k - \epsilon_{k+q}} \tag{1}$$

Show, that in 1d Eq. 1 shows a real divergence at $q = 2k_F$ (in 3d the function was non-analytical but not diverging).

2. Pair-Pair Correlation function

The pair-pair correlation function, in the Matsubara formalism is defined as

$$\Pi_{\sigma\sigma'}(1,2) = - \langle T(\Psi_{\sigma'}(1)\Psi_{\sigma}(1)\Psi_{\sigma}^{\dagger}(2)\Psi_{\sigma'}^{\dagger}(2) \rangle$$
 (2)

- a) Perform the Fourier transform of Eq. 2 and derive an expression for $\Pi_{\sigma\sigma'}(q,\omega=0)$ using the diagram technique.
- b) Evaluate this equation in 1d. Show that the results diverges like 1/q.
- c) Now an attractive pair-pair interaction is included. This interaction can be local in space and time. Show that summing a RPA-like perturbation series for q=0 leads to a critical temperature T_c . At T_c the pair-pair correlation function diverges.