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Advanced Theoretical Condensed Matter Physics — SS09

Exercise 2

(Please return your solutions before Fr. 8.5.2009, 12h)

2.1. Green’s functions for noninteracting electrons (10 points)

In the lecture the position dependent Green’s function was defined. In the same way
one can define a momentum dependent retarded Green’s function:

GR
kσ(t, t′) = −iΘ(t − t′)

1

ZG

tr

{

e−β(Ĥ−µN̂)
[

ckσ(t), c†
kσ(t′)

]

+

}

(1)

(The advanced and time-ordered momentum dependent Green’s functions are defined
in complete analogy to the lecture). We will consider a system of noninteracting
electrons here

H0 = H0 − µN =
∑

kσ

(ǫ(k) − µ)c†
kσckσ

a) Determine the time-dependence of ckσ(t) and c†
kσ(t′) for the noninteracting sys-

tem H0 by using the equation of motion for a Heisenberg operator.

b) Compute the retarded Green’s function (1) for the noninteracting system using
the results of b).

GR,0
kσ (t, t′) = −iΘ(t − t′)e−i(ǫ(k)−µ)(t−t′) = GR,0

kσ (t − t′) (2)

c) Derive the Fourier transform

GR,0
kσ (ω) =

∞
∫

−∞

d(t − t′) GR,0
kσ (t − t′) eiω(t−t′) =

1

ω − (ǫ(k) − µ) + i0+
(3)

Hint: Use the residue theorem to show first that

Θ(t − t′) = i

∞
∫

−∞

dω

2π

e−iω(t−t′)

ω + i0+
.

The Green’s function can also be defined as the resolvent of a wave operator. In our
case this is the Schrödinger operator:

(i∂t −H0)G
R,0(t − t′) = δ(t − t′)

d) Show that this equation is fullfilled by (2) by writing it in momentum space
representation. What is the corresponding equation in energy space? Show
that (3) is the resolvent of the Schröedinger operator in energy space.

In general, the retarded Green’s function contains a non-infinitesimal imaginary part
in the denominator

GR
kσ(ω) =

1

ω − (ǫ(k) − µ) + iτ−1

e) Use the residue theorem to calculate the time-dependent Green’s function by
Fourier transform. How does the Green’s function behave for large (t − t′)?
How can one interprete τ? Try to explain why a finite τ > 0 might occur.

2.2. Green’s functions: general properties (10 points)

In the previous exercise, you calculated explicitely the retarded Green’s function G
for the special case of a diagonal Hamiltonian. However, in most cases the system is
much more complex, e.g., in the presence of interactions. Nevertheless some analytical
properties of G will always hold. We will discuss some of them in this exercise.

a) Normalization:
Use the explicit definition of the spectral function Akσ(ω) (see lecture),

Akσ(ω) =
1

ZG

∑

n,m

|〈n|ckσ|m〉|2
(

e−βEn + e−βEm

)

δ(ω + En − Em), (4)

to show that Akσ(ω) is normalized,

∞
∫

−∞

dω Akσ(ω) = 1.

Use the spectral representation of GR
kσ(ω) (see lecture),

GR
kσ(ω) =

∞
∫

−∞

dω′ Akσ(ω′)

ω − ω′ + i0+
,

to find the relation between ImGR
kσ(ω) and Akσ(ω). Calculate

∞
∫

−∞

dω ImGR
kσ(ω).

b) Asymptotic behavior:
You can assume that Akσ(ω) ≡ 0 if |ω| > ωmax for some 0 < ωmax < ∞. Show

lim
ω→±∞

ω · GR
kσ(ω) = 1,

i.e., GR
kσ(ω) ≈ 1/ω for large energies.

2.3. Stability of Fermi Surface (10 points)

As you know from statistical mechanics, (free) Fermi systems possess a Fermi surface,
i.e., at zero temperature the occupation number, 〈n~kσ〉, jumps discontinuously at
ǫk = µ. This discontinuity is the origin of many physical properties of solids.



a) Show that 〈n~kσ〉 can be expressed via

〈nkσ〉 =

∞
∫

−∞

dω f(ω) Akσ(ω)
T→0
=

0
∫

−∞

dω Akσ(ω), with f(ω) =
1

eβω + 1
. (5)

Hint: To derive Eq. (5) rewrite the expectation value 〈n
kσ〉 = 〈c†

kσckσ〉 in its
spectral representation and compare the result with (4).

b) In general, the retarded Green’s function is of the form

Gkσ(ω) =
1

ω − ǫ̃(k) − Σkσ(ω)
, with ǫ̃(k) = ǫ(k) − µ.

(For simplicity, in exercise 2.1 e) we approximated Σkσ(ω) ≈ const.)

Assume ImΣkσ(ω) = −i0+ + O(ω2) and expand the Green’s function around
(ǫ̃(k) = 0, ω = 0) up to first order and show that it takes the form

Gkσ(ω) =
z

ω − ǫ̃∗(k) + i0+
+ Gincoh

kσ (ω),

where Gincoh
kσ (ω) contains all higher order contributions. One can show that

Gincoh
kσ (ω) is a smooth function and you can neglect it in the following.

c) Consider now the limits ǫ̃∗(k) ր 0 and ǫ̃∗(k) ց 0 to show that 〈nkσ〉 remains
discontinuous. Compare the result with the noninteracting case from exercise
2.1. Why can one deduce z ∈ [0, 1] from exercise 2.2 a)?


