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I. INTRODUCTION

A. A brief history

The purpose of this tutorial review is to give an account
of the use of real-time Green's-function methods in the
transport theory of metals and to discuss the relevance of
these methods for some problems of current interest. In
so doing, we shall follow the formulation due to Keldysh
(1964) because of its simplicity, although alternative for-
mulations also exist in the literature. We shall deal with
different transport phenomena by deriving the appropri-
ate kinetic equations, starting from the Dyson equation in
its general form. This method has the advantage of
greater generality than linear-response theory by allowing
nonlinear situations to be considered, and facilitates com-
parison with the conventional Boltzmann equation ap-
proach. In some cases, however, linear-response theory is
more convenient to use, as we shall discuss below in
specific cases.

The introduction of quantum field-theoretical methods
in nonequilibrium statistical mechanics, in the form we
adopt here, dates back to Martin and Schwinger (1959)
and Schwinger (1961). Significant further developments
were due to Kadanoff and Baym (1962). Parallel to this
development in the USA was the work in the USSR by
Konstantinov and Perel (1960), Dzyaloshinski (1962),
Keldysh (1964), Abrikosov, Cxorkov, and Dzyaloshinski
(1965), Eliashberg (1971),and others.

Our main purpose in writing this review is to give a
self-contained presentation of nonequilibrium theory
which may be understood with the knmvledge of standard
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324 J. Rammer and H. Smith: Field-theoretical methods in transport theory

equilibrium Greens-function theory. For this purpose,
the technique employed by Keldysh (1964) is particularly
convenient, since the level of complication is reduced to
that of standard quantum field theory for systems in
equilibrium. To illustrate how the method works, we
have chosen a few representative examples involving
transport phenomena in normal and superconducting
metals.

B. Survey of previous work

equation in a magnetic field. Interaction effects in weakly
disordered metals were treated in a series of important pa-
pers by Altshuler and Aronov (1978a,l979a, l979b) with
the Keldysh method, and also with the use of temperature
Green's functions (Altshuler and Aronov, 1979c). We
mention, in addition, work by Jauho and Wilkins (1983),
who employed Langreth's formulation to investigate non-
linear effects of an electric field on the scattering of elec-
trons from resonant impurities.

2. Nonequilibrium superconductivity

We summarize below the previous work in which tech-
niques identical or similar to those introduced by Keldysh
(1964) have been employed. For brevity, we refer to these
techniques as the Keldysh method, although they are the
results of related or independent developments involving
the work of a number of authors, as already indicated. '

The purpose of this survey of previous work is to give the
reader a sense of the scope and potential of the Keldysh
method. In our survey we thus deliberately focus on the
formalism employed, which inherently puts a bias on our
selection of references. Even so, we cannot hope to pro-
vide the reader with an exhaustive hst, but only to include
the important areas in which the Keldysh method has
been utilized. We shall group the references by area of
application.

1. Transport properties of normal metals

The transport equation for electrons interacting with
phonons was discussed by Konstantinov and Perel (1960)
by a diagrammatic technique. In his 1964 paper, Keldysh
applied his technique to the derivation of the kinetic
equation for electrons interacting with phonons in equili-
brium. The early paper by Prange and Kadanoff (1964)
has had a lasting influence on the transport theory of nor-
mal metals. Using the formulation due to Kadanoff and
Baym (1962), these authors derived the transport equa-
tions beyond perturbation theory for the case of interact-
ing electrons and phonons, a subject that we treat in detail
in Sec. III. Fleurov and Kozlov (1978) employed the Kel-
dysh formulation for the derivation of the transport equa-
tion for electrons in a metal. Derivations of the electron-
phonon transport equation using the Kadanoff-Baym
method have also been given by Hansch and Mahan
(1983a) and by Jauho (1983). An application of the
Kadanoff-Baym formulation was used to treat spin reso-
nance and diffusion- in dilute magnetic alloys by Langreth
and Wilkins (1972). A generalization of the Kadanoff-
Baym formulation has been given by Langreth (1976),
who also considered (1966) the' derivation of the transport

~In particular, we emphasize the significance of the paper by
Schwinger (1961), in which the so-called "closed time path
Green's function" was first introduced.

The Keldysh technique has been used extensively in re-
cent years to derive kinetic equations for superconductors.
A derivation of the quasiparticle kinetic equation by the
Keldysh method has been given by Aronov and Gurevich
(1974) and Aronov et al. (1981). The quasiparticle kinetic
equation was also derived by Tremblay et al. (1980) using
the Langreth formulation. Starting with the work of de
Gennes (1964,1966), the use of quasiclassical methods was
shown to be a powerful tool for studying equilibrium

properties under conditions when the simple quasiparticle
picture could not be applied. The use of the quasiclassical
method to describe transport phenomena in superconduc-
tors was brought to full maturity through the work of
Eilenberger (1968), Larkin and Ovchinnikov
(1968,1975,1977), Eliashberg (1971), and Schmid and
Schon (1975a). Some of these authors used temperature
Green s functions as a starting point instead of real-time
Green's functions. It turns out, however, that the use of
the Keldysh technique, based on real-time Green's func-
tions, allows the nonequilibrium theory to be formulated
rather elegantly. This is demonstrated in the review arti-
cle by Schmid (1981), who discussed the application of
the kinetic equations obtained by the Keldysh technique
to various nonequilibrium phenomena in dirty supercon-
ductors. Further details regarding the use of the method
are given by Hu (1980). A different, but equivalent, set of
kinetic equations was obtained by Shelankov (1980). The
kinetic equations were solved under various conditions by
Schmid and Schon (1975a) at temperatures close to the
transition temperature. Approximate collision operators
appropriate to lower temperatures were discussed by Eck-
ern and Schon (1978). Solutions to the kinetic equation
describing charge imbalance were obtained at arbitrary
temperatures by Beyer Nielsen et al. (1982). The case of
thermal conductivity was treated by Beyer Nielsen and
Smith (1982,1985), who also considered strong coupling
effects on both charge imbalance and thermal conductivi-
ty. The transition between the clean and dirty limits in
the presence of supercurrents was discussed by Schon
(1981) and by Beyer Nielsen et al. (1982,1986). Further
applications of the kinetic equations include the study of
collective modes (Schmid and Schon, 1975b), frequency-
dependent conductivity (Ovchinnikov, Schmid, and
Schon, 1981; Beyer Nielsen, Smith, and Yang, 1984), and

gap relaxation (see the review by Schmid, 1981). An at-
tempt to generalize the quasiclassical method by using
single-particle Green's functions integrated over the
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chemical potential instead of the magnitude of the rela-
tive momentum was made by Eckern and Schmid (1981).

3. Fermi liquids

The kinetic equation of a normal Fermi liquid has been
derived 'with the use of Green's-function methods by
Abrikosov, Gorkov, and Dzyaloshinski (1965), who used
temperature Green's functions requiring analytic con-
tinuation from imaginary frequencies. The kinetic equa-
tion for a slightly nonideal Fermi gas was derived with
the Keldysh technique by Lifshitz and Pitaevskii (1981).
The review by Serene and Rainer (1983) on the quasiclas-
sical approach to normal and superfluid He contains a
derivation by the Keldysh method of the kinetic equation
appropriate to . He. The kinetic equation for the A phase
of He has also been discussed by Kopnin (1978) and by
Eckern (1981,1982) on the basis of the Keldysh technique.
When pair breaking may be neglected, the kinetic equa-
tion for superfluid He reduces to the Landau-Boltzmann
transport equation, which has been used extensively to
discuss nonequilibrium phenomena in superfluid Fermi
liquids (see, for example, the review by Pethick and
Smith, 1977). When one considers low-frequency proper-
ties of superfluid He, one does not need to use kinetic
equations of more general validity. than the Landau-
Boltzmann equation, due to the smallness of the pair-
breaking effects. However, when external frequencies are
comparable to the magnitude of the gap, as may be the
case for zero sound propagation, it is necessary to use
more general quantum-kinetic equations. The work in
this area has been reviewed by Wolfle (1978) and by
Serene and Rainer (1983).

4. Other applications

The review by Langreth (1976) discusses applications of
the Kadanoff-Baym method to photoemission and related
processes, in which it is necessary to go beyond linear
response in the treatment of the photon field (Chang and

Langreth, 1972,1973; Yue and Doniach, 1973; McMullen
and Bergersen, 1972; Caroli et al. , 1973). Blandin et al.
(1976) have used the Keldysh formalism to treat problems
in surface physics, when a nonperturbative treatment of
time-dependent potentials is essential. The method was
used by Caroli et.al. (1971) to discuss the effect of inelas-

ticity on the tunneling current between normal metals.
The Keldysh technique was used by Artemenko and

Volkov (1981a,l981b) and by Eckern (1986) to derive ki-
netic equations for quasi-one-dimensional conductors
with a charge-density wave resulting from the Peierls in-
stabi'ity. The self-consistent method used by these au-
thors is closely related to that used in superconductivity
theory and requires for its validity that the fluctuations be
negligible.

Altshuler and Aronov (1978b) employed the Keldysh
method to study electron-electron collisions in a weakly
ioni. zed plasma. Similar methods have also been applied

to relativistic plasmas (Bezzerides and DuBois, 1972), nu-
clear collisions (Danielewicz, 1984), and quark-gluon plas-
rnas (Heinz, 1983). Other applications to nonequilibrium
problems include derivation of Langevin equations by
Schmid (1982) for a particle in a dissipative environment,
and by Zhou et al. (1980) in the context of critical
dynamics. A review of functional methods employing the
Keldysh technique has recently been published by Chou
et al. (1985). We also mention the work of Korenman
(1966), who applied the method introduced by Schwinger
(1961) to a model of a gas laser.

C. Summary of content

The outline of this review is as follows. In Sec. II we
introduce the Green s-function theory of nonequilibrium
statistical mechanics in a form due to Langreth (1976)
and describe the Keldysh formulation. We derive the ap-
propriate Feynman rules and show how the kinetic equa-
tion is obtained from the Dyson equations. Section III
discusses the important quasiclassical approximation and
the connection between the excitation and particle repre-
sentations. As an example of the use of the quasiclassical
approximation, we derive the electron-phonon renormali-
zation of the ac optical conductivity in the limit of high
frequencies, when collisions may be neglected. When
particle-hole asymmetry is important, as in the case of
thermoelectric effects, one must abandon the quasiclassi-
cal scheme. As an example, we consider the electron-
phonon renormalization of the Nernst-Ettingshausen ef-
fect in high magnetic fields. In addition, we indicate how
the effects of a periodic potential may be included in the
kinetic equation. For the derivation we refer the reader to
the thesis by Rammer (1984).

In Sec. IV we discuss some recent applications of the
method to transport problems in normal metals. We con-
sider localization and interaction effects arising from
electron-impurity and electron-electron scattering, which
may be treated within the framework of kinetic equations,
although it is often simpler to use linear-response theory.
A recent review of the effects of localization and interac-
tion in disordered electronic systems has been given by
Lee and Ramakrishnan (1985).

In Sec. V we obtain kinetic equations for superconduc-
tors within the quasiclassical limit and discuss the dirty
limit when impurity scattering dominates. The technique
is illustrated by studying the charge imbalance generated
by thermal gradients. In Sec. VI we summarize our dis-
cussion of the Keldysh method in relation to linear-
response theory and the conventional Boltzmann equation
approach.

I l. NONEQUILI BRIUM STATISTICAL MECHANICS

A. Green's functions and perturbation theory

Let us consider a physical system represented by the
time-independent Hamiltonian
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H =Ho+H', (2.1) G(1,1')= —i (T,(/+1)/+1')) ), (2.6)

where Ho represents free particles and H' the interaction
between the particles.

In thermodynamic equilibrium, the state of the system
is described by the statistical operator p given by

(H)=(Tre ~ ) 'e ~ P=T (2.2)

(we use the grand canonical ensemble and measure parti-
cle energies from the chemical potential p).

We now employ the standard device for obtaining a
nonequilibrium state: At time to, prior to which the sys-
tem is assumed to be in thermodynamic equilibrium with
a reservoir, the system is disconnected from the reservoir
and exposed to a disturbance represented by the contribu-
tion H'(t) to the Hamiltonian. The total Hamiltonian is
thus given by

where c is the contour along the real-time axis that starts
and ends at to and passes through t& and t& once. The
contour-ordering operator T, orders the operators accord-
ing to the position on the contour of their time arguments

r

(/+ 1 )Q+t 1 P))
4& 0@ 1 c 1

+PA (2.7)

G(1, 1')= .
(2.8)G ~(1,1') t) &,t)

The contour c is depicted in Fig. 1 for the situation
~1 + c t 1'.

The contour-ordering relation t] &,t~ means that t& is
further along the contour than t, . We observe that

G (1,1') t, &,t, ,

~( t) =H +H'(t), (2.3) 2. Perturbation theory

where H'(t) =0 for t & to
Nonequilibrium statistical mechanics is concerned with

calculating average values (O~(t)) of physical observ-
ables for times t &to,

( 0 (t) ) =Tr[p(H)O (t)], (2.4)

Green's functions

Green's or correlation, functions play a fundamental
role in statistical physics since they constitute the connec-
tion between experimentally relevant quantities and con-
veniently calculable quantities.

We start by introducing the following correlation func-
tions:

where O~(t) is the observable in the Heisenberg picture.
We also mention that the real-time method is not re-

stricted to using the statistical equilibrium state at times
prior to to as the boundary condition. As shown by
Korenman (1966), the real-time method is also suitable
for describing a nonequilibrium situation maintained
through contact with a reservoir. Schmid (1982) also ap-
plied the KeMysh technique to a discussion of the cou-
pling of a system to a reservoir.

To obtain a diagrammatic perturbation expansion of
the contour-ordered Green's function, we notice that the
standard way of expressing the relation between an ob-
servable Q~ in the Heisenberg picture and the corre-
sponding observable O~ in the interaction picture with
respect to H is

O~(t) =Q (t ro)O~(t)u (t, to)

where

(2.9)

u (t, to) =T exp i J dt'HH—(t')
0

(2.10)

Here T is the usual time-ordering operator and H~(t)
«presents the operator H'(r) in the interaction picture
with respect to the Hamiltonian H.

The transformation (2.9) can be expressed as

G (1,1')= i ( T,(S, Q—H(1)QH(1')) ), (2.12)

O~(t) = T exp —i I ri~HH(~) O~(t) (2 11)

where c, is the contour depicted in Fig. 2.
Using Eq. (2.11) we can express the contour-ordered

Green's function in the interaction picture with respect to
the Hamiltonian H

(2.5)

S~=exp i dr H—II(&)
C

(2.13)
where f is a Bose (upper sign) or Fermi (lower sign) field.

A quantity possessing a simple perturbation expansion
is the so-called contour-ordered Green's function defined

2Units are chosen to put 6=k~ ——c =1.
The abbreviation 1=—(tl, x~} is used. Here x denotes the spa-

tial variable, which may be generalized in a straightforward
manner to include spin and other degrees of freedom.

4This function was originally named the "closed time path
Careen's function" (Schwinger, 1961}.

and e is the contour depicted in Fig. 1.
To obtain a perturbation expansion for the contour-

ordered Green's function, we could employ the standard
functional derivative method due to Schwinger (1951), as
explained in detail by Kadanoff and Baym (1962) and em-
ployed for real times by Korenman (1966; see also

5This will be our general prescription for relating contour-
ordered quantities to greater and lesser quantities.
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to tp

FIG. 1. The "closed time path" contour c.

Schwinger, 1961). In this review, we use instead the
equivalent procedure based on the statistical Wick's
theorem.

Since we wish to employ the statistical Wick's theorem,
we must transform to the interaction picture with respect
to the free-particle Hamiltonian Ho, which is quadratic in
the field operators. Utilizing the relation

e =e U(to —ip to),-pe -»o

where

(2.14)

where
r

S;=exp i f .d—~HJI (z)

S~ =exp
(2.17)

and the contour c is depicted in Fig. 3 for the same situa-
tion as in Fig. 1, t ~ ~,i] .

We can now use Wick's theorem, just as in equilibrium
theory, to get a perturbation expansion for G. The only
formal difference from equilibrium theory is the appear-
ance of integration over a contour instead of integration
over the inverse temperature interval for the case of finite
temperature or the real axis for the case of zero tempera-
ture. Consequently, the contour-ordered Green's function
is mapped onto its Feynman diagrams precisely as in
equilibrium theory.

The different forms of nonequilibrium theory employ
different methods for converting the internal contour in-
tegration into the usual time integration. In the formula-

c,

FIG. 2. The "transformation" contour c,.

t
U(t, to) =T exp i I dt'HH —(t')

0

with H~ (t) being the operator H' in the interaction pic-

ture with respect to the Hamiltonian Ho, we obtain

( T, (S,; S,p~, (1)f~,(1')))0
G(1,1')= i—

(T,(S,;S,))0

Tr[e 'T, (S,;S,QH, (1)g~~ (1'))]
(2.16)

Tr[e T, (S;S,)]

FIG. 3. The "interaction" contour c'.

tion by I.angreth (1976), which we have followed here,
these forms appear as different choices of the contour,
thus demonstrating their equivalence.

We conclude that equilibrium and nonequilibrium sta-
tistical mechanics are formally and structurally equivalent
and that this equivalence is demonstrated by introducing
a contour ordering to play the role of the usual time or-
dering.

B. The Keldysh formulation

In this section, we seek to reduce the equation of
motion for the Green's function to a tractable kinetic
equation. We do not consider initial correlations and
therefore let to approach minus infinity. Since we assume
that the Green's function falls off sufficiently rapidly as a
function of the separation of its time arguments, we can
neglect the part of the contour c' extending from to to
ro —iP (for a discussion of this point, see Mills, 1969}. It
has been shown by taking explicitly into account the ini-
tial correlations (Fujita, 1965,1971;Hall, 1975; Kukharen-
ko and Tikhodeev, 1982) that the neglect of this part of
the contour corresponds to the neglect of initial correla-
tions.

In the functional derivative method, the contour from
ro to tp —iP will not appear, since Eq. (2.12) forms the
starting point, and the transformation (2.14) is not em-
ployed. The boundary condition, that the system is as-
sumed to be in equilibrium before the external perturba-
tion is turned on, can then be imposed directly on the
Dyson equation in integral form. This provides an in-
dependent demonstration that, for cases where initial
correlations can be neglected (corresponding to the as-
sumed boundary condition), we can discard the contribu-
tion of the contour from to to to —ig, which arose in the
transformation from Eq. (2.12}to Eq. (2.16).

The contours c' and c are now identical, as they both
start and end at —oo. They can be extended beyond the
largest time by use of the unitarity of the time-
development operator, and we then obtain the contour c~
introduced by Keldysh (1964). The contour cx depicted
in Fig. 4 consists of two parts: c~ extending from —00 to
+ oo and cz extending from + 00 to —oo. The contour-
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328 J. Rammer and H. Smith: Field-theoretical methods in transport theory

C)

FIG. 4. The Keldysh contour c~.

central to the nonequilibrium formulation of Keldysh.
For many purposes there exists a more convenient rep-

resentation of 6, introduced by Larkin and Ovchinnikov

(1975). It has the advantage that the matrix structure in
Keldysh space of a one-body coupling is the simplest pos-
sible. To obtain this representation we first perform a
transformation in Keldysh space

ordered Crreen's function 6, specified by the Keldysh

contour can then be mapped onto the Keldysh space,

G= r—G,
followed by a rotation

(2.23)

6, (1,1')~6=. Giz

Gzi Gzz
(2.18)

G =LGL~,

where

(2.24)

(2.25)
by the prescription that the ij component of 6 be defined
as 6, (1,1') for ti and ti residing on c; and cj, respec-

tively. Writing out the components, we observe

Gi)(1, 1')= i ( T—(g~(1)/@1'))),

Gi2(1, 1')=6~(1,1'),

62i(1, 1')=6 ~(1,1'),

622(1, 1')= —(iT(lp~ 1)y~ 1')) ) .

(2.19)

The components of 6 are not linearly independent, and

by performing a rotation in Keldysh space it is possible to
remove part of the redundancy. In the original article,
Keldysh (1964) used the linear transformation

With the help of the following identities,

6~(1,1')=Gii(1, 1')—Gip(1, 1')

=62 i (1,1')—622 (1,1'),

6"(1,1')=Gii(1, 1')—62i(1,1')

=6 ip(1, 1')—Gg2(1, 1'),

6 (1,1')=62i(1,1')+Gi2(1, 1')

=6 i i (1,1')+G22( 1,1'),

which are easily proved, we obtain

(2.26)

O GA
GI

GR GK (2.20)

GR
G='

,
0

GK

GA
(2.27)

where, besides the usual retarded and advanced Green's
functions,

The representation (2.27) with one off-diagonal element

equal to zero will be used below.

C. Feynman rules

(2.21)

= —8(ti ti )[G ~(1,1') —6 ~(—1,1')],
we encounter the function

G~(1, 1')=6~(1,1')+6 ~(1,1')

The ordering along the contour c& is given by the usual time-
ordering operator T, while the ordering along c~ is given by the
anti-time-ordering operator T according to

T(g(1)g (1'))= ~

[+f (1')$(1)

7We riote that the original article by Keldysh (1964) contains

the misprint of interchanging the definition of retarded and ad-

vanced.

In order to establish the Feynman rules in Keldysh
space it is sufficient to consider simple diagrams. As
pointed out in Sec. II.A.2 we need only add to the stan-
dard Feynman rules the additional features brought about

by the contour. In addition we note that the cancellation
of the unlinked diagrams is obtained automatically in the
Keldysh technique. Let us start with the simplest exam-

ple, coupling to an external potential U. In standard no-
tation we have the diagrammatic expansion of 6, shown

in Fig. 5 with the crosses denoting the external potential.
The first-order term in U is given by the second dia-

gram in the infinite series shown in Fig. 5,

We use 8 (i =0,1,2,3) instead of o' to designate the Pauli ma-

trices, to stress that they have nothing to do with spin degrees of
freedom (r is the unit matrix).
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FIG. 6. Electron-phonon diagram.

V

1 3 2
+ o o- ~

FICi. 5. Perturbation expansion of the Green's function. Uij(2) = U(2)rg~j, (2.31)

and the Einstein summation rule for repeated Keldysh in-
dices is assumed.

In matrix form, and using the condensed notation

G,"'(l, l')= f dx2f dr2G, ' '(1,2)U(2)

XG(0)(2 1~) (2.28)

(A B)(1, 1')=f dxz f dt2A (1,2)B (2, 1'),

we can write Eq. (2.30) as

(2.32)

where

XG k ji(2, 1'), (2.30)

Interchanging the limits of integration on the lower
branch of the contour cz.,

f d~ f" dr f"—dr, (2.29)

we split G,'" into two terms whose components in Kel-

dysh space are uniquely represented as

G,',"(l, l )=f dx, f dI, G(„"(1,2)vkk. (2)

G (1) G (0)g UG (0) (2.33)

H, &~
——g x~ ~ 1 1y1 (2.34)

where g is the coupling constant and q& the phonon field,
we have for the simplest diagram shown in Fig. 6

We have thus established in the representation given by
Eq. (2.18) that an external potential in Keldysh space cou-
ples to particles through a 2 matrix.

For the electron-phonon interaction described by the
Hamiltonian

G,'"=ig~ f d~3 f d~2 f dx3 f dx2G,' '(1,3)G,' '(3,2)D,' '(3,2)G,' '(2, 1'),

where D,' ' is the Keldysh contour-ordered Careen's function for free phonons,

(2.35)

D,' '(l, l')= I (T, (y—I! (1)yH (1')))0= I(Tr(e ))—'Tr[e T, (IjjH (1)y Ir(1'))] . (2.36)

The ij component in Keldysh space of Eq. (2.35) can now
be expressed as

Gij =Ig Gii' 9 i'I GI'! kkT'Ij' j'j ~
( i) 2 ~ (p) k ~ (0) ~ (p) kp ~ (p) (2.37)

where the bare electron-phonon vertex y is the third rank
tensor,

9 lj ~l ~jjk (2.38)

(no summation over j). The reason for the form of Eq.
(2.38) is as follows. The vertex is a unit tensor in the
lower indices (the electronic Keldysh indices) reflecting
that the electron, at the vertex, enters and leaves the same
(space-) time point. The change of the upper index (pho-
non Keldysh index) can change the sign of the tensor, re-
flecting that the contour point at the other end of the
phonon propagator can reside on either the upper or the

lower branch of the Keldysh contour. As a consequence,
higher-order diagrams are mapped onto the Keldysh
space in accordance with the same rule, Eq. (2.38).

It is readily shown that the Feynman rules in Keldysh
space for a two-body interaction can be formulated identi-
cally to the electron-phonon rules.

It is now straightforward, by transforming according to
Eqs. (2.23) and (2.24), to obtain the Feynman rules in Kel-
dysh space in the representation given by Eq. (2.27). For
later reference, we state them below.

9Note that the argument for the form of the vertex (2.38), al-
though given explicitly for the lowest-order diagram in Fig. 6,
carries through for any diagram of higher order.
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Electron propagator:

Phonon or Coulomb propagator:

X"(1,1')= —B(t i —t, )[X~ ( 1, 1')—X «(1,1')],
and a Keldysh component

yK @++y(

(2.50)

(2.51)

Scalar potential:

=D, V. (2.40)

(2.41)

which is nontrivial for nonequilibrium states.
For the case of electrons coupled to an electromagnetic

field described by the potentials A and p, the single-
particle Hamiltonian is given by

2

Electron-phonon or Coulomb vertices: s(1)= —.V„—e A(1) +ey(1)—p,1 1

2ln i
(2.52)

=y,".

J (absorption), (2.42) where e is the charge of the electron, e = —
~

e ~, and m
its mass. Likewise, we get for the left-hand or conjugate
Dyson equation

=y kj (emission) . (2.43) Ge(GO ' —X)=&(1—1') . (2.53)

The convenience of the representation given by Eq.
(2.27) has been paid for by the loss of identity in the
description of emission and absorption, since

(2.44)

1 1

2
7 gJ ~ (2.45)

D. Dyson equations

The Dyson equations are obtained, just as in equilibri-
um theory, by considering the time evolution of the field
operators. Transforming to the representation given by
Eq. (2.27), we obtain for the right-hand Dyson equation'

(Go ' —X)SG=5(1—1'), (2.46)

where the inverse matrix Green's function is given by

We emphasize that the diagrammatic formulation of
nonequilibrium theory presented above is identical in
form to standard diagrammatic theory, except that both
propagators and vertices are tensors. The tensor structure
results in the need to carry out internal sums over Kel-
dysh indices in addition to the usual integration over
internal variables when evaluating diagrams.

E. Kinetic equations

The Dyson equations provide an exact description of
the system. Generally speaking, the diagonal components
of G characterize the states, and the off-diagonal com-
ponent (Keldysh component) contains information on the
occupation of these states, although the precise validity of
this interpretation depends on further approximations
such as the gradient expansion and the quasiclassical ap-
proximation. The equation of motion for G therefore
generally constitutes the quantum-kinetic equation. Ap-
proximations to this equation will lead us to the ordinary
Boltzmann equation and its generalizations.

1. The gradient expansion

We now introduce the ingredients of the gradient ap-
proximation scheme and use, as an illustration, the very
simplest transport problem, where the electrons are driven
out of equilibrium by a scalar potential U and relax by
impurity scattering.

First, we introduce the mixed or Wigner representation.
When the equilibrium system possesses translational in-
variance, this is done by shifting the frame of reference to
the center-of-mass system, defined by variables R and T
given by

and

Go '(l, l')=[iB,, —e(l)]5(1—1'), (2.47) R= —,'(xi+xi ), T= —,'(ti+ti ),
r=xI —xi, t =t& —ti (2.54)

yR yKX=
0 yA (2.48)

and Fourier transforming with respect to relative coordi-
nates" r and t

consists of the usual retarded and advanced self-energies,

(2.49)

Unit matrices in Keldysh space are suppressed throughout.

~IWe introduce the abbreviated notation (no confusion of the
"center-of-mass" time and the temperature should arise)
X =(T,R), x =(t, r), p =(E,p), px = —Et +p-r, B~

VR ) &p = ( &E Vp ) Here the upper index refers to
the function operated on. Note that B~B~=—B~B~+VR.V~
and xB~——tBT+r VR.
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6(X,p) =f dx e '~"G(X+ x/2, X—x/2) . (2.55) of Green's functions, we have'

Performing a Taylor expansion, we observe that the
convolution A 8 in this representation is given by

Go (p) =Ito(E)[Go (p) —Gc (p)],
with the consequence

(2.66)

g ~ax~a~ —a~a~ i/2(ASB)(X,p)=e ~ ~ A(X,p)B(X,p) . (2.56) &f(p) =&p(E)[&o(p)—&o(p)], (2.67)

Physical quantities such as densities and particle currents
may be expressed in terms of the equal-time, one-particle
density matrix, which is essentially our Green's function
6 in the mixed representation integrated over E. How-
ever, the Dyson equation cannot be reduced to one involv-

ing equal-time Green's functions. As a first step towards
obtaining an equation that may be integrated over E, we
subtract the Dyson equation and its conjugate, whereupon
we obtain

ho(E) =tanh —,
' PE . (2.68)

Thus the two terms on the right-hand side of Eq. (2.60)
cancel in equilibrium, while the left-hand side is trivially
zero in equilibrium. The gradient approximation is ob-
tained from (2.56) by keeping the first two terms in the
expansion of the exponential function in (2.56). We thus
have

[Go ' —XG] =0,

where, in the mixed representation,

Gp ' E —
gp

———U(R, T),
and, since we consider a free electron model below,

P~&=
2m

(2.57)

(2.58)

(2.59)

[AB]+ =2AB,

i [A—B] = [A,B]p,

where the generalized Poisson brackets is defined as

[A,B],=a"Aa,'B —a,"Aa'B

(gAg8 gAgB PA PB+PA.PB)AB

(2.69)

(2.70)

=—[X~eA]+——[I'eG ]+, (2.60)

where we have introduced the spectral weight function

A =i(G"—6")
together with the other abbreviations

(2.61)

To obtain a kinetic equation, we consider the Keldysh
component of Eq. (2.57),

[6 ' —ReXII 6 ] —[X ReG]

2. The Boltzmann equation
for impurity scattering

We now turn to an illustration of how the classical
Boltzmann equation for the impurity problem can be ob-
tained. Treating the impurity scattering problem within
the self-consistent Born approximation, the impurity-
averaged self-energy is given by the diagram shown in
Fig. 7,

i (yR yA)

Rex =-,' (X'+r"),
(2.62)

(2.63)

X(E,p, R, T)=n; f i u(p —p')
i

6(E,p', R, T),
(2m)

(2.71)
ReG = —,'(6 +G"), (2.64)

specifying the real and imaginary parts of the retarded
and advanced Green's functions and self-energies.

The self-energies appear in two ways in Eq. (2.60).
They describe scattering between states as accounted for
by the right-hand side, and they also appear on the left-
hand side, resulting in renormalization effects, which re-
flect the fact that the electrons between collisions do not
behave as noninteracting particles. Notice that in equili-
brium the exact quantum-kinetic equation (2.60) is an
empty statement as a consequence of the equation

Go (p)= —e Go (p), - (2.65)

which is valid'in equilibrium. ' Translating to our choice

The subscript refers to equilibrium. Equation (2.65) is a re-
phrasing of the Kubo-Martin-Schwinger boundary condition,
(g (&~)g(r~ ))=(g(t~ )f (r~+iP)), following from the cyclic
invarianee of the trace.

[6, ' —ReXe A] —[I"eReG] =0 . (2.73)

The detailed solution of this equation within the gra-

We assume here and in the following that the particles are

spin- 2 fermions.

where u (p) is the Fourier transform u (p)
=f dre 't"u(r) of the impurity potential u(r) and n; is
the concentration of impurities. Considering the dilute
limit (low impurity concentration), and assuming a slowly
varying external perturbation, we can treat the self-
energies appearing on the left-hand side of Eq.(2.60) as
constants and obtain in the gradient approximation

[6,6 ],=X A —rG . (2.72)

To proceed further, we examine the spectral weight func-
tion. Subtracting th'e diagonal components of Eq. (2.57)
gives
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where v= Vpg is the (group) velocity.
The dilute-limit approximation that went into the

derivation of Eq. (2.80) is equivalent to the usual criterion
for the validity of the Boltzmann equation for a degen-
erate Fermi gas,

FIG. 7. Impurity self-energy diagram. 1 «p p (2.81)

dient approximation is given by Kadanoff and Baym
(1962). One finds that the solution has the same form as
in equilibrium,

I
(E —

gp
—ReX —U) +(I /2)~

(2.74)

The spectral weight function thus approaches a delta
function in the dilute limit

3 =2m5(E —
gp

—U) . (2.75)

X5(gp —g'p )(hp —hp ), (2.76)

where (suppressing space and time arguments) we have in-
troduced the distribution function

and a free-particle form for the spectral weight, corre-
sponding to

G = 2~i 5(E —
gp

——U)h p,
has been inserted in the self-energies.

Introducing the more familiar distribution function

(2.78)

fp ———,
' (1—hp), (2.79)

which reduces to the Fermi function in equilibrium, we
obtain the Boltzmann equation for impurity scattering

(~T+«.VR VRU. V,)f, —

2~n; f —
~
U(p —p')

~
5(gp —g, )(f —f, ),

(2.80)

~4Notice that the first term on the left-hand side of Eq. (2.76)
is exact and so is the second, insofar as the dispersion is qua-
dratic.

This is also seen by observing that the solution to Eq.
(2.73), in the case where the self-energies are neglected, is
the function given by Eq. (2.75); in other words, Go ' and
3 given by Eq. (2.75) commute.

Exploiting the delta-function character of the spectral
weight and the similarly peaked character of 6, we can
easily integrate Eq. (2.72) with respect to E from minus to
plus infinity and obtain'

"dTh+Vpg VRh VRU Vph—

where I/r is the impurity scattering rate at the Fermi
surface (p =p'=k~),

—=2~nI&O U p —p'dp
4m

(2.82)

Here Xo ——mkz/2m is the density of states per spin at the
Fermi energy and kF the Fermi momentum. Further-
more, the gradient approximation is valid when the exter-
nal perturbation is slowly varying in space and time, so
that its characteristic frequency co and wave vector q
satisfy the conditions

cu «p, q «k+ . (2.83)

The condition (2.83) for a degenerate Fermi gas is suffi-
cient to ensure the validity of the gradient expansion. It
is not necessary, however, to assume that the external fre-
quency is small in the sense of co «1/r or co « T, as the
question of the magnitude of the frequency with respect
to the collision rate or the temperature never enters the
approximations leading to Eq. (2.72). Slow variations in
time are therefore, within the context of the impurity
problem, to be understood in the sense of the conditions
(2.83). In subsequent sections, the condition q «k~ can
be used throughout, while the restriction on co may de-
pend on the particular system under consideration. Thus
in discussing the electron-phonon problem (Sec. III.B), we
assume m « T, while in the context of superconductivity
(Sec. V), the inclusion of an external frequency within the
gradient expansion would require co «A. The validity of
the gradient expansion, as far as the external frequency is
concerned, will therefore depend on the physical system
under consideration. It should be noted, however, that it
is never necessary to assume the frequency to be small in
comparison to the collision rate, as one would also expect
from the simple physical arguments that lead to the semi-
classical Boltzmann equation.

Since we, in our approximations, have freed the Green's
functions from their quantum-mechanical origin, it is no
surprise that we have obtained a classical equation (2.80).
However, the absence of any feature due to quantum
statistics is a well-known property of impurity scattering.
If we had treated electron-phonon scattering by the same
lowest-order perturbation treatment, we would have en-
countered the characteristics of Fermi-Dirac and Bose-
Einstein statistics. %"e note that, except for this statistical
feature, integration of the quantum-kinetic equation with
respect to E leads to the classical Boltzmann equation.
The basic approximation was the use of the free-particle
form of the spectral weight in Eq. (2.78).
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3. Currents and densities

The physical quantities we shall encounter are expressi-
ble in terms of the Green's function G~: the fermion
charge density p,

p(1)= —2iG ~(1,1),
and the electric current density j,

(2.84)

We have assumed spin independence, which accounts for
factors of 2. To change to our choice of basic Green's
functions we observe that

(2.86)

j(1)=— IVi —Vi.—ie[A(l)+A(1')]IG (1,1')
~

i.
m

(2.85)

equation involving only equal-time quantities cannot be
obtained by integration with respect to E. It is well
known that the electron-phonon interaction leads to an
important structure in the functions ReX and I as func-
tions of the variable E. In contrast, as noted by Migdal
(1958), the momentum dependence is very weak as a
consequence of the phonon energy's being small compared
to the Fermi energy. The spectral function thus becomes
a peaked function in the variable g. We shall use this
peaked character to restrict all other quantities in con-
junction with the spectral weight function to the Fermi
surface. ' Just as the subtraction of the Dyson equations
in Eq. (2.57) eliminated the strong E dependence, it also
eliminated the strong g dependence. Utilizing the peaked
character of the spectral weight function and neglecting
the momentum dependence of the self-energy, it is there-
fore possible to integrate the left-right subtrac-
ted Dyson equation with respect to g and obtain

The spectral weight A in Eq. (2.86) represents a contribu-
tion to Eqs. (2.84) and (2.85) that does not depend on the
state of the system and shall henceforth be dropped when

nonequilibrium contributions are considered.

III. THE QUASICLASSICAL LIMIT
AND BEYONO

[g p +Ec70g] =O
&

where

1 —1 0
g o =go

with

gp
' —— 8,, +vF [VR .ie A(—R, ti )]+icy(R, ti )

(3.2)

(3.3)

A. The quasiclassical approximation

The breakdown of the quasiparticle approximation is
associated with the deviation from a delta function of the
spectral weight function

I
(E —g—ReX)z+(I /2)2

(3.1)

If A differs significantly from a delta function, a kinetic

I

This scheme was first applied by Prange and Kadanoff
(1964) in their treatment of transport phenomena in the
electron-phonon system, although they did not use the name
quasiclassical. It was later extended to describe transport phe-
nomena in superfluid systems by Eilenberger (196&).

There exists a consistent and self-contained approxima-
tion scheme for a degenerate Fermi system, valid for
describing a wide range of phenomena, that does not em-

ploy a restrictive quasiparticle approximation such as Eq.
(2.78). It is called the quasiclassical approximation' and
is of interest since it allows one to obtain simple transport
equations even in cases where the quasiparticle approxi-
mation fails. As an example of this approximation
scheme, we derive in this section the electronic kinetic
equation for the case of electron-phonon interaction. In a
later section (V) we treat the related case of superconduc-
tors with large pair breaking.

2

[A(R, ti)] 5(ti —ti ),
27?l

(3.4)

where v~ denotes the Fermi velocity, while g is the
quasiclassical Green's function

g(R,p, ti, ti )=—I dg G(R, p, ti, ti ) .
ITj

(3.5)

In doing so, we are, for instance, unable to account for the
Lorentz force effect of the magnetic field on the electronic
motion.

One often refers to g as the f-integrated Crreen's function.
The integrand in Eq. (3.5) is not well behaved for large
values of g, since it falls off only as 1/g. A high-energy
cutoff must therefore be introduced, as discussed by, for
example, Serene and Rainer (1983). Equivalently, we can
use the decomposition employed by Eilenberger (1968)
and illustrated diagrammatically in Fig. 8. The integra-
tion over g in Fig. 8 from —co to +' oo is replaced by
two closed semicircles [Fig. 8(a)] yielding the low-energy
contribution of physical interest, provided the cutoff ener-

gy is suitably chosen. The remaining high-energy contri-
bution [Fig. 8(b)] contains terms that do not depend on
the nonequilibrium state and therefore can be dropped in
the equation of motion (3.2). The quasiclassical equations
may also be derived without explicit use of g integration,
as shown by Shelankov (1985).

In obtaining an equation which only involves the
center-of-mass spatial coordinates, it has been assumed
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time integration. In order to have a closed set of equa-
tions and a complete quasiclassical theory we must make
sure that the self-energy can be expressed solely in terms
of the quasiclassical Careen's function and thus account
for the transformation X[6]~cr[g],X being a functional
of G and o being a functional of g.

According to the Feynman rules of Sec. II.C, the
electron-phonon self-energy in the Migdal approximation
1s

(a) XJ""(1,1')=ig y,"G; J ( 1,1')Dkk (1,1')y Jkj . (3.6)

FIG. 8. High- and 1ow-energy integration decomposition.

that the wavelength of the applied perturbation is large in
comparison with the Fermi wavelength. %'e stress that
the quasiclassical approximation does not involve the
temporal coordinates. This is reflected in the fact that
the symbol a appearing in Eq. (3.2) is short for internal

l

We now transform to the mixed representation with
respect to the spatial coordinates. Using the fact that the
sound velocity is small compared to the Fermi velocity,
and the substitution

f "Pj ~ fdgf P, (3.7)

which is valid in the case where particle-hole symmetry
applies, we obtain

-ph p 1 I') f p'[g (R,p', ti, ti )D '"'(R,p~(p —p'), ti, t, )

+g '"'(RP', ti, ti )Dx(Rp+(P —P'), t„t,)],
~..ph= —f dp'[(g' g")(D' —D")+g —D ],

(3.8)

[go +i Reo'og ] =2icr —[o' ——~ &g ]+ ~

since

(3.9)

[cr oReg] =0. (3.10)

where A, =g No is the dimensionless electron-phonon cou-
pling constant. For brevity, the arguments in the expres-
sion for cr, ~h have been left out. Furthermore, to im-
prove convergence, the terms of the form D '"'G
have been rewritten using identities of the type
D (ti, ti )G"(ti,ti )=0.

To obtain the equation obeyed by the quasiclassical
Green's function g we take the Keldysh component of
Eq. (3.2), yielding

I

nonequilibrium contribution [cf. the discussion below Eq.
(3.5)].

A simplification that arises in normal systems and that
should be contrasted with the much more complicated sit-
uation in superconductors is the lack of structure in the
retarded and advanced quasiclassical Green's functions

(3.12)

This fact leaves Eq. (3.9), together with the self-energy ex-
pression Eq. (3.8), as a closed set of equations for g~.

We again remark that in obtaining the quasiclassical
equation of motion we have used only the degeneracy of
the Fermi system in restricting the characteristic wave
vector and the frequency of the applied perturbation to
satisfy the conditions

This follows from introducing the spectral representation
for ReG and interchanging the integration with respect to
pand E,

q ((kF, co ((p .

B. The particle representation

(3.13)

R = i f dgP f dE' A(p, E')
7T' 2m E —E'
i E' I=—P

2m E —E' (3.11)

The resulting Reg is thus seen to be a state-independent
constant, and all derivatives arising in Eq. (3.10) will
therefore give zero. Note that the interchange of the or-
der of the g and the E integration may affect the value of
the state-independent constant, but does not involve any

In contrast to the convolution in space, there is in gen-
eral no simple approximation for the convolution in time.
Two different approximation schemes are immediately
available. One consists in a linearization with respect to a
perturbation such as an electric field, allowing frequencies
co much less than p to be treated. The other assumes per-
turbations to be sufficiently slowly varying in time that a
gradient expansion is valid and requires u to be much less
than the temperature T. For definiteness, we shall here
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employ the second scheme. In order to reduce Eq. (3.9) to
a simpler looking transport equation, we introduce the
mixed representation with respect to the temporal coordi-
nates and perform a gradient expansion as in Sec. II.E.
This approximation restricts us to frequencies smaller
than the characteristic frequency of the system, in this
case the temperature. After transformation to a gauge
where the vector potential is absent, Eq. (3.9) is reduced to

[(1—BzReo)Br+BrReoBz+vz. VR+eBzyB ]g =I,

f= —,'(1—h),
and the Bose distribution X,, given by

(3.22)

N(E) = ——1 —coth
1 E
2 2T

(3.23)

the kinetic equation takes the form

If we introduce the distribution function f, which
reduces to the Fermi distribution in equilibrium,

where the collision integral is

(3.14) [(1—a,R~g, +a,Reoaz+vz. v„
+ed'.yBz]f =I, zh[f]., (3.24)

with

y=i(o —o") .

(3.15)

(3.16)

with the collision integral

w p

I, zh[f]= —2m f f dE'p(P p', E E—')Rzz;—&-, ,

The two terms in the collision integral constitute the
scattering-in and -out terms, respectively. According to
Eq. (3.8) they are determined by (space and time coordi-
nates suppressed) Rz,'~-, =[1+N (E —E')]f(E,P)[I —f(E',P ') ]

(3.25)

N(E E—')[1 f—(E,p)]—f(E',P ') . (3.26)
&o, ph(@P) = ~ f —f dE'p('pF(p p'), E —E')—

4m

coth h (E',p ') 1—El
2T

Finally, to introduce a distribution function that is in-
variant with respect to gauge transformations, we make
the replacement

(3.17)
P g

y(E,p) =—m. f f dE'p(pz(p p'), E E—')—
4m.

EI
X coth —h (E',p ')

2T

f(E)=f(E —ep)

(cf. Sec. III.E), whereby Eq. (3.24) becomes

[(1—8 Reg)Bz+ BzReoBz+v (Vit+eEBz)]f

(3.27)

(3.18)

p(q E)= [Do (q E)—Do (q E)l
iN& lgq I z (3.19)

and we have introduced the distribution function

h = —,g K (3.20)

We have further assumed the phonons to be in thermal
equilibrium (although this is not necessary) and utilized
the equilibrium property

Do =(Do —Do )coth
2T

(3.21)

The Fermi-surface average of the function p is the Eliash-
berg function n I" well known from superconductivity.

i7At this point we aBow for a more general eIectron-phonon

coupling than before. The coupling is denoted by gq, corre-

sponding to a momentum transfer q. In the model described by
(2.34) we have

~ g~ ~
=g (co~/2)'~~, where co~ is the phonon fre-

quency.

=I.ph[f]-

where E=—Vy. Here we have dropped the tilde on f for
convenience.

As noted previously, we have split off the self-energy
terms in the kinetic equation. The terms on the right-
hand side describe scattering, whereas the self-energy
terms on the left-hand side, which are absent in the usual
electron-phonon Boltzmann equation, describe the renor-
malizatiori effects due to the electron-phonon interaction.
Another difference from the usual electron-phonon
Boltzmann equation is the dependence of the distribution
function on energy and position on the Fermi surface (be-
sides space and time). This feature of the kinetic equation
is characteristic of the quasiclassical theory and refiects
the fact that we do not rely on a definite relation between

energy and momentum, that is, the validity of the quasi-
particle description.

Prom the kinetic equation (3.24), Prange and Kadanoff
(1964) drew the conclusion that many-body effects can be
seen only in time-dependent transport properties and that
static transport coefficients, such as dc conductivity and
thermal conductivity, are correctly given by the usual
Boltzmann result. However, there is a restriction to the
generality of this statement. In deriving the quasiclassical
equation of motion we assumed particle-hole, symmetry.
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Within the quasiclassical theory, all thermoelectric coeffi-
cients therefore vanish, and no conclusions can be drawn
about many-body effects on the thermoelectric properties.
We shall see in Sec. III.F, by going beyond the quasiclas-
sical limit, how the thermoelectric properties do get re-
normalized by the electron-phonon interaction.

Before proceeding to consider physical problems, we
express the electric charge and current densities in terms
of the quasiclassical Green's function.

Referring to Sec. II.E.3 we get the following expression
for the charge density in the mixed representation:

A, r

Reo = 2%0 f f dE'
~
g,

~

ilg(p', E',R, T)

X R.eD (pp —p„',E E'),— (3.33)

where

(1 —8@Reer)8Th —BTReoBgho+ev~. EBEho 0——. (3.32)

Except for a real constant (renormalizing the chemical
potential), we have by using the Feynman rules of Sec.
II.C

p(R, t)= 2eN—, —f p f dEgx(E,p, R, T)
1 dp

+ey(R, T) (3.29)

ReD = ,'(D +—D ) .

Letting the applied electric field E be

E(t) =Eoe

(3.34)

(3.35)

we seek a solution to Eq. (3.32) of the form h =ho+hi
with

(3.36)h ~
——aeE-vy Bghp,

where the constant a remains to be determined. Inserting
Eq. (3.36) into Eq. (3.32) we obtain

1

—ice(1+i.*) (3.37)

j(R,T)= —, eNO f f—dEvFg
4m

(3.30)
where

The second term in Eq. (3.29) stems from energies far
from the Fermi surface and is thus not accounted for by
the quasiclassical Green's function. This is established
directly (see Eliashberg, 1971) or by invoking the ap-
propriate symmetry, which here is gauge invariance.

For the electric current density we have in the mixed
representation

Here the high-energy contribution is cancelled by what is
sometimes called the diamagnetic current (as we shall ver-
ify in a specific case in Sec. IV.A).

The origin of the form of Eqs. (3.29) and (3.30) is the
interchange of the order of integration over E and g,
brought about by the use of the quasiclassical Green's
function. This reverses the sequence of integration from
the correct one, in which the E integration is done first.
Later, in the context of superconductivity, we shall use
Eq. (3.29) and interpret p as the difference between the
charge density of a nonequilibrium superconducting state
and that of the normal state in equilibrium. Such a sub-
traction procedure ensures the validity of the interchange
of the order of integration.

C. An example: Electron-phonon
renormaiization of the ac conductivity

A, '=2K, f '
(1—PP') .

47K cop~-pF
(3.38)

We can now evaluate the current and obtain for the
conductivity

ne

COm-opt
(3.39)

where n is the number density of electrons and the optical
mass m,p, is renormalized according to

m, ~, =m(1+I,') . (3.40)

This result was originally obtained by Holstein (1964).
We note that it is the nonequilibrium electron contribu-
tion to the real part of the self-energy that makes the opti-
cal mass renormalization different from the specific-heat
mass renormalization.

As an example of electron-phonon renormalization of
time-dependent transport coefficients we shall consider
the ac conductivity in the frequency range given by

(3.31)

where y denotes the electron-phonon scattering rate at
thermal excitation energies. For definiteness, we also con-
sider the temperature to be low compared to the Debye
temperature 8&.

The inequality (3.31) enables us to neglect the collision
integral. The linearized kinetic equation then takes the
simple form

D. The excitation representation

The quasiclassical theory leads to equations that are
more general than the usual Boltzmann equation. We
have shown that the basic variables, besides space and
time, are energy and position on the Fermi surface. Al-
though the electron-phonon interaction does not permit
the quasiparticle approximation a priori, we shall here re-
capitulate the derivation by Prange and Kadanoff (1964),
showing that it is still possible to cast the electron-phonon
problem in the Landau-Boltzmann form.
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1. The kinetic equation

We start by defining a quasiparticle energy Ep, which
is given implicitly' by

In transforming the collision integral we have utilized the
substitution

N f ~ fdEmN f ~ fog, .

Ep =gp+Recr(Ep+ey, P,R, T) .

This satisfies the equations

(3.41)
I f P, Z,

(2m)3
(3.54)

Vkp =ZpVp&p

VRE =Z ( VRlpdzReo'+VRReo')
~ z

P

d E =Z (ed q&BzRecr+BTReo) ~z z +,p,

(3.42)

(3.43)

(3.44)

Since the sound velocity is much less than the Fermi
velocity, the phonon damping is negligible, and the pho-
non spectral weight function therefore has a delta-
function character

S (p —p')=Np lgp p I'[@Ep—Ep —~p-p)

Zp=(1 —BzReo) '
~ z z +, (3A5)

We now set E equal to E&+ey in the kinetic equation
(3.24) and introduce the distribution function

where in (3.42) we have neglected any angular dependence
of the real part of the self-energy and introduced the
wave-function renormalization constant

—6(Ep Ep +co—p p )], (3.55)

where coq denotes the phonon frequency. We can then
write the kinetic equation in the final form

[dr+VpEp VR VR(Ep+—ep) Vp]np I, ph——[n], (3.56)

with

np
——f( Ep, R, T)~ z {3.46) I, p„[n]= 2n f— , ZpZp i gp p i

Il pp

(2~)
By using the relations'

Vpn =VpEp(dzf)
I z=z, +.p

Van =[VRf+VR(Ep+eq»dzf] I z=z, + ~

d" =[d.f+d.(Ep+.~)~zf] I z=;+...

(3.47)

(3.48)

(3A9)

I, h[n]= — Z p(p —p')RP,277 dp
(2)' ' (3.51)

ApP——[1+N(Ep —Ep )]np(1 np )—

and Eqs. (3.42)—(3.44), we obtain

Z '[dr+Vs .VR VR(E +—eq&).V ]n =I, h[n],

(3.50)
where

X[5(Ep—Ep —pip p)

—5(Ep Ep +p)p —p)] . (3.57)

This has the form of the familiar Boltzmann equation, ex-
cept for the fact that the matrix elements are renormal-
ized.

%'e stress that only the quasiclassical approximation
was used to derive the above kinetic equation. In particu-
lar, we have not assumed any relation between the scatter-
ing rate y and the temperature. This would have been
necessary for invoking a quasiparticle description in order
to justify the existence of long-lived electronic momentum
states. It has thus been established from microscopic
theory that the validity of the Boltzmann description of
the electron-phonon system is determined not by the
Peierls criterion (y « T), but by the Landau criterion,

N(Ep Ep )(1——np)np- ,

f(I —P') = [D (y —I
'

Ep —Ep )
INp (gp p

2m'

(3.52) 'V«P .

2. Densities and currents —the
conservation law

(3.58)

—D"(p—p', Ep —Ep )] .

(3.53)

We shall suppress the space-time variables and use the short-
hand notation E~ =E(p,R, T).

In using {3.47) to transform the gradient term in (3.24) we

have ignored the explicit dependence of f on P. This is neces-

sary to preserve consistency in the quasiclassical scheme in the
present form, where the momentum is fixed at the Fermi sur-

face, cf. (3.5).

j(R,T)=2 f ~ V+pnp .
(2m )

(3.60)

The collision integral [Eq. (3.57)] has the invariant

f d p Iq ph[ n ]=0, (3.61)

The Landau-Boltzmann expressions for the density and
current density have the well-known form

n(R, T)=2 f & np
dp

(2~)

and
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n=2NO f f dEf(E,P) —ey
4m

=2ND dE E+eyp (3.63)

The last equality seems to require that ey «T. How-
ever, this is an artifact of our choice of representation.
We could equally well have represented the electric field
in a gauge where the scalar potential is absent.

which expresses the conservation of the number of parti-
cles.

Integrating the kinetic equation (3.56) with respect to
the momentum shows that the density and current-
density expressions (3.59) and (3.60) satisfy the continuity
equation

(3.62)

In order to establish that Eqs. (3.59) and (3.60) are
indeed the correctly identified densities (in the excitation
representation), we should connect one of them with the
microscopic expression. According to Sec. III.B we have
for the density in the particle representation (we suppress
space-time variables)

In order to compare the particle and the excitation rep-
resentations, we transform Eq. (3.59) to the particle repre-
sentation by using Eqs. (3.41) and (3.54) and obtain

2 f — n =2ND f f dE(1 —BERea')f(E,p)
(2m ) 4~

Since Eqs. (3.63) and (3.64) appear to be different, we
also transform Eq. (3.60) to the particle representation

2 f Vp&np 2eN——O f f dEvFf(E, p) .4n.
(3.65)

Comparing Eq. (3.65) with Eq. (3.30), we observe that this
is identical to the quasiclassical current-density expres-
sion. The only possibility for the above-mentioned
discrepancy not to lead to a violation of the continuity
equation is the existence of the identity

B f dP f dEf(E,p)B Reer(E,p)=0. (3.66)

We shall now prove this identity. Inserting the expression
from Eq. (3.33) into the left-hand side of Eq. (3.66) we are
led to consider

f dp f dE f dP' f dE'~g,
~

ReD(pz —p+, E E')[BTf(Ep)B—Ff(E',P') —BEf(Ep)B f(E',p')] . (3.67)

By interchanging the variables E,p and E',p' one sees
that Eq. (3.67) vanishes and the identity (3.66) is thus es-

'

tablished.

[Go ' —XG] =0 (3.68)

with G 0 given by Eqs. (2.47) and (2.52). A distribution
function is introduced by the ansatz20

E. Beyond the quasiclassical lirfait GK GRp I GA (3.69)

The quasiclassical description of transport phenomena
has some limitations. It relies on the assumption of
particle-hole symmetry and it is unable to account for the
Lorentz force due to a magnetic field. In this section we
shall show how these limitations can be avoided within
the gradient approximation, using results due to Langreth
(1966) and Altshuler (1978). In the next section we treat,
as an example, thermoelectric effects in a magnetic field.
We only mention here that the effects of a periodic poten-
tial may also be included within the present framework.
As shown by Rammer (1984), the kq representation (Zak,
1972) may be used in conjunction with field-theoretical
methods to derive transport equations for Bloch electrons.
One finds, as expected, that the velocity v in the Lorentz
force is replaced by the group velocity Bs„(k)/Bk,where
e„(k)is the band energy, provided the distribution matrix
is assumed to be diagonal in the band index ri. In the
general case, the transport equation obtained by this
method contains interband terms and a more complicated
form of the Lorentz force. For details the reader is re-
ferred to Rammer (1984).

We start from the general equation (2.57)

To obtain a kinetic equation we take the Keldysh com-
ponent of Eq. (3.68). Utilizing the equation of motion for
the diagonal (retarded and advanced) components of Eq.
(3.68) and the property that the composition is associa-
tive, we can write the equation in the form

where

B[h]= i [GO
' —R—eXh] + ,

' [I @h]+ —iXx . —(3.71)

In the gradient. approximation we obtain

(G"—G")B+[B,ReG]p ——0 .

Inserting the solution of the equation

(G"—G")B=0

(3.72)

(3.73)

In the desired approximation, such a representation is always
possible. In the mixed representation we have 6
=(G"—G")h +i [ReG, h]~
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into Eq. (3.72) we observe that the second term of Eq.
(3.72) has the form of a double Poisson bracket and thus
can be dropped in the gradient approximation. %"e thus
seek solutions of the equation

[A»] =()zA I()T+u Vit+[eE.u —(BzA) t]TA]B

+[eE+evXH+(BEA) 'VRA] VpIB,

(3.82)

B[h]=0 . (3.74) with

However, since the distribution function is not gauge
invariant, we shall not succeed in obtaining an appropri-
ate kinetic equation with the usual expression for the
Lorentz force. Performing a gradient expansion of the
term in (3.71) containing Go, we obtain in the mixed
representation

i [G—O 'Sh] =[E—e(p —g'p, &,h]

u=((]EA) 'VpA . (3.83)

The kinetic equation thus has the form

[(1—(]EReX)(]T+Br ReXB@+v*.(VR+eE()E )

+(eE+ev'XH). Vp]h =I[h], (3.84)

where the collision integral is given by

h(Q, P,R, T)=h (E,p, R,T),
by the change of variables

(3.76)

a result first derived by Langreth (1966).
%'ithin the gradient approximation, we thus can intro-

duce a gauge-invariant distribution function h, defined by

1[h]=+iX~ rh .—

F. An example: Electron-phonon
renorrnalization of the high-field
Nernst-Ettingshausen coefficient

(3.85)

P=p —e A(R, T), Q=E ey(R, T—) . (3.77)

As a result of the transformation, we observe that it is the
kinematic (not the canonical) momentum that enters the
kinetic equation, as one would expect. Using the identi-
ty ' (Langreth, 1966)

[A,B]p E [A,B]p n—+eE (dnA VpB —BnBVpA )

+eH (VpA XVpB), (3.78)

where H=rotA and E= —Vy —dA/dt, and A and B
are related to A and B by equations analogous to Eq.
(3.76), we get the following driving terms in the gradient
approximation:

X &&~c ~
(3.86)

where y is the collision rate and co, is the cyclotron fre-
quency co, =

~
e ~Hlm, so that the collision integral can

be neglected. The kinetic equation (3.84) then reduces to

As an example of electron-phonon renormalization of a
static transport coefficient we shall consider the high-field
Nernst-Ettingshausen coefficient, which relates the
current density to the vector product of the temperature
gradient and the magnetic field. For now, we shall
neglect any momentum dependence of the self-energy.
The system is driven out of equilibrium by a temperature
gradient. The magnetic field is assumed to satisfy the
condition

—i [Go ' —ReXeh] =[Q—gp —ReX, h]p n [v VR+e(vXH). Vp]h =0. (3.87)

+eE [(1—BnReX)Vph+v'Bnh] It follows from Eq. (2.85) that the electric current den-
sity in the gradient approximation is given by

+ev XH Vph,

where we have introduced

(3.79)
j=—e f 3 f v(Ah —[ReG,h]p) .

(2~)3
(3.88)

v' =Vp[gp+ ReX(Q, P,R, T)] . (3.80)
In accordance with Eqs. (3.86) and (3.87) the last term in
Eq. (3.88) can be neglected, since

We could equally well, following Altshuler (1978), have
chosen to introduce the mixed representation

G (X ) f d& &
ir [p+eA(x)]+i—t[E+eq&(x)]G (X x)

(3.81)

whereupon, in accordance with Eq. (3.78), we can express
the Poisson bracket as

[ReG, h]& —— VpReG V—Rh +eH .(VpReG X Vph. )

(3 ReG
[v VRh+e(vxH) Vp]

ag

(3.89)

Inserting the solution of Eq. (3.87),

W'e have changed the subscript on the Poisson bracket to in-
dicate the variables with respect to which the derivatives are
taken.

2~Describing the kinetics in the momentum representation as-
sumes we are not in the quantum limit, that is, m, && T.
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h =ho— ~PT [
Bh,

eHT " BEpE (3.90)
A. Impurity scattering and weak
localization

into the current expression and performing a Sommerfeld
expansion, we obtain

(1+A,)S {3.91)

where

B ReX
E =O,p=p+

(3.92)

and S is the free-electron entropy. In the model
described by Eq. (2.34) one has A, =g No. Thus the
enhancement of the high-field thermoelectric current in
Eq. (3.91) is seen to be identical to the enhancement of the
equilibrium specific heat. This result was conjectured by
Lyo (1977) and demonstrated microscopically by Hansch
and Mahan (1983b).

Up to this point, we have not considered the possible
momentum dependence of the self-energy. Taking this
into account, we find that Eqs. (3.84)—(3.88) lead to
correction terms to the coefficient in Eq. (3.91) of the
type VpReX

~ p p . However, the nonequilibrium contri-

bution to the spectral weight is difficult to extract. A cal-
culation within the context of Fermi-liquid theory leads
to the appearance of two VpReX-dependent terms that ex-
actly cancel each other, thus suggesting the resulting
equation (3.91) to be generally valid (further details may
be found in Rammer, 1984).

Thermopower measurements by Opsal, Thaler, and
Bass (1976) and Fletcher (1976) agree with the calculated
mass enhancement in Eq. (3.91) due to the electron-
phonon interaction.

IV. KINETIC EQUATIONS FOR NORMAL METALS

23The coefficient relating the current density j to VT~II is

the Nernst-Ettingshausen coefficient.

As examples of the use of field-theoretical methods for
obtaining kinetic equations, we now discuss some effects
of impurity scattering that have attracted considerable in-

terest over the last few years. Recent reviews of these ef-
fects on localization and interaction in disordered systems
have been given by Altshuler et al. (1982), Bergmann
(1984), Altshuler and Aronov (1985), and Lee and
Ramakrishnan (1985). Most of the work on these prob-
lems have taken the point of view of linear-response
theory. Our objective here is to show how such effects
may be incorporated in the kinetic equation derived by
the Keldysh technique. We emphasize, however, that the
linear-response method is often more convenient than the
kinetic equation for deriving the results discussed below,
and we shall therefore show how linear-response theory is
formulated using the Keldysh technique.

The subject of weak localization in metals dates back to
the pioneer work of Abrahams, Anderson, Licciardello,
and Ramakrishnan (1979), who proposed a scaling theory
for conductivity in disordered metals based on earlier
ideas of Thouless (1977). A large amount of subsequent
theoretical and experimental work has given support to
the scaling approach to localization. Here we first discuss
weak localization within linear-response theory using Kel-
dysh propagators. Subsequently, we demonstrate how the
effects of weak localization may be included in the kinetic
equation derived by use of the Keldysh technique. We
limit ourselves to considering the effects of weak localiza-
tion on the frequency-dependent conductivity, as first ob-
tained by Gorkov, Larkin, and Khmel'nitskii (1979), who
used diagrammatic methods within linear-response
theory. The Keldysh technique was employed by Vasko
(1983) to treat nonlinear effects of the electric field. The
derivation given in Sec. IV.A.2 essentially follows his ap-
proach.

1. Linear-response theory

In this section, we employ the linear-response method
using Keldysh propagators to determine the effects of
weak localization on the frequency-dependent conductivi-
ty. In the following section (IV.A.2), we derive the same
result by the kinetic equation method. The latter is the
more general method, since it allows, in principle, all non-
linear effects to be considered.

As a model for the impurities, we take a random poten-
tial u (r) with zero mean value and a correlator
(u(r)u {r')) with white-noise character, corresponding to
the relations

(u) =0, (u(r)u(r')) =u'5(r —r'), (4.1)

where ( ) denotes the impurity averaging. The constant
u is a convenient measure of the strength of the impurity
scattering, u being equal to the square of the matrix ele-
ment for scattering from a single impurity times the num-
ber of impurities per volume.

Linear-response theory may be formulated quite simply
in terms of Keldysh propagators, since the current, Eq.
(2.85) via Eq. (2.86), is determined by calciilating the
change in the Keldysh component of the matrix propaga-
tor to linear order in the external field, as we shall now
demonstrate.

The use of Keldysh propagators makes the formulation
at finite temperature analogous to the one used at zero
temperature (cf. Abrikosov et al. , 1965). It is convenient
to express the electric field by a vector potential
A=A e ' ', where A~=K/ice. The vector potential
contributes a term of the form j A to the Hamiltonian.
In order to determine the corresponding first-order contri-
bution G~ to the Keldysh component of the Green's
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FIG. 9. The conductivity diagram. FIG. 10. The classical conductivity diagram.

function, we include for the moment the impurity poten-
tial in the free-particle Hamiltonian Ho, and since we do
not consider interaction effects, we have H'=0 and

S,;=1 in Eq. (2.16). Then we can repeat the steps given

in Sec. II.C, Eqs. (2.28)—(2.30), with the vector potential
replacing the scalar potential, as we expand the operator

exp i —f dr f dxj. A

Eq. (2.17), to first order in A and express the current j in
second-quantized form (within linear response, we need
only consider the paramagnetic term in j). As a result,
we get

Gf(1,1')= Tr ri f d2 A(2)[(V„—V„,)G(1,2')G(2, 1')]2
2m

(4.2)

I

The trace in Keldysh space and the v' matrix have been introduced to pick out the Keldysh component. To linear order
in the electric field the current is thus

2

Ji(1)= (Vi —Vi )Gi (1,1')
~ i i — A,

2m m
(4.3)

where the last term is the usual diamagnetic current (cf. Abrikosov et al. , 1965). We now Fourier-transform Eq. (4.3)
with the result

l.e2 neJi(co)= 2
Tr ~' f dE+ pG(p, p', E+co)A„.p'G(p', p, E) — A„.

2R'm I m
(4.4)

Under isotropic conditions, the conductivity cr(co) then becomes

2
o(co)= Tr r' f dE gp. p'(G(p, p', E+co)G(p', p,E))

2&dm co I

ne

t tom
(4.5)

In Eq. (4.5) we have introduced the impurity averaging denoted by ( ).
We have thus demonstrated that, within the Keldysh formulation of linear response, the Feynman rules for interpret-

ing the standard conductivity diagrams need only to be supplemented in accordance with the matrix structure in Keldysh
space, where lines and vertices are interpreted as tensors, as explained in Sec. II. The structure of the first term in Eq.
(4.5) is illustrated diagrammatically in Fig. 9. Note that in the representation given by Eq. (2.27) the Keldysh structure
of the driving and measuring vertex in Fig. 9 is represented by

(4.6)

2

, f (dp)p~[(hEO+„hEO)G~+~G~" +G~—+~6~"(1 hEO+„)+G~—+~6~~(hEO 1)], —
dco m

in accordance with Eq. (4.2). Finally, the closed loop implies that the trace in Keldysh space is to be taken.
The last term on the right-hand side of Eq. (4.5) diverges as co—+0 and must cancel a similar term appearing in the first

part of Eq. (4.5). To verify the cancellation of these terms, it is sufficient to consider the simplest diagram, depicted in
Fig. 10, for which we obtain

neo(~)+ .
l corn

In this section we use the shorthand notation

where d is the dimension.
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where
q =(O, co) . (4.8)

P~P

(4.10)
which forms a useful starting point for calculations of the
conductivity.

Before considering the quantum correction, we show
how the classical conductivity given by the diagram in
Fig. 10 is obtained. From Eq. (4.10), it follows that

22
dm

The retarded and advanced impurity-averaged Green's
functions are given by (Abrikosov et a/. , 1965)

1
Gk, E

R(A) (4.12)
E —4(+-)

227

where 1A is the impurity scattering rate

—=2nu Nd(0) .1

7

In Eq. (4.13), Xq(0) denotes the density of states for a sin-
gle spin at the Fermi energy in d dimensions.

In the limit cu «p that we consider, the main contribu-
tion to the momentum integration in Eq. (4.11) comes
from the region near the Fermi surface. We perform the
momentum integration and then the energy integration,
and obtain the Drude result

(4.13)

Op
o(co) =

1 —l$7
where the static conductivity o.

p is

Ple

(4.14)

(4.15)
m

In the s-wave approximation we are considering, there
is no difference between the transport time occurring in
the conductivity and the lifetime ~ occurring in the
Green's function (4.12), since the contribution to the con-
ductivity from the particle-hole ladder gives zero in this
case (see, for example, Abrikosov et al. , 1965).

Langer and Neal (1966) found in their study of the
dependence of resistivity on impurity concentration that
the leading contribution at each order in the concentra-
tion is attributed to the maximally crossed diagrams of
the type shown in Fig. 11. In two and three dimensions,
they observed that the perturbation expansion breaks
down in each order larger than or equal to d. In contrast
to the analysis by Langer and Neal (1966), one should

Exploiting the Ward identity for the vertex function,
which in our approximation simply reads

p mP (GR(A)) —1

we readily verify the cancellation of the diverging term on
the left-hand side of Eq. (4.7) by the last two terms on the
right-hand side. We are thus left with the expression

FICx. 11. A maximally crossed diagram.

2 d~ R Ag(q, co) =u
(2~)d Gk, EGk —q, E—co ~ (4.16)

where we have introduced the dimensionality d (=3, 2, or
1, corresponding to three, two, or one dimension). Using
Eq. (4.12) for G ~ ~ and performing the integral over k,
one gets for q «kF and d =3

i ql +cur+i
2ql —ql +co~+i

(4.17)

Generally, in the limit ql « 1, mw « 1, we get that
g= 1 +i d'or Drq, wh—ere the diffusion coefficient
D = (1jd )UF 7 has been introduced. The particle-hole
ladder is proportional to the geometric series (1—g)
which in the limit of long wavelengths and low frequen-
cies becomes

FICx. 12. The diagram of Fig. 11, displayed in the particle-
particle channel.

sum the whole class of maximally crossed diagrams
(Abrahams et al. , 1979; Gorkov et al. , 1979). Twisting
the hole line in the diagram of Fig. 11, we observe that a
maximally crossed diagram in the particle-hole channel
becomes a ladder-type diagram in the particle-particle
channel, as exhibited in Fig. 12.

Due to phase space constraints, crossed diagrams are
generally of order (k~l) ', where l =U~r is the mean free
path, relative to those that do not contain crossed impuri-
ty lines (Abrikosov et al. , 1965). The first quantum
correction, as defined by the expansion in the disorder pa-
rameter (kFl), is thus given by the diagram in Fig. 13,
where the particle-particle i~purity ladder satisfies the
equation depicted in Fig. 14. The particle-particle impur-
ity ladder C is often called the Cooperon. To explain its
properties, we first discuss the diffusive behavior charac-
terizing the particle-hole ladder in the limit of low fre-
quencies and long wavelengths.

The particle-hole impurity ladder satisfies the integral
equation illustrated in Fig. 15. The top and bottom hor-
izontal lines denote retarded (R) and advanced (A) propa-
gators, respectively. To solve the integral equation, we
shall need the function g=g(q, co), defined from the ap-
propriate insertion in the diagram of Fig. 15, and corre-
sponding to the expression
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FIG. 13. The quantum correction to the conductivity deter-
mined by the Cooperon C.

X
I

I

l
I

I

I

I

X

FIG. 15. The particle-hole ladder equation.

R
X

I

I

I

I

X
A

which in the limit of long wavelengths and low frequen-
cies becomes

1 1 1

iso+�—

Dq'
(4.18)

QC (p+p')=
~[ ico+D(p+—p') ]

i
p+p'

i
l « 1, cow « 1 . (4.19)

We therefore have the following contribution 5cr to the
conductivity from the diagram depicted in Fig. 13:

2

5'(ro) = g p.p'Gz Gz Gz"Gz"C„(p+p') .
Wdm2

pp

(4.20)

In Eq. (4.20) we have performed the integration over E,
since the momentum integrations leave Eq. (4.20) in-
dependent of E, and used co~&&1 [the label p' thus
denotes (p', E)]. The important contribution to the in-
tegral in Eq. (4.20) comes from regions of small total
momentum p+p'. We therefore introduce the variable
Q=p+p' and replace the p.p' factor by —pg, since the
important contribution comes from momenta Q, satisfy-
ing Q « l «kF. Similarly, we may replace p' by —p

The diffusive pole [Eq. (4.18)] in the particle-hole propa-
gator is a consequence of the conservation of the number
of particles and is thus a general property of the system in
the limit of low frequencies and long wavelengths.

We are now ready to determine the form of the
particle-particle impurity ladder C for small total
momentum, since we see by comparing Figs. 16 and 17
that time-reversing the lower line in Fig. 16, for instance,
brings us to the particle-hole impurity ladder, the hole
line having reversed momenta. If time-reversal invariance
holds, the values of the diagrams in Figs. 16 and 17 are
therefore identical. The particle-hole impurity ladder has
the diffusion pole exhibited in Eq. (4.18) for small energy
and momentum transfer, and the Cooperon thus has a
diffusion-type pole for small total momentum and small
energy transfer:

0
(dQ)

ice+ D—Q
(4.21)

In two dimensions we find, by evaluating Eq. (4.21),
cutting off the integral over Q at the upper limit l ', that
the first quantum correction to the conductivity is

1
lnC07

IT F
(4.22)

in agreement with Gorkov et al. (1979).
It is worthwhile to emphasize the crucial role played by

time-reversal invariance, which is needed to ensure that
the value of the diagram exhibited in Fig. 17 is unchanged
when the hole lines are turned into electron lines with op-
posite momentum. If the time-reversal invariance is
violated by perturbations such as a magnetic field or mag-
netic impurities, the correspondence between the two dia-
grams no longer holds. Consequently, these perturbations
exert a marked influence on the weak localization effects
in the electrical conductivity. By now there exists a large
body of experimental results in evidence of such effects
(see, for example, Bergmann, 1984 and Lee and Rama-
krishnan, 1985). The significance of the weak localization
effect as a tool for investigating material properties rests
on the fact that it is sensitive to variations in, for exam-
ple, a magnetic field on a scale much smaller than that
which determines the classical magnetoresistance effects.

0+0

in the Green*s functions Gz
'"' that are given by Eq.

(4.12). After turning the integral over p into an integral
over g, using the peaked character of the integrand at the
Fermi surface, we easily perform the g integral by use of
the residue method. The result for 5cr is

l

I

I

I
1

X

FIG. 14. The ladder equation for the Cooperon.

R
X
I

II.
I

I

I

X
A

FIG. 16. A particle-particle channel diagram.
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FIG. 18. A maximally crossed self-energy diagram.

self-energy diagram with n impurity correlators has the
structure

FIG. 17. The diagram of Fig. 16, with time-reserved lower line.
X",=const X

2' —2
(gR)2n —i g (Gii)pgx(GA)2(n —1)—p

p=0

(g A)2n —1

It is therefore possible to separate the weak localization
effect by measuring magnetoresistance, and from such
measurements extract values for characteristic scattering
rates in different materials.

2. The kinetic equation

71 =2
(4.23)

where X", contains n impurity correlators (Fig. 18). A

To derive a kinetic equation that includes the effects of
weak localization, we must consider the effect of the
Cooperon on the self-energy X. The maximally crossed
self-energy diagrams X, are given by a series consisting
of terms of the type shown in Fig. 18. We write

(4.24)

provided n )2. The structure (4.24) may be verified by
raising the G matrix to the power 2n —1. The Keldysh
component of X", contains the Cooperon coupled to the
Keldysh component of the Green's function as illustrated
diagrammatically in Fig. 19, which shows the contribu-
tion of the maximally crossed diagrams corresponding to
the off-diagonal term in Eq. (4.24), with an equal number
of retarded and advanced Green's functions (p =n —1).
Algebraically, we thus have the weak localization contri-
bution

X i(1,1')=u f dt2 f dt2 C(1,2
i
1',2')6 (2,2') . (4.25)

The coefficient u in Eq. (4.25) arises from the impurity
correlators at the ends of the self-energy diagram (Fig.
19). The quantity C satisfies the integral equation depict-
ed diagrammatically in Fig. 20. In algebraic form, the
integral equation is

C(1,2~2', 1')= f dx, f dt, f dts6"(1,3)6"(2',3')[5(t, —t2)5(t; —t, )5(x,—x, )+u C(3,2~ 3, 1 )], (4.26)

With

l=(xi, ti), 1'=(xi, ti ),
2=(xi, t2), 2'=(xl, t2 ),
3=(x3 t3), 3'=(x3 i3') .

(4.27)

For the purpose of considering the kinetic equation we
transform to a mixed representation with respect to time,

I

Xxi(E,p, R, T)=u' f (dkdE')dT'C(k, R,E,E', T, T )

XG (k —p, R,E', T'), (4.29)

where the energy variables E,E' enter by Fourier-
transforming the relative time variables t, t' introduced in
Eq. (4.28).

In order to detertnine the contributions of X~~ to the
conductivity, we first consider the kinetic equation (2.60),

&i+&iT=, t=t
2

(4.28)

[60 ' —ReX, G+]p —[X,Reg]~

= l Xx(G~ G") l (X~ —X")G—, (4—.30)

The expression, Eq. (4.25), for the Keldysh component
of the self-energy with C given by Eq. (4.26) is equivalent
to the summation of the maximally crossed conductivity
diagrams shown in Figs. 13 aDD I4.

Equation (4.25) is transformed to the niixed representa-
tion according to

where we have performed the gradient expansion given by
Eqs. (2.69) and (2.70). Instead of introducing a distribu-
tion function in the usual manner, we may solve the ki-
netic equation directly by treating X ~ as a perturbation in
comparison to the classical impurity contribution to the

Thus C is obtained from C by removing the external legs.
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l

l

I

FKx. 19. The Keldysh component of the self-energy diagram,
Fig. 18, containing the Cooperon.

2'

FICr. 20. The Cooperon equation for C.

where

3
I

I

I

I

3l

self-energy X;mz, which is given by the diagram shown in
Fig. 7. When the kinetic equation (4.30) is linearized in
the electric field, we obtain the perturbation solution by
setting the change of the right-hand side due to the locali-
zation contribution equal to zero. The perturbation result
thus becomes

6 = Xx
wl (~il ~g) wl

GE ( E T) GE (Gii GA) &
e E.p1111P (4.33)

is the Keldysh coinponent of G without the weak locali-
zation contnbution.

In writing Eq. (4.32), we have used the fact that the
dominant contribution occurs for small frequencies and
long wavelengths and that the Cooperon in this range has
the form

=i r( G G");—mpawl, (4.31)
C(k, T, T', r, r') =5(r r')C„(T,—T'),

where Cl,(T, T') satisfies

(4.34)

where the subscript imp denotes quantities containing
only the self-energy diagram, Fig. 7, corresponding to the
solution of the usual impurity problem based on Eq.
(2.72). The quantum correction 5j to the current density
1S

[—,'(BT—Bz-)+Dk ] CI, ( T,
T')= 5(T —T') .

Q 'T

(4.35)

5j= ie f (dp)—vG,

=re f (dp)v(G" —G"); z

Xu f (dk)dT'Cl, (T,T')G; ~(k p, E,T')—,

(4.32)

Equations (4.34) and (4.35) may be proven as follows.
To obtain Eq. (4.35), we Fourier transform with respect to
the space variables in Eq. (4.27), and introduce the time
variables in Eq. (4.28) in addition to the new internal vari-
ables t=t3 —t) and t'=t2 —t3.

In linear response, we neglect the infiuence of the
time-dependent electric field on the Cooperon and obtain

C(k, T, T', t, t')= f (dpdE, dE2)G~aE Gl, ,E, —
r

X expI —i [(E, E,)(T T')+ —,' (E, +E—, )(r —t'—)]I

+u~ f dr f dt'e ' ' C(k, T+t j2,T' t'l2, r+t, r' r')— — (4.36)

Note that as a result of performing the integration over
the moinentum variable p, Eq (4.36) co. ntains the func-
tion g(k, E, —Ez) defined in Eq. (4.16). In the diffusive
region where g(k, co)=1+icos Dk w, the dom—inant con-
tribution to the first term on the right-hand side of Eq.
(4.36), provided

t
T —T'

t
& ~ and kl & 1, is obtained by

replacing g by unity, leading to an expression proportional
to 5(t —t')5(T —T'). From this we conclude that the
solution to Eq. (4.36) has the form of Eq. (4.34). In the
second term on the right-hand side of Eq. (4.36), the cor-

responding dominant contribution cancels against the
left-hand side. The remaining terms that originate in the
expansion of g are seen to yield the left-hand side of Eq.
(4.35).

Since the first term in Eq. (4.33) contains the odd func-
tion Eq. (2.68), it does not contribute to the electric
current as expected. We thus get 5j=5oE, where

5cr= —22u oo f (dk)Ck, (4.37)

where Ci, ——u C (k), with C„given by Eq. (4.19). The
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result [Eq. . (4.37)] is thus seen to be identical with Eq.
(4.21).

The weak localization effect has a simple physical in-
terpretation, which is suggested by the structure of the
maximally crossed diagrams. The retarded Green's func-
tion represents the quantum-mechanical amplitude for the
electron to be scattered through a sequence of impurity
collisions forming a closed loop, whereas the advanced
Green's function represents the complex conjugate of the
quantum-mechanical amplitude for the electron to suffer
the opposite sequence of impurity collisions. The Coo-
peron thus describes the quantum-mechanical interference
between the electronic alternatives of traversing a closed
loop in opposite directions of time. For a presentation of
the weak localization effect based on a quasiclassical
description that avoids diagrams, we refer the reader to
Chakravarty and Schmid (1986).

I
I
I
I
I
I
I
I

(c)

/
/

I
I \

(b)

~ss

/
/

/
I I
I 1I I I

B. Electron-electron scattering FIG. 21. Lowest-order self-energy diagrams.

U = U"= V(xi —xi )5(ti ti ), —
U =0.,

(4.38)

where V(x~ —x&) denotes the interaction. In Fig. 21 we
illustrate some low-order self-energy diagrams. The in-

Having considered the weak localization due to impuri-
ty scattering, we now turn to a discussion of the effects of
electron-electron scattering. First we shall demonstrate in
this section how the collision integral appropriate to two-
particle scattering is derived in the simplest possible
model corresponding to an instantaneous short-range
two-particle interaction. In the next section (IV.C), we
then include the impurity scattering along with the
Coulomb interaction.

The retarded and advanced components of the instan-
taneous two-particle interaction are identical, leading to a
vanishing Keldysh component,

G (~$, r$ )G"(&$,&$ )=G (r$, t$ )G~(tr, t$)=0, (4.39)

one may easily show that the contribution of Fig. 21(d) is

stantaneous two-particle interaction is denoted by a bro-
ken line. The Hartree-Fock diagrams [Figs. 21(a) and
21(b)] do not contribute to the collision integral due to the
instantaneous nature of the interaction. We take the
Fourier transform of the interaction V(q) to be indepen-
dent of q, V(q)= Vo, consistent with our assumption of
short-range scattering in the dilute Fermi gas. Since Vo
is independent of momentum, diagram (c) in Fig. 21 con-
tributes ( —2) times as much as diagram (d), due to the
internal spin sum and the closed fermion loop. We there-
fore focus our attention on diagram (d), and simply
change its sign to get the total contribution of (c) and (d).

Using the Feynman rules and identities of the type

x (p) =i
4

Vo f (dp)) f (dp2)(GP+P, P, GP, GP, +GP+P, P, GP",GP, +GP+P, P, GP, GP, +GP+P, P, GP",GP", ) (440)

x (p) =i
4

Vo f (dp)) f (dp2)[(G —G")p+p, p, Gp, (G G")p, Gp+p, —
p, (G —G")p,(G G"—

)p,
—

)P+P P(G G )P GP —+ P+P PGP GP ]—(4.41)

where the energy and momentum arguments in the Green's functions have been indicated by subscripts.
To derive the collision integral in a form in which it may be compared to the quasiparticle Boltzmann equation, we in-

troduce the quasiparticle approximations

The kinetic equation of a dilute Fermi gas is also derived by Lifshitz and Pitaevskii (1981)using the representation of Eqs. (2.18)
and (2.19).
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and

(4.42)

G =(G"—G")I = "S(E—g —U)h
l

(4.43)

An external potential U = U(R, T) has been included. The dependence on R, T has been suppressed in the expressions
for X" and X given above. Using X =(X"),we obtain the collision integral from the integral

I= f dE(ir ~ —irG~) (4.44)

[cf. Eqs. (2.60) and (2.72)]. The quasiparticle collision integral equals Iqz ————,I, since the distribution function h& is re-
lated to the quasiparticle distribution fz by h~ = (1—2'). We then get

I = —Vo(2m) f (dpi) f (dpi') f (dp3N(gp+gp, —
gp,

—
gp, )5(p+pp —pi —p3)

(4.45)

To cast the collision integral in the form of Eq. (4.45), it
is necessary to add and subtract the terms fez, f~ fz, ,
which do not appear explicitly in I. As written, the col-
lision integral agrees with the one used in Fermi-liquid
theory (see, for example, Baym and Pethick, 1978) when
the singlet part of the scattering amplitude is equal to a
constant and the triplet part is equal to zero.

C. Electron-electron and electron-impurity scattering

The magnitudes of the electronic transport coefficients
of normal metals are determined at low temperatures by
the scattering of electrons from impurities and imperfec-
tions in the crystal, whereas the temperature dependence
is determined by inelastic scattering. At sufficiently low
temperatures, T«1/r, there occurs the possibility of
quantum interference between elastic and inelastic scatter-
ing mechanisms. In this section we describe how such ef-
fects are included in the kinetic equation. To avoid exces-
sive detail we shall focus primarily on the inelastic col-
lision rate. The interference effects were first studied on a
microscopic basis by Schmid (1973,1974). Here we shall
follow the work of Altshuler (1978) and Altshuler and
Aronov (1978a,1979a,1979c). The inelastic collision rate
may also be obtained rather more directly by the method
of exact impurity eigenstates (Abraharns et a/. , 1981).

r =r p+r=c-] (4.46)

where the wiggly line in the figure represents the screened
Coulomb propagator U and the triangle the impurity-
renormalized vertex I . 8

To lowest order in 1/kzl, the vertex I is given by the
impurity ladder diagrams in the particle-hole channel
shown in Fig. 23.

In the general case the self-energy Xc,„& is of a more
complex nature than those we have previously encoun-
tered. Since the translational invariance in space and time
is broken in a general nonequilibrium state, we no longer
have a simple diagrammatic technique in the energy-
momentum representation. The self-energy in the mixed
representation will therefore contain Poisson brackets
terms. Splitting these terms off, we represent the self-
energy as

r=a'+sr, (4.47)

I[h]=iX ih(X ——X ), (4.48)

where Xo does not contain Poisson brackets. The change
5X in the self-energy must be included if we consider the
electrical conductivity (Altshuler, 1978; Altshuler and
Aronov, 1978a). Since, in the following, we calculate only
the inelastic collision rate, we may neglect 6X throughout.
The kinetic equation thus acquires the form of Eq. (3.84)
with

1. The model of disorder

The disorder will be represented by randomly distribut-
ed static impurities and the inelastic scattering by a
screened Coulomb interaction. We consider the im.purity
and the exchange self-energy depicted in Fig. 22,

We assume that the contribution from the impurity ladder
diagrams in the particle-particle channel (weak localization ef-
fect) have been suppressed. The Hartree term is not taken into
account. This is justified when the inverse screening length is
smaller than the Fermi wave vector.

where we now and henceforth drop the superscript 0,
since it is understood that the Poisson brackets terms are
discarded. The solution of the coupled integral equations
corresponding to the diagram shown in Fig. 23 is
described in the Appendix. The resulting self-energies
X '"' yield the expression (A21) for the inelastic partI'"" of the collision integral, which vanishes only if the
distribution function h is the equilibrium one.

The collision integral (A21) may be written in the con-

SIn this section we shall not use the symbol I for the
linewidth function, so no confusion should arise.
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(a)

FIG. 24. Equation for the impurity-renormahzed screened
Coulomb propagator.

FIG. 22. Impurity and exchange self-energy diagrams.

venient form - for a momentum-independent distribution
function

I'"' =Im f (dq) GA

X[21mU (1—h h )

with

and

UR UK

0 U

R(A)
Eq

(4.54)

(4.55)

(4.56)

i Uq (—hE „hE)]—, (4.49)
where

where g was introduced in Eq. (4.16). We have used the
properties g =(G")*, U =(U"), U being purely
imaginary together with the usual representation
gK—(gR gA)h

2. Electron-electron interaction
in weakly disordered conductors

ER(A) 1 go~(A) (4.57)

In the following, we need only the expression for the
screened Coulomb propagator in equilibrium. We then
have

A (~)e ~ f (d ) gKGR +gAgK

We now specify the screened Coulomb propagator by
adapting the random-phase approximation with the im-
purities included to leading order in (kFl) ' as illustrated
in Fig. 24. The structure of the equation in Keldysh
space is

E —co E e A R+
1 —g'

~=—2ig f (dE)(1—hEhE „)Re

(4.58)

where

0 0 k2k
k&k(. k)k&. + k)k2 k2. kl. ~ (4.50)

Ime~=&~ ' f (d&)(hE ~ hE)Re—
(4.59)

Uk k, —5k, k (4.51)

V is the bare Coulomb interaction, and the polarization
is given by ER (EA)+ (4.60)

where all quantities in Eqs. (4.58) and (4.59) are taken to
be their equilibrium values. We have introduced the usual
dielectric function E~, given by

k2k2. —k~ k2,
77 2EPfp Gp j GjI&j j

It is readily verified that

(4.52)

3. Electron-electron collision rate

(4.53)LT— 0 m.A

with m
" given by Eqs. (A24)—(A26). For Uwe have

As an example of the use of the theory introduced
above we calculate the inelastic collision rate due to
Coulomb interactions. A momentum-dependent distribu-
tion function will, in the course of the short time r, relax
to a momentum-independent distribution function hE.
The energy relaxation will now proceed, governed by the
inelastic collision integral. The kinetic equation for h is

(4.61)

FICx. 23. Impurity-renormalized vertex equation.

since other terms arising from the left-hand side of Eq.
(3.84) vanish upon averaging over momentum.

The appropriate momentum average is performed by
multiplying both sides of the kinetic equation with the
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spectral weight /I (p) and integrating over p. We assume
here that the width of the spectral weight is determined
by the impurity scattering and therefore use the impurity
Green's functions (4.12) everywhere in Eq. (4.61). This
requires that the impurity scattering rate 1/r be much
larger than the electron-electron collision rate, which is
certainly satisfied if E and T are much less than I/r, as
the following calculations will show.

The kinetic equation thus reduces to

BTnz ———f dco f dE'P(c0)Rzz (4.62)

where ~d is the inverse screening length

[See N3(0)]'/, d =3,
Kd =

4m.e2X2(0), d =2.
The bare Coulomb potential is

24me
2v'=

227Te

(4.69)

(4.70)

Rz z nznz——~(1—nz „)(1 nz —)
nz „n—z (1—nz)(1 —nz „),

and we have introduced the distribution function

nz ———,
' (1—hz)

(4.63)

(4.64)

In the three-dimensional case we obtain
—1/2

P3(C0) = 3, CO~ && 1,
SV'2m %3(0)D /

and in the energy range co » I /r

(4.71)

and the transition probability

P(co) =P~(c0)

2Nd(0)v yo
(4.65)

&e
K3 «kF~

P ( )
4UF'K3

K3 ))kFSp'
(4.72)

Let us for a start consider the energy dependence of the
collision rate at temperature T =0. From Eq. (4.62) we
get

tE
E= f de COPd(CO) . (4.66)

ql »cor, ql »1,
2ql

'

1+icot—Dtq, q/, cot « 1, (4.67)

where D is the diffusion constant D=(1/d)UFI. In the
region ql, cor«1, (1—g) ' thus displays the diffusion
pole, as noted below Eq. (4.17).

In calculating the dielectric function, we may inter-
change the order of integration using the standard sub-
traction method (Abrikosov et al. , 1965); we obtain

d —1 3—dDKd1+,q/, « 1—in)+Dq
iCd

d —1

1 + d 1 q/ »cot q/ » 1
qd —1'

(4.6S)

To proceed further we must calculate the transition prob-
ability. From Eq. (4.17) we observe that (in two and
three dimensions)

~' ~3 E'
K3 «kF&64 kF P

m E
K3 &)kF16 p

(4.74)

Note that the result of Eq. (4.45) agrees with this, since
Vo ——[2%3(0)] ' corresponds to the limit lc3 »kF.

Next we turn to the calculation of the temperature
dependence of the collision rate at the Fermi energy.
From Eq. (4.62) we obtain

= f dcoPd(co)
CO81nh-
T

(4.75)

In three dimensions we get at temperatures T« I/r

The right-hand side of Eq. (4.71) stems from the region
of phase space where q -V'co/D and ql, cur « 1, while the
right-hand side of Eq. (4.72) comes from the part of phase
space where q/ »cot, ql »1.

Thus we obtain for the collision rate at zero tempera-
ture at energies E « I /r

1/2
E3/2 (4.73)4 (kF l)

At energies E» I/r, one obtains the well-known re-
sults in the clean limit,

Notice that we can write the even function I'q as

Pq(co) = Im (dq}U~"Re
%CO

3oThe 1/q behavior of the bare Coulomb potential in two di-
mensions arises from constricting to two dimensions the move-
ment of electrons interacting via a 1/r potential.
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1/2 T3/2

16 kFl pr
(4.76)

] co
dco

ZT 2kFI COsinh—
T

(4.82)

7T e T, K3 (gkF~
SUFK3

3
2T ~ K3 ))kF

16@

(4.77)

Calculating the same quantities for the two-
dimensional case we obtain '

1P2(co)= —,cur«1 .
Sp7 co

(4.78)

where g is the Riemann zeta function.
At temperatures T »1/r, we have the results of the

clean limit,

T T1
ln

2mD T
(4.83)

At temperatures T »1/r, the same state of affairs pre-
vails as in the result stated in Eq. (4.81). We state the re-
sult by Hodges et al. (1971)for completeness

To cure this infrared divergence one should consider
terms of next order in the coupling constant e as noted
by Abrahams et al. (1981). This leads to a lower cutoff at
cop=4T /Tf, where T& (2——mD) Daz and an inelastic col-
lision rate

The inelastic collision rate at ener'gies E« 1/r is thus
given by 2&@ T (4.84)

E
4kFI

(4.79)

This result is in agreement with Abrahams et al. (1981)
to within a factor of 2. We note that a missing factor of 2
has also been reported by Lopes dos Santos (1983), who
considered the temperature dependence of the inelastic
collision rate.

When calculating the transition probability at energies
co» 1/r, we encounter the logarithmically divergent ex-
pressions

&z(~)=

2k~
dg 2 ~ K2))kF~

n. N2(0)e
00 1

UF dg K2 Q(kF
q(q+a2)

(4.80)

1 2 EE ln-
Smp p

(4.81)

Turning to the temperature dependence of the inelastic
collision rate, we obtain at temperatures T« 1/r

The reason for the appearance of this singularity in the
forward scattering is our use of momentum states that are
determined only to within the inverse impurity mean free
path. Instead, we approach the problem from the clean
limit and obtain the Boltzmann equation for two-particle
scattering. We then refer to Hodges et al. (1971), who
calculated the inelastic collision rate. Their result is

In conclusion, we note that the results of this section
show that diffusion renormalization enhances the
electron-electron interaction. The interpretation of this
enhancement is given in terms of the breaking of transla-
tional invariance due to the presence of the disorder. The
violation of momentum conservation gives more phase
space for final states.

V. KINETIC EQUATIONS
FOR SUPERCONOUGTING METALS

In this section we shall give an account of the quasi-
classical description of transport phenomena in supercon-
ductors. The development of the quasiclassical method to
describe transport phenomena in-superfIuids is due pri-
marily to Eilenberger (1968), Larkin and Ovchinnikov
(1968,1975,1977), Eliashberg (1971), and Schmid and
Schon (1975a).

A. The quasiclassical description

The basic feature of the superconducting state, the pair-
ing interaction, is made compatible with the standard
Feynman diagrammatics by introducing the Nambu pseu-
dospinor field

(5.1)

3~%'e note that the Coulomb interaction in a weakly disordered
metal can be considered two dimensional when the sample
thickness a satisfies D/a~maxIE, TI && l.

32Notice that Lopes dos Santos (1983) used a definition of the
inverse lifetime differing from the inelastic collision rate by a
factor of 2.

Then the only additional feature of the Feynman rules
is the interpretation of the components of the electronic
Careen's function in Keldysh space as (2 X2)-matrix
Careen's functions in particle-hole (or Nambu) space
(Nambu, 1960; Schrieffer, 1964).

We introduce the basic Green's functions in particle-
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hole space gog=5(t( t)—) . (5.13)

&q, (1)y,(1') & &1(,(1)y,(1') &

&1(t(1)y,(1)& &@,(1)y,(1)&

&1i',(1)y'„(I)& &q, (1)y',(1)&

(5.3)

G() '(l, l')=G() '(l)5(1 —1'),

G;((I)=id',
,
—e(1),

(5 5)

(5.6)

The results of Sec. II are immediately taken over and
we obtain the equation of motion

[ Go ' —XI SG =5(1—1'), (5.4)

where

K gR I iogA (5.14)

The important feature, that the coefficient on the
right-hand side of Eq. (5.13) is independent of the space
coordinates, was established by Eilenberger (1968) and
Larkin and Ovchinnikov (1968) for the static case. It was
noted by Larkin and Ovchinnikov (1975), by taking the
spatial derivative of Eq. (5.13), that the normalization
condition is in general compatible with the equation of
motion. The normalization condition for the general,
nonstationary case was discussed recently by Shelankov
(1985).

The normalization condition allows us to represent
the Keldysh component in terms of a distribution matrix
h,

E( 1)= — 8 +eq&(1 )—p,1 2 (5.7) Equation (5.10) consists of three coupled equations,

[g
1 +i (rR ( A )og

R ( A )] 0 (5.15)
B(1)=V„ier—A(1) . (5'.8)

The matrix structure is the tensorial product of Kel-
dysh and particle-hole space (unit matrices are
suppressed). Thus r appearing in Eqs. (5.6) and (5.8)
denotes

~3 0
0

Similarly, we have the conjugate equation

G(g) IG() ' —XI =5(I—1') . (5.9)

The arguments that bring us from the above equations
of motion to the quasiclassical ones are identical with
those we used for the normal state. Subtracting the two
Dyson equations (5.4) and (5.9) we can, as in the normal
state, introduce the quasiclassical Green s function satis-
ying

[go '+i~;g] =o (5.10)

g() '(p, R,t„tt)=go—'(p, R, t()5(tt —t) ),
g() '(p, R, t) )=r r), +vR [VR ier A(R, t—) )]

(5.11)

+icy(R, t() . (5.12)

For the case of inelastic interactions, Eq. (5.10) was first
obtained by Eliashberg (1971).

In the superconducting state, the components of the re-
tarded and advanced Green's functions in particle-hole
space will not reduce to numbers as in the normal state
[cf. Eq. (3.12)]. Equation (5.10) thus constitutes a compli-
cated set of equations describing the coupling between
states (g '"') and the occupation (g ) of these states. An
important simplifying feature, when it comes to reducing
Eq. (5.10) to a more solvable form, is the existence of a
normalization condition

and

gR g g gA 0 (5.16)

~e-ph+ imp+ sf (5.18)

The expressions for the components of Lr' )'" are identical
in form to Eq. (3.8),

rrR ( A ) dp ~(g KD R ( A ) + R ( A )L)K)~e-p~e-ph =

~K ~
p~~ gR gA DR DA +gKDKeph 8

Furthermore

(5.19)

Lr' = —i~)t(Xo
~

U(P'P')
~

2g(RP' t) t( )
4m

(5.20)

o' = — ~ g Rp', t],t]sf l dP
'

3

2w, 4m
(5.21)

B= rr +h o rr cr o h +—[go 'o h ] (5.17)

The equation for g"'"' determines the states of the sys-
tem, while the equation for h determines the occupation
of these states. In obtaining Eq. (5.16) from the Keldysh
component of Eq. (5.10) we have utilized the equations
for g"'"' and the fact that the composition o is associa-
tive.

To get a closed set of equations we must specify the
self-energy. Apart from the inherent electron-phonon in-
teraction, we shall allow for impurity scattering in the
Born approximation, including spin flip. The self-energy
o. is given by

The third Pauli matrix, operating in particle-hole space, is
denoted by ~. No confusion with our notation in Keldysh
space should arise.

34This choice is not unique. A choice maQing the resemblance

between the Boltzmann equation and Eq. (5.16) immediate in

the quasiparticle approximation has been introduced by Shelan-

kov (1980).
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where we have treated the spin-flip scattering in the s-
wave approximation corresponding to the spin-flip
scattering rate

=2m n, tNpS (S + 1)
(
ust(p'p')

(
4m

(5.22)

Here n, t is the concentration of spin-flip impurities, S
their spin and u,t(p.p ') the interaction. For later use we
introduce the normal impurity scattering rate given by

B. The dirty limit

In the dirty limit, ~T, &&1, we can reduce the integral
equation with respect to the non-spin-flip impurity
scattering to a differential equation of diffusion type. In
the dirty limit the Green s function will be almost isotro-
pic. We therefore make an expansion in spherical har-
monics keeping only the s- and p-wave parts (Usadel,
1970),

g(p, R, t(, t1 )=g, (R, t), t1 )+p ~g(R, t(, t(. ) .
(5.23)

The self-energy

(5.34)

To elucidate the information contained in Eq. (5.15),
we solve it in equilibrium and take the BCS limit, obtain-
ing

a(p, R, t), t( )=o,(R, t(, t) )+p oF(R., t(, t( )

is given by

(5.35)

R(A) R(A)P+ ~R(A) 1

~R(A) =(+)N, (E)+is,(E),
P '"'=N2(E)(+)F2(E),

(5.25)

(5.26)

I
CT—S r g, r +og'rh,

7$

l
o's = — gs+LTs ~2r— (5.36)

(5.37)

where

N1(E)= 8(E —b, ),(E2 g2)1/2

2 2(n(g2 E2)1j2

R2(E)=—N1(E),

R1(E)= — N2(E),

(5.27)

(5.28)

(5.29)

(5.30)

A. p

p oF ———inn;Np
~

u(PP')
~

p'
~g4m

(5.38)

Performing the angular average on the right-hand side
of Eq. (5.38) gives

l
CT

2
(5.39)

where ~« is the impurity transport lifetime,

and, since the non-spin-flip impurity scattering is as-
sumed to be dominant,

with 6 being the BCS energy gap.
In the static case it follows from Eq. (5.15) that gR'

is traceless, so that
=2mn;Np J ~

u(p.p')
~

[1—(p P')] . (5.40)
4~

R(A) ~R(A) 3+pR(A) 1+ R(A)P (5.31)
We also rewrite (without approximations) the inverse

propagator gp
—' in s- and p-wave form,

In applications to time-dependent phenomena, the trace-
less form in Eq. (5.31) has so far proved to be sufficiently
general.

The quantities a, p, and y denote the generalized densi-
ties of states, and we recognize N1 in the BCS limit as the
usual normalized BCS density of states.

We only have to consider one set of generalized densi-
ties of states, since from the general equality (e denotes
complex conjugation and t denotes Hermitian conjuga-
tion)

with

g
—I g

—1 +p~.g
—1

gP ' ——(r B,, +ie(P)5(t( t1 ), —

gp =uFd ~
P

B=(VR ier A)5(t( —t1 ) . —

(5.41)

(5.42)

(5.43)

(5.44)

G (1,1')=r (G (1',1))V

it follows that

(5.32)

1. The equation of motion

In the dirty limit we can split the equation of motion
(5.10) into an even and odd part with respect to p,

~A (~R)+ pA (pR)e +A ( R)e (5.33)
[g p +i& ogq] + 3 uF[BogF] =0, (5.45)

We shall not consider Eq. (5.16) in its full generality, but
derive the collision integral for the case of a dirty super-
conductor.

The subscript on o,'P" designates that it is only a functional
of g, .
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1
[g,og, ] +URQog. ]-=0

tr
(5.46)

2. Generalized densities of states
in the static limit

g, og, =5(t) —t, ), (5.47)

[gsogp]+=0 ~ (5.48)

Using the s- and p-wave parts of the normalization
condition,

In this section we shall further reduce the diagonal
components of Eq. (S.S1) by considering the static limit.
We shall treat the pairing effect (contained in Reo"'")) in
the BCS approximation and approximate the electronic
damping by the equilibrium expression. Then the retard-
ed (advanced) electron-phonon self-energy reduces to

r

we can solve Eq. (5.46) for g
R(A) l

cog ph
— AE(+)

+111
(5.53)

g p
= —ig.o Mop, ] (5.49)

with the gap matrix

where / is the impurity mean free path, (5.54)

I =VF1tr . (5.50) where (from now on we drop the s-wave subscript)

Inserting Eq. (5.49) into Eq. (5.45) we obtain for the s-
wave part

I dE Tr[(~' —iH)g ]
8 1+X

(S.55)

[g o +io,' DBog, o—Bog, ] =0,

where D is the diffusion constant,

D= 3Vgl .

(5.51)

(5.52)

is the order parameter, and coD is the Debye frequency.
The renormalization factor is ( 1+A, ) and the inelastic
scattering rate is denoted by 1/r;„.

%'e now perform a Taylor expansion to lowest order in
the equation

Equation (5.51) is the starting point for considering
general nonequilibrium phenomena in a dirty supercon-
ductor.

—i+ ~ R(A) Dg R(A) g g A ] ()
7

(5.56)

and obtain for the off-diagonal components of Eq. (5.56)

' D[a~2(P iy) (P &y)P2 a]R(A)

,' D[a&*—(p+iy ) (p+i y —)VRa] —iE( )
+ 1

1Il

R(A)

(p i y ) ha+ —a(p —i y )—
Ts

R(A)

(p+i y ) b,*a+ a(p+i—y )

(5.57)

(5.58)

where we have neglected terms involving time derivatives,
since we consider only the static limit. We have further-
more introduced the gauge-invariant derivative

g o8 —n'og =0 (5.61)

gR(A) and the fact that the composition 0 is associative,
we can bring it to the form

M=VR 2ieA . —

Together with the normalization condition

a2+ p2+ y2

(5.59)

(5.60)

with

B[h]= (go ) 'oh —ho (go )
' io, ph—

—DBog o[Boh] —D[Boh] og"oB,

where

(5.62)

Eqs. (5.57) and (5.58) determine the generalized densities
of states in the static limit. For brevity we have in Eq.
(5.60) and the following denoted a by a, P by P, and y
by y.

(g(R)'")-'= ized'+ icy—+a
p R(A) 3 R(A) 31

lQ mph ~
Vg 7

7$
(5.63)

3. Dirty-limit kinetic equation
in the static limit

To obtain a kinetic equation we take the Keldysh com-
ponent of Eq. (5.51). Using the equation of motion for

In the static limit considered we can choose the distribu-
tion matrix h to be diagonal,

6Tr denotes trace in particle-hole space.
7The prime on the electron-phonon self-energy indicates that

it does not include the order-parameter term.
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h =h)~ +h2~ (S 64) —DVR™)(E,E)VRh, +DVRh2

We now perform a Taylor expansion in Eq. (5.61) and
linearize the equation with respect to h& —ho and h2.
Subsequently, we take the trace of this equation and the
trace of the equation multiplied by ~ . For the phenome-
na considered below, we may set the y term in Eq. (5.31)
equal to zero. This ansatz is valid in many physical situa-
tions (see Schmid, 1981 for further discussion). In addi-
tion, we choose a gauge in which 5 is real:

+4N2R2e A'VR&2 ——K) [it ) ] (5.65)

DVR™2(EiE)VRh2 +2~Nplt2

+4DN2R2e A VRh, =K2[h2], (5.66)

where

K; [h; ]= — f dE'p(E E')M;—(E,E')
1+1,

h; (E)cosh —h;(E')cosh
2T 2T

~ hE —E' E Esinh cosh cosh
2T 2T

(5.67)

Here p is the Fermi-surface average of the function p
occurring in (3.18) and

N)(E)N)(E') —Rp(E)R2(E'), i =1,
N)(E)N((E')+Np(E)Np(E'), i =2 . (S.68)

Together with the expressions for the charge and
current density,

M;(E,E')= .

p= eNo 2eq—o+ —, f dETrg (5.69)

j=— f dETr(r gz), (5.70)

the kinetic equations (5.65) and (5.66) supplemented with
Eqs. (5.57) and (5.58) for the generalized densities of
states, the gap equation (5.55) and Maxwell's equations, .

constitute a complete description of a dirty superconduc-
tor in the static limit.

C. An example: Impurity scattering
in the presence of superflo~
and a temperature gradient

As shown in the previous section, the dirty limit
presents a particularly simple case, since the Green's
functions are nearly isotropic due to the dominance of im-
purity scattering. This makes it possible to obtain an ex-
pansion in s and p waves. The resulting kinetic equations
are not necessarily restricted to the dirty limit for validity.
%'hen pair breaking is negligible, the kinetic equations
(5.65) and (5.66) reduce to the quasiparticle Boltzmann
equation, as demonstrated in detail by Beyer Nielsen
et al. (1982). In the presence of superflow, the anisotropy
associated with the moving condensate becomes impor-
tant, and one must investigate in detail the meaning of the
dirty limit and the validity of the quasiparticle Boltzmann
equation. This section illustrates how the transition be-
tween these two extremes is accomplished for the case of
impurity scattering in the presence of superflow.

In the example discussed below we investigate the non-
equilibrium distribution set up by a temperature gradient
for the case when a supercurrent is present. To keep the
discussion simple, we neglect electron-phonon scattering

go ——r (E —p.v, )+t V —ep .—1 3 ~ PI (5.71)

Here, E is the energy variable, p=pFp the momentum, v,
the superfluid velocity, and g the electrostatic potential.
We neglect for simplicity the effects of phonon renormali-
zation, although they may be included readily (Beyer
Nielsen et al. , 1982). The gap parameter 6 occurring in
Eq. (5.54) is taken to be real, in accordance with our
neglect of lifetime effects. The retarded part o~ of the
self-energy is then

R g 1+ R (5.72)

where cr; ~ is the retarded component of Eq. (5.20). To
solve the equation of motion (5.10) we use the ansatz
y=0 in Eq. (5.31), corresponding to the normalization
condition a +P =1. The kinetic equation is obtained
from the component of Eq. (5.10) which is off-diagonal in
Keldysh space, and proportional to ~ in Nambu space,

T I 3[(g —& &)g& IcgA gE(g 1.A)—
+gR X]~ (5.73)

When go
' and cr are inserted from Eqs. (5.71) and (5.72),

together with Eq. (5.14) for g, with h given by Eq.
(5.64), the following kinetic equation results:

I

and treat only impurity scattering. The simultaneous
presence of a temperature gradient and a supercurrent
gives rise to a charge imbalance that may be observed by
use of a tunneling probe (Clarke, 1972; Tinkham, 1972).
This particular effect was first proposed by Pethick and
Smith (1979) and subsequently observed by Clarke,
Fjordb@ge, and I.indelof (1979). The role of impurity
scattering has been considered by Schmid and Schon
(1979), Clarke and Tinkham (1980), and Beyer Nielsen
et al. (1980).

The general equation of motion (5.10) contains the in-
verse of the noninteracting Green's function go

' given in
Eq. (3.3). In the present case, go

' is a 2X2 matrix in
Nambu space, which is given by Eq. (5.12),
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Ni .Vf = ——[(Ni (Ni )+N2(Nz) }f (5.81) and the normalization condition

a2+p2 (5.82)
N—i(Nif ) —Np(N2f )]

2b,N—Q (5.74)

where ( ) here denotes an average over the direction of
the momentum p. We have introduced the distribution
functions f and f (Schmid and Schon, 1975a), which
are connected with hi and hz by the definitions
hi =1 2f, h—2 2f . T——he integral equation (5.74) is se-
parable and may readily be solved once f =f (E) is in-
serted on the left-hand side. When v, is parallel to VT,
Eq. (5.74) may be written as

c (E)Nix = (Ni (Ni ) +N2 (N2) )fr

Ni (Nif ) —N2 (N2f ) +yo Nzf

(5.75) or (5.83)

The transition from the clean limit to the dirty limit
has been discussed extensively by Schon (1981) and by
Beyer Nielsen et al. (1982). The effect of impurities is
found to depend strongly on energy. For the case of weak
impurity scattering one finds that the charge relaxation
rate for states in the pocket with energy

p—„u,&E &6,+pzu, is of the order (1/r)(p~u, /6)'
Pair breaking in the pocket region cannot be treated as
small when the charge relaxation rate is comparable to a
typical quasiparticle energy, measured with respect to the
gap b, . Thus for energies near 5 the transition between
clean and dirty behavior occurs when

1/2
1 PFUs

~PFg

with x=P VT, yo ——1/2rb and c(E)=uzi
~
VT

~
(E/

T)(Bf /BE). We can now find the averages (Nif ) and

(N,f'x),
1 PF~s

' 1/2

(Ni '7 x)+y (oNi x)(Ni N27)
Nif =c

1 —(Ni '7.)

and

(5.76)

For
~

E
~

b, pFu, &—&pF—u, Beyer Nielsen et al (198. 2).
found for the quantity of importance in the expression for
the charge imbalance, Eq. (5.79),

(Nif )=—rv, VT uzp~—
E Bf

+(N, f'&(N -. &,

where the quantity 7. is defined as

(5.77)

(N,fTx) = c((N, '7x')+yo(Nix)(N, N, '7x)) " (E~ g )2+2(E2 g~)1 2+ ' I 4

(Ez —b2+ I.2)2(Ez b 2)

(5.84)

(N i (N i ) +N2 (N2 ) + y-o 'N2 ) . (5.78)

and

Q =2No f dE(N, f (5.79)

The results of Eqs. (5.76)—(5.78) are obtained most easily
by eliminating (N2f ) by averaging Eq. (5.75) over an-
gle. From the averages [Eqs. (5.76) and (5.77)] the charge
imbalance Q' and heat current j,h are determined accord-
ing to

Q =
i5 Noppvgrv, . —I (I /T),4 VT

(5.85)

where I =1/2r. This result shows that the transition be-
tween the clean and dirty limits occurs when
(E b, )'~ =1/2w—. Close to T„the region where

~

E
~

—b, —p~v, &pFu, contributes little to the charge im-
balance, and to leading order in 5 the charge imbalance,
in Eq. (5.79) may be obtained by integrating over E the
high-energy expression (5.84) with 5 put equal to zero.
One finds

j,h
——2No vF I dE E (N if x ) . (5.80) where

As discussed by Schmid (1981), for example, the charge
imbalance of Eq. (5.79) is directly observable in a tunnel-
ing experiment (Clarke, 1972,1981).

Although formally the problem is solved by these re-
sults, one must know X~ and X2 as functions of energy
and angle in order to carry out the integrals over these
two variables. The component of Eq. (5.10) diagonal in
Keldysh space yields one equation which a and p must
satisfy,

I(I /T) =2+7yg'( —,
' +y)+4y'g"( —,

' +y), (5.86)

while in the dirty limit I=5 and Q' is given by

where y =I /(2~T), and g' and P" are the trigamma
function and its derivative. In the clean limit (I /T —+0),
I=2 and Q* is given by

8 PT
is m, VF~, .

(E pFu, cos8)p i ha+— ((a)p ——(p)a) =0 .1

27
(5.81) 4 TT

3 ~OUF~ '
~

The functions a and p are obtained as solutions of Eq. The transition between these two limiting behaviors is
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given by the function I (1 /T), which increases monotoni-
cally with increasing I /T.

Vl. CONCLUSIONS

determine the -self-energy X and derive the collision in-
tegral.

We first write out the self-energy Xc,„~corresponding
to Fig. 22(b),

The use of quantum field-theoretical methods in trans-
port theory serves a dual purpose: it provides a micro-
scopic justification for the use of a semiclassical
Boltzmann equation, and it allows one to generalize this
approach to take renormalization and lifetime effects into
account in a systematic manner. The Keldysh formula-
tion, which we have reviewed here, provides g convenient
and general framework for deriving kinetic equations. In
the context of certain applications, such as those involv-

ing localization and interaction effects in dirty metals, the
use of a kinetic equation may be quite cumbersome. In
such cases, the Keldysh technique may be used as a con-
venient starting point for linear-response theory, which al-
lows answers to be obtained more directly. The advantage
of the kinetic equation method over linear-response
theory is that it allows one to consider situations where
nonlinearities are important, and in addition provides a
direct link to a description at the level of the semiclassical
Boltzmann equation.
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gcjo&(1 1')=' f d2 f d3 f d4 f d51,';(5;1,3)Ukk'(»4)

X G; '(3,2)I " (4;2, 1' }.

U(5, 4) = U(5 —4) . (A2)

%'e introduce the Fourier transformations

I (5;1,3)= f (dq)e ' ' 1 (q'1, 3), (A3)

I (4;2, 1') = f (dq)e 1 (q;2, 1'), (A4)

and obtain

&c „&(1,1')=i f d2 f d3 f (dq)U(q)e'

X I ( —q;1,3)G(3,2)

X 1"(+q;2,1') . (A5)

Transforming to the mixed representation and neglect-

ing the gradient terms leads to

~J' (»p)=E f (dq)Ukk(q)I, ';( q;p, X)—

(Al)

For calculating the inelastic collision rate, we can use the
equilibrium value of the screened Coulomb propagator U,
so that

APPENDIX: VERTICES, SELF-ENERG IES,
AND THE COLLISION INTEGRAL X G; J (p q,X)I J"'j(q;p—,X) . (A6)

In this appendix we solve the algebraic equations for
the vertex function I corresponding to Fig. 23. We then

The absorption vertex I,J is determined by the integral

equation (cf. Fig. 23)

I;"1( q;Xp) =p,"J +—f (dk)
~

u (p —k)
~

'G, ; (X,k)I,"', ( q;X, k)G, ,(X—,k q), — (A7)

where
~
u(p)

~

is the Fourier transform with respect to r —r' of the correlator (u(r)u(r')). A similar equation holds for
the emission vertex I .

For simplicity we treat the impurity scattering in the s-wave approximation, so

i u(p)
i
=u (AS)

[cf. Eq. (4.1)]. In that case the integral equations for the vertices will reduce to algebraic equations that are readily
solved:

1

r'( —q;X,E)= 0

~RK+ ~KA

RA

1
(A9)

I ( —q;XE)=
~2(1 AR) ]

1 —nAR+nKRnRK+ nKK+nKAnAK
RA

AK

Rev. Mod. Phys. , Vol. 58, No. 2, April 1986



J. Rammer and H. Smith: Field-theoretical methods in transport theory

I '( —q;X,E)=I ( —q;X,E)
/

„

I ( —q;X,E)=l"'(—q;X,E)
i

„

where (we suppress the spatial dependence)

=«Iqz ——u f (dk)gkgg q,

q I'=q, ~ =u' f (dk)g„,gg,

(Al 1)

(A13)

and a,P=R, A,K. These vertices have considerably more components in Keldysh space than the bare vertices, and the
self-energies will accordingly be quite lengthy:

r —KR RIC

+ AR 1 + AR (1 ~RA)(1 AR)

KRE R A R+ Uq Gp-q+Uq
1 —g

AK
1

—KA

—AE
+ Uq Gp-q+Uq AR Gp-q

K A R 9 A

~ AR (A16)

r

AR ~KR—RE —KE+ EA—AK AK —RK EA
yE (X ) (d ) URgR ) + 1 9 +9 ) ) +URGE / + 9 + ) UKGRCow ~P =2 9 q p —q (1 —~R)(1— R")'9 —71 '9 '9

~KR —EA ~KR . ~RK ~ AE
+Uq Gp-q+ AR Uq Gp-q RA+ AR Uq Gp q+ RA Uq Gp" q AR1 —g 1 —g 1 —g 1 —g . 1 —g

RK+ EA '

1 ~AR+ ~ER~RE+ ~EE+~KAYAK+
1 —7l

UEGA + USGA
(1—g )(1—g )AR RA (A17)

We can now write down the collision integral I, but beforehand we divide it into two parts, depending on the presence
of the Coulomb propagator,

I =limP+&COull ~

where I; ~ and 5C,&I originate in X; ~ and X C,„I,respectively.
The impurity collision integral has the form

I; p u f (dk)i(gk —G— )(kh —
khan),

(A18)

(A19)

as obtained from Eqs. (2.71) and (3.8S). It vanishes when h is only a function of the energy, and therefore does not con-
tribute to the inelastic collision integral.

The increment to the collision integral 5c „~Ican be divided into an inelastic part I that only vanishes if h is the
equilibrium distribution, and an elastic part I"that vanishes whenever h is only a function of the energy,

(A20)

As we shall see, this separation requires the addition and subtraction of the terms involving u explicitly in Eqs. (A21)
and (A22) below.

Using Eqs. (A1S)—(A17) we obtain

—RE+—EAI =
2 f (dq) Uq Gz q+Uq Gz" q+U«RG& q 2h&Re(U« Gz q+U«RG& q)+2Re Uq Gz q

Q+2 Re Uq"G~"
q 1 — f (dk)gk Gk qhkhz «)1—

and

Q+ 2Re
1

Uq GR q f (dk)gk Gk qhRhk q (A21)
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I"=f (dq) Re Uq"Gp"
q

~KR~RK+ ~KK+ ~KA AK KR
Q

hp q+ f (dk)Gk Gk qhkhk q

RK—AK

+Re URG~
p

AK u2
hp q hp —f «k)gkgk" qhkh-k q-

1 — ' 1— (A22)

where the expressions have been simplified by noting that

-aa aa
( aa)g R & R, CE=A

a=A . (A23)

This completes the derivation of the collision integrals. We shall in addition need the polarization given in Eq. (4.52).
Using the Feynman rules we obtain for the components of Eq. (4.53) the result

fiji (d )(GRgE +GKGA +—IcRGItgR +~ AKgAGA ) (A24)

—RK+—KA

p p q p p q
1 ge p p

(d ) Gggg +—KRGKGR +GKGK +—AKGAGK
1—

—AR —KR—RK —KK —KA—AK'I ~ ~'I ~'I "I 6AGR
1 —g' P JJ —0

(A25)

(A26)

Note that the various inter-relations between the expressions appearing in this appendix constitute a useful check on their
correctness.
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