
Universität Bonn 24.5.2011
Physikalisches Institut

Prof. Dr. J. Kroha, J. Martens, Z. Y. Lai
http://www.thp.uni-bonn.de/kroha

Advanced Theoretical Condensed Matter Physics — SS11

Exercise 8

(Please have your solutions ready by Mon. 4.06.2011)

In the lecture you have heard about the Keldysh formalism and how it can be used to calculate
nonequilibrium quantites. You have also heard how one can derive kinetic equations from the
Keldysh nonequlibrium formalism, among them the famous Boltzmann equation. In this exer-
cise sheet we will start from the Boltzmann equation as derived in the lecture, obtain from it
the diffusive Boltzmann equation, and finally calculate its stationary solution for the specific
case of a 1D wire spanning two leads with a voltage drop applied between them.

8.1. Diffusive Motion of Noninteracting Electrons in a One-Dimensional Wire

We look at noninteracting electrons. The physical system we want to describe is illustrated
in Fig. 1. The wire is disordered ; therefore multiple scattering between the electrons and the
impurities is dominant, and hence we can look at the diffusive approximation to the Boltzmann
equation. We apply a potential difference V across the wire in order that a current could
be driven across it from left to right. We want to obtain an expression for the stationary
distribution function f̄(x, ω) of electrons at an arbritary point x, where |x| ≤ L. For convenience
we write down the classical form of Boltzmann equation as derived in the lecture

∂

∂t
f(t, r,p, E) + vp ·

∂

∂r
f(t, r,p, E) + F ·

∂

∂p
f(t, r,p, E) = 0 (1)

for noninteracting electrons. We are interested in the stationary distribution in the wire at
point x, summed over p:

f̄(x) =
∑

p

f(t = const., x,p, E = EF ) (2)

We also define 2 important quantites for the solution of the problem: we define the charge

density

ρ(t, r) =
∑

p

f(t, r,p) (3)

and the current density

j(t, r) =
∑

p

vpf(t, r,p) (4)

(3) and (4) is connected by Fick’s law:

j = −D∇ρ (5)

a) Using the definition (2) and the quantities in (3) and (4), show that

∂f

∂t
− D∇2f = 0 (6)

i.e., that the distribution function obeys a diffusion equation.



b) We want to obtain a stationary, i.e., time-independent solution to (6). We note that,
due to the potential applied across the wire, the chemical potential of the left and right
reservior will be shifted relative to each other by the applied voltage. In other words,
the distribution functions defining the left and right reserviors, f(x = 0) and f(x = L)
respectively, are specified by their respective chemical potentials:

f̄(x = 0) = fL(E) =
1

eβ(E+µL) + 1

f̄(x = L) = fR(E) =
1

eβ(E+µR) + 1

where

µL/R ≡ µ ±
eV

2

Using the boundary conditions as described above, solve (6) for the stationary case
f̄(x,E).
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Figure 1: Ths system with the relevant parameters labeled.

c) Sketch the resulting stationary distribution function f̄(x,E).


