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Advanced Theoretical Condensed Matter Physics — SS09

Exercise 5

(Please return your solutions before Fr. 19.6.2009, 12h)

5.1. Screening in an electron gas II: Thomas-Fermi approximation and

Friedel oscillations (15 points)

We will continue with our calculation of the response of an electron gas to a static
impurity with charge q0 = e0 in three dimensions. On the last sheet we derived the
expression for the induced change of the charge density

∆n(r, t) = −e0

∫

d3q

(2π)3
e−iqr φ̂el(q) Π(q). (1)

a) Show that according to Eq. (1), with the bare Coulomb interaction φ̂el(q), the
induced charge

∆Q = −e0

∫

d3r ∆n(r, t)

is infinite!

b) To obtain a physically meaningful result we must take into account the screening
of the Coulomb interaction by the electron gas. For that purpose, we will re-
sum the leading contributions (random phase approximation) to get an effective
interaction

corresponding to

φ̂eff(q) = φ̂el(q) + φ̂el(q)e0Π(q)φ̂el(q) + φ̂el(q)e0Π(q)φ̂el(q)e0Π(q)φ̂el(q) + . . .

Replace in Eq. (1) the bare Coulomb interaction by the effective one and show
that it yields

∆n(r, t) = −

∫
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e−iqr
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)

, (2)

with
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c) Show that the induced charge now becomes

∆Q = −e0,

which shows that the additional charge at the origin becomes completely screened
at large distances.

d) To get a rough estimate on the asymptotic behaviour of ∆n(r, t) for r → ∞,
we set g(q/kF) ≈ g(0) (Thomas-Fermi approximation). Show that this yields

∆n(r, t)
r→∞
≈ −

q2
TF

4π

e−qTFr

r
.

e) A careful evaluation of Eq. (2) shows that the correct result is

∆n(r, t)
r→∞
≈ −

4e0

π

q2
TF/k2

F

(8 + q2
TF/k2

F)2

cos(2kFr)

r3
.

The long-range oscillations with wavelength π/kF are called Friedel oscillations

and arise from the presence of a sharp Fermi surface. To obtain them one has
to take into account the singularity of g(x), g′(x) ≈ −δ(x − 2). Using the
asymptotics of g(x) we approximate

∆n(r, t) = −

∫

d3q

(2π)3
e−iqr

(

1

κ(q)
− 1

)

≃ q2
TF

∫

d3q

(2π)3
e−iqr g(q/kF)

q2 + q2
TF

.

Use integration by parts and approximate

F (x) =

x
∫

0

dy
y

y2 + r2q2
TF

sin(y) ⇒ F (2kFr) ≃ −
cos(2kFr)

r

to obtain the Friedel oscillations of the density modulation.

5.2. Tunnel current (15 points)

In the lecture, it was mentioned that one can measure the local density of states
(DOS) of a substrate by performing a scanning tunneling microscope experiment. In
this exercise, we will derive an elementary relation between the DOS and the measured
dI/dV signal. For that purpose, consider the model Hamiltonian (see Fig. 1)

H =
∑

k

(ǫT(k) − µT) c†k,T ck,T +
∑

k

(ǫS(k) − µS) c†k,S ck,S

+
∑

k,k′

(

tkk′ c
†
k,T ck′,S + t∗kk′ c

†
k′,S ck,T

)

. (3)

The indices S and T denote the substrate and the tip, respectively.

a) The current flowing between tip and substrate is given by

I(t) = e0

dNS

dt
(t) = −e0

dNT

dt
(t), NS(T) =

∑

k

c†
k,S(T) c

k,S(T).



Use the Heisenberg equation of motion to derive

〈I(t)〉 = e0i
∑

k,k′

(

tk′k 〈c
†
k′,T(t) ck,S(t)〉 − t∗k′k 〈c

†
k,S(t) ck′,T(t)〉

)

.

Show that in leading order of the tunneling amplitude the current expectation
value finally reads

〈I(t)〉 = e0

∑
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− 〈c†k,S(t) ck′,T(t)c†k′,T(t′) ck,S(t
′)〉0

)

≡ IS→T − IT→S.

b) Denote the joint many body states of sample and tip by |n, n′〉 ≡ |n〉T|n
′〉S to

derive the spectral representation

IS→T =
2πe0

ZG
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e−β(En−µT) e−β(E
n
′
−µS)

× δ(En + En′ − Em − Em′)

and the corresponding one for IT→S.

Show that IS→T can be expressed as

IS→T = 2πe0

∑
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2
∫

dω Ak′,T(ω) Ak,S(ω) fT(ω) (1 − fS(ω)) ,

where

fS(T)(ω) =
1

eβ(ω−µ
S(T)

) + 1
.

Derive also the corresponding expression for IT→S.

c) For simplicity, we assume
∣
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∣
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≈ |t|2 = const. Furthermore, the local density

of states of the tip is typically a smooth and slowly varying function and we
can approximate

NT(ω) =
∑

k

Ak,T(ω) ≈ N0 .

The difference of the chemical potentials arises from the applied voltage V :
µT − µS = e0V . Show that then the dI/dV -measurement is related to the local
DOS of the substrate via

d〈I〉

dV
T→0
= e2

0ΓNS(µS + e0V ), Γ = 2πN0 |t|
2.

V
t

Figure 1: STM setup


