Universität Bonn Physikalisches Institut Prof. Dr. H. Kroha, M. Arnold 07.11.2003

Übungen zur Festkörpertheorie I — WS03/04

2. Übungsblatt

Electronic Band Structure

1. Tight-binding Model and Density of States

http://www.th.physik.uni-bonn.de/th/Groups/kroha

We consider a d-dimensional cubic lattice (d = 1, 2, 3) with a lattice constant a (=length of primitive lattice vectors) and with a single atom on each lattice site $\vec{R_i}$. Each atom has one atomic orbital $\Psi_i(\vec{r}) = \Psi(\vec{r} - \vec{R_i})$ with energy ε_0 . The matrix elements of the kinetic energy are

$$\langle \Psi_i \left| \frac{\hbar^2 \nabla^2}{2m} \right| \Psi_j \rangle = \left\{ \begin{array}{ccc} -t_{ij} < 0 &, & i, j \text{ nearest neighbors} \\ 0 &, & \text{else} \end{array} \right.$$

- a) Write down the Hamiltonian matrix H in the basis of atomic orbitals $\{\Psi_i\}$.
- b) Show that H is diagonalized by Fourier transformation with respect to the positions i, j and determine the band energy $\varepsilon_{\vec{k}}$ and the group velocity $v_{\vec{k}}$ for d = 1, 2, 3.
- c) Sketch for the two-dimensional case (d=2) the lines of constant energy $\varepsilon_{\vec{k}} = const.$ in the 1st Brillouin zone. In particular, draw the constant energy lines in the band center, $\varepsilon_{\vec{k}} = \varepsilon_0$.
- d) Calculate the density of states (DOS) $N(\varepsilon)$ (per spin direction) for d=1,2,3 dimensions. Determine the positions and the shape of the van Hove singularities for each case.
 - <u>Remark:</u> For d = 2, 3 $N(\varepsilon)$ cannot be given in a closed form. In these cases, calculate $N(\varepsilon)$ only in the vicinity of the van Hove singularities.
- e) Discuss why the shape of the van Hove singularities at the band edges is characteristic for the dimension d and does not depend on the lattice structure.

2. Electrons in a weak periodic potential - perturbation theory

We consider an electron (free dispersion $\varepsilon_{\vec{q}}^{(0)}=\hbar^2q^2/2m)$ moving in a weak periodic potential

$$U(\vec{r}) = \sum_{\vec{K}} U_{\vec{K}} e^{i\vec{K}\cdot\vec{r}} ,$$

where \vec{K} is a reciprocal lattice vector. The Bloch wave function is $\Psi_{\vec{q}}(\vec{r}) = \sum_{\vec{K}} c_{\vec{K}+\vec{q}} \exp[i(\vec{q}+\vec{K})\cdot\vec{r}]$. We choose without loss of generality the zero of the energy scale such that $U_0 = 0$.

- a) Determine the Schrödinger equation in reciprocal space (compare lecture).
- b) Calculate the linear correction to the wave function $\Psi_{\vec{q}}(\vec{r})$ due to the periodic potential $U(\vec{r})$, i.e. calculate the coefficients $c_{\vec{K}+\vec{q}}$ of the wave function in $O(U_{\vec{K}})$. Assume here that $\Psi_{\vec{q}}(\vec{r})$ is not nearly degenerate with another wave function $\Psi_{\vec{q}+\vec{K}}(\vec{r})$ for any reciprocal lattice vector \vec{K} (1st order non-degenerate perturbation theory).

<u>Hint:</u> Verify that the linear correction to the energy $\varepsilon_{\vec{q}}^{(0)}$ vanishes. Then calculate the coefficient $c_{\vec{K}+\vec{q}}$ (for arbitrary, fixed \vec{K}) of the corrected wave function $\Psi_{\vec{q}}$ in $O(U_{\vec{K}})$ from the Schrödinger equation in reciprocal space, and note that only the coefficient $c_{\vec{q}}$ is of $O(U_{\vec{K}}^0)$.

- c) Using the result of b), calculate the shift of the energy of $\Psi_{\vec{q}}$ in $O(U_{\vec{K}}^2)$.
- d) Assume now that \vec{q} is close to a Brillouin zone boundary, so that $\Psi_{\vec{q}}(\vec{r})$ and $\Psi_{\vec{q}+\vec{K}}(\vec{r})$ are (nearly) degenerate for exactly one reciprocal latice vector \vec{K} . Determine the wave functions $\Psi_{\vec{q}}(\vec{r})$ $\Psi_{\vec{q}+\vec{K}}(\vec{r})$ in the periodic potential as well as their energies.
- e) Draw the dispersion relation $\varepsilon_{\vec{q}}$ in the presence of the periodic potential in the extendend, the reduced and in the periodic zone scheme. Show that at a Brillouin zone boundary the component of the group velocity $\vec{v}_{\vec{q}}$ perpendicular to the zone boundary is zero. Give an interpretation of this result in terms of the form of the corresponding Bloch wave function at the zone boundary.