30.01.2004

## Übungen zur Festkörpertheorie I — WS03/04

## 6. Übungsblatt

## Stationary electrodynamics of type I superconductors

1. Meißner effect in a thin superconducting slab in parallel magnetic field Consider a thin superconducting slab of thickness d, which is infinitely extended in the y and z direction, in a uniform magnetic field  $\vec{B}$  parallel to the slab surface. The superconductor is described by the London equations

$$\begin{split} \frac{\partial}{\partial t} \left( \Lambda \vec{j} \right) &= \vec{E} \;, \quad \Lambda = \frac{m}{n_s q^2} \\ \nabla \times \vec{H} &= \frac{4\pi}{c} \vec{j} \;. \end{split}$$

- a) Calculate the magnetic field distribution H(x) in the slab. What is the London penetration depth  $\lambda_L$ ?
- b) Calculate the average magnetization of the slab in dependence of its thickness.



## 2. Critical field and critical current of a type I superconducting wire

a) Calculate the critical field  $H_c$  of of a macroscopic sample of a type one superconductor, using the Ginzburg-Landau theory.

The current flowing through a superconducting wire generates a magnetic field B outside of the wire. When at the surface of the wire this field reaches the critical value  $H_c$ , the superconductivity will collapse. Therefore, the critical field and, hence, the critical current depend on the geometry of the wire. We consider a cylindrical wire of radius R.

b) Show that the magnetic field lines form concentrical circles around the wire, and calculate the field strength B at the wire surface. Determine the critical current in the wire at which the superconductivity is destroyed?

- c) Calculate the current density distribution j(r) in the wire, and show that the current flows only in layer of thickness  $\lambda_L$  underneath the surface of the wire.
- d) Typical values for the London penetration depth and for the critical field are  $\lambda_L = 500$  Å and  $H_c = 500$  Øe, respectively. What is the current density averaged over a surface layer of thickness  $\lambda_L$ ?



BCS theory

3. Temperature dependence of the superconducting order parameter  $\Delta$  Using the BCS self-consistency equation

$$\frac{1}{|\lambda|N(0)} = \frac{1}{2} \int_0^{\hbar\omega_D} d\xi \frac{\tanh(\xi/2k_B T)}{\sqrt{\xi^2 - \Delta^2}}$$

determine the temperature dependence of the order parameter  $\Delta$ 

- a) for  $T \to 0$  and
- b) for  $t \to T_c$ .