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Advanced Theoretical Condensed Matter Physics — SS09

Exercise 5

(Please return your solutions before Fr. 19.6.2009, 12h)

5.1. Screening in an electron gas II: Thomas-Fermi approximation and
Friedel oscillations (15 points)

We will continue with our calculation of the response of an electron gas to a static
impurity with charge gy = eg in three dimensions. On the last sheet we derived the
expression for the induced change of the charge density

An(rt) = —e / (;lTj b(a) TI(q). (1)

a) Show that according to Eq. (1), with the bare Coulomb interaction 5el(q), the
induced charge

AQ = —eg/dgrAn(r,t)

is infinite!

b) To obtain a physically meaningful result we must take into account the screening
of the Coulomb interaction by the electron gas. For that purpose, we will re-
sum the leading contributions (random phase approzimation) to get an effective
interaction

wwn = s e s OO 4

corresponding to
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Replace in Eq. (1) the bare Coulomb interaction by the effective one and show

that it yields
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c¢) Show that the induced charge now becomes
AQ = —ep,

which shows that the additional charge at the origin becomes completely screened
at large distances.

d) To get a rough estimate on the asymptotic behaviour of An(r,t) for r — oo,
we set g(q/kp) = g(0) (Thomas-Fermi approzimation). Show that this yields
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e) A careful evaluation of Eq. (2) shows that the correct result is
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The long-range oscillations with wavelength 7 /kp, are called Friedel oscillations
and arise from the presence of a sharp Fermi surface. To obtain them one has
to take into account the singularity of g(z), ¢'(z) ~ —d(x — 2). Using the
asymptotics of g(x) we approximate
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Use integration by parts and approximate
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to obtain the Friedel oscillations of the density modulation.
5.2. Tunnel current (15 points)

In the lecture, it was mentioned that one can measure the local density of states
(DOS) of a substrate by performing a scanning tunneling microscope experiment. In
this exercise, we will derive an elementary relation between the DOS and the measured
dI/dV signal. For that purpose, consider the model Hamiltonian (see Fig. 1)
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The indices S and 7" denote the substrate and the tip, respectively.
a) The current flowing between tip and substrate is given by

dN. dN.
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Use the Heisenberg equation of motion to derive
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Show that in leading order of the tunneling amplitude the current expectation
value finally reads
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b) Denote the joint many body states of sample and tip by |n,n') = |n)|n')g to
derive the spectral representation
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and the corresponding one for I_g.

Show that Iy can be expressed as
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where
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Derive also the corresponding expression for I,_g.

2
¢) For simplicity, we assume ‘tk,k‘ ~ |t|? = const. Furthermore, the local density

of states of the tip is typically a smooth and slowly varying function and we
can approximate

Np(w) = ZAk,T(W) ~ Np.

The difference of the chemical potentials arises from the applied voltage V:
pr — pis = €gV. Show that then the dI/dV-measurement is related to the local
DOS of the substrate via
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Figure 1: STM setup



