Anti-Branes in Heterotic M-theory

James Gray - University of Oxford.

Based on work with André Lukas and Burt Ovrut.

hep-th/0701025
arXiv:0709.2914

5D Heterotic M-theory including anti-branes.

What I say today will be valid for a single anti-brane, as shown, but generalizes trivially to an arbitrary number of these objects.

A Toy Model of the Warping in Heterotic.

$S \sim \int d^{5} x\left[\partial_{\alpha} \Phi \partial^{\alpha} \Phi-\delta(y) S_{(0)} \Phi-\delta(y-\pi \rho) S_{(N+1)} \Phi\right.$
$\left.-\sum_{p=1}^{N} \delta\left(y-y_{(p)}\right) S_{(p)} \Phi\right]$
Bulk equation of motion: $\quad \square_{5} \Phi=0$
At the boundaries: $\left.D_{y} \Phi\right|_{y=0}=-S_{(0)},\left.D_{y} \Phi\right|_{y=\pi \rho}=+S_{(N+1)}$

At the branes: $\quad-\left.D_{y} \Phi\right|_{y=y_{(p)}+}+\left.D_{y} \Phi\right|_{y=y_{(p)}-}=S_{(p)}$

Perform the split:

$$
\Phi=\phi_{0}\left(x^{\mu}\right)+\phi\left(x^{\mu}+y\right)
$$

$$
\int_{0}^{\pi \rho} \phi d y=0
$$

Bulk equation becomes: $\quad \square_{4} \phi_{0}+\square_{4} \phi+D_{y}^{2} \phi=0$ Integrate the bulk equations across the orbifold and use boundary conditions:-

$$
\square_{4} \phi_{0}+\sum_{p} S_{(p)}=0
$$

Look at the case where warping is weak and 4d derivatives are small and substitute this back into the bulk equation:-

$$
D_{y}^{2} \phi=\sum_{p} S_{(p)}
$$

So in the end we have a system of equations for the warping:-

$$
\text { Bulk : } \quad D_{y}^{2} \phi=\sum_{p} S_{(p)}
$$

Boundaries:-

$$
\left.D_{y} \phi\right|_{y=0}=-S_{(0)},\left.\quad D_{y} \phi\right|_{y=\pi \rho}=+S_{(N+1)}
$$

Branes:-

$$
-\left.D_{y} \phi\right|_{y=y_{(p)}+}+\left.D_{y} \phi\right|_{y=y_{(p)}-}=S_{(p)}
$$

E.G. I:The supersymmetric vacuum

- Sources S are the tensions of the branes.
- Sum of the charges on the compact space is zero.
- Objects are BPS so tension = charge.
- Therefore $\sum S=0$ and the bulk equation becomes $D_{y}^{2} \phi=0$.

The warping in the supersymmetric vacuum is linear in y.

E.G. 2:Warping due to matter fluctuations

- The sources S are now the kinetic and potential terms for brane and boundary localized fields.
- Therefore $\sum S \neq 0$ (matter on different objects is independent).
- So in this case bulk equation is $D_{y}^{2} \phi=\sum S$.

The warping due to matter field fluctuations is quadratic. This is typical of any change away from the pure tension vacuum in heterotic M-theory.

E.G. 3:Anti-branes in heterotic M-theory.

- Sources S are the tensions of the branes and antibranes.
- Sum of the charges on the compact space is zero.
- For an anti-brane charge $=-$ tension.
- So tensions do not sum to zero and we have in the bulk $D_{y}^{2} \phi=\sum S$.

Thus the warping due to the anti-brane is quadratic in y.

Heterotic M-theory in five dimensions:

The bulk theory:

$$
\begin{array}{r}
S=-\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x \sqrt{-g}\left[\frac{1}{2} R+\frac{1}{4} G_{k l}(b) \partial b^{k} \partial b^{l}+\frac{1}{2} G_{k l}(b) \mathcal{F}_{\alpha \beta}^{k} \mathcal{F}^{l \alpha \beta}+\frac{1}{4} V^{-2}(\partial V)^{2}+\lambda\left(d_{i j k} b^{i} b^{j} b^{k}-6\right)\right. \\
+\frac{1}{4} \mathcal{K}_{a \bar{b}}(\mathfrak{z}) \partial \mathfrak{z}^{a} \partial \overline{\mathfrak{z}} \bar{b}-V^{-1}\left(\tilde{\mathcal{X}}_{A \alpha}-\bar{M}_{A B}(\mathfrak{z}) \mathcal{X}_{\alpha}^{B}\right)\left([\Im(M(\mathfrak{z}))]^{-1}\right)^{A C}\left(\tilde{\mathcal{X}}_{C}^{\alpha}-M_{C D}(\mathfrak{z}) \mathcal{X}^{D \alpha}\right) \\
\left.+\frac{1}{4!} V^{2} G_{\alpha \beta \gamma \delta} G^{\alpha \beta \gamma \delta}+m^{2} V^{-2} G^{k l}(b) \hat{\beta}_{k} \hat{\beta}_{l}\right] \\
-\frac{1}{2 \kappa_{5}^{2}} \int\left(\frac{2}{3} d_{k l m} \mathcal{A}^{k} \wedge \mathcal{F}^{l} \wedge \mathcal{F}^{m}+2 G \wedge\left(\left(\xi^{A} \tilde{\mathcal{X}}_{A}-\tilde{\xi}_{A} \mathcal{X}^{A}\right)-2 m \hat{\beta}_{k} \mathcal{A}^{k}\right)\right)
\end{array}
$$

- V :Volume of the Calabi-Yau.
- b^{k} : Shape of the Calabi-Yau.

Boundary theories:

$$
\begin{array}{r}
-\int d^{5} x \delta(y) \sqrt{-h_{(0)}}\left[\frac{m}{\kappa_{5}^{2}} V^{-1} b^{k} \tau_{k}^{(0)}+\frac{1}{16 \pi \alpha_{\mathrm{GUT}}}\right.
\end{array} \begin{aligned}
& \operatorname{tr}\left(\mathrm{F}_{(0)}^{2}\right)+\mathrm{G}_{(0) \mathrm{IJ}} \mathrm{D}_{\mu} \mathrm{C}_{(0)}^{\mathrm{Ix}} \mathrm{D}^{\mu} \overline{\mathrm{C}}_{(0) \mathrm{x}}^{\mathrm{J}} \\
+ & \left.V^{-1} G_{(0)}^{I J} \frac{\partial W_{(0)}}{\partial C_{(0)}^{I x}} \frac{\partial \bar{W}_{(0)}}{\partial \bar{C}_{(0) x}^{J}}+\operatorname{tr}\left(D_{(0)}^{2}\right)\right]
\end{aligned}
$$

and similarly on the other boundary

Brane theories:

$$
\begin{aligned}
-\frac{1}{2 \kappa_{5}^{2}} \int d^{5} x\{ & \sum_{p=1}^{N}\left(\delta\left(y-y_{(p)}\right)+\delta\left(y+y_{(p)}\right)\right) \sqrt{-h_{(p)}}\left[m V^{-1} \tau_{k}^{(p)} b^{k}+\frac{2 m\left(n_{(p)}^{k} \tau_{k}^{(p)}\right)^{2}}{V\left(\tau_{l}^{(p)} b^{l}\right)} j_{(p) \mu} j_{(p)}^{\mu}\right. \\
& \left.\left.+[\Im \Pi]_{(p) u w} E_{(p) \mu \nu}^{u} E_{(p)}^{w \mu \nu}\right]-4 m \hat{C}_{(p)} \wedge \tau_{k}^{(p)} d\left(n_{(p)}^{k} s_{(p)}\right)-2[\Re \Pi]_{(p) u w} E_{(p)}^{u} \wedge E_{(p)}^{w}\right\}
\end{aligned}
$$

where

$$
j_{(p) \mu}=\frac{\beta_{k}^{(p)}}{n_{(p)}^{l} \beta_{l}^{(p)}}\left(d\left(n_{(p)}^{k} s_{(p)}\right)-\hat{\mathcal{A}}_{(p)}^{k}\right)_{\mu}
$$

These actions are supplemented by some Bianchi identities:

$$
\begin{aligned}
(d G)_{y \mu \nu \gamma \rho} & =-4 \kappa_{5}^{2}\left(J_{4 \mu \nu \gamma \rho}^{(0)} \delta(y)+J_{4 \mu \nu \gamma \rho}^{(N+1)} \delta(y-\pi \rho)\right) \\
\left(d \mathcal{F}^{k}\right)_{y \mu \nu} & =-4 \kappa_{5}^{2}\left(J_{2 \mu \nu}^{(0) k} \delta(y)+J_{2 \mu \nu}^{(N+1) k} \delta(y-\pi \rho)\right) \\
\left(d \mathcal{X}^{A} \mathcal{G}_{A}-d \tilde{\mathcal{X}}_{B} \mathcal{Z}^{B}\right)_{y \mu} & =-4 \kappa_{5}^{2}\left(J_{1 \mu}^{(0)} \delta(y)+J_{1 \mu}^{(N+1)} \delta(y-\pi \rho)\right)
\end{aligned}
$$

Where the magnetic sources here are determined by the matter and gauge field fluctuations.

$$
\begin{aligned}
J_{4 \mu \nu \gamma \rho}^{(p)} & =\frac{1}{16 \pi \alpha \mathrm{GUT}} \operatorname{tr}\left(F_{(p)} \wedge F_{(p)}\right)_{\mu \nu \gamma \rho} \\
J_{2 \mu \nu}^{(p) k} & =-i \sum_{I, J} \Gamma_{(p) I J}^{k}\left(D_{\mu} C_{(p)}^{I x} D_{\nu} \bar{C}_{(p) x}^{J}-D_{\mu} \bar{C}_{(p) x}^{I} D_{\nu} C_{(p)}^{J x}\right) \\
J_{1 \mu}^{(p)} & =\frac{e^{-\mathcal{K}}}{2 V} \sum_{I, J, K} \lambda_{I J K} f_{x y z}^{(I J K)} C_{(p)}^{I x} C_{(p)}^{J y} D_{\mu} C_{(p)}^{K z}
\end{aligned}
$$

So we just follow a very similar procedure to that shown in the toy model:

- We need a metric ansatz:

$$
\begin{aligned}
d s_{5}^{2} & =a^{2}\left(y, x^{\mu}\right) g_{4 \mu \nu} d x^{\mu} d x^{\nu}+b^{2}\left(y, x^{\mu}\right) d y^{2} \\
V & =V\left(y, x^{\mu}\right) \\
b^{k} & =b^{k}\left(y, x^{\mu}\right)
\end{aligned}
$$

- We need embeddings for the branes (appears in the induced metric etc.).

$$
X^{\mu}=\sigma^{\mu} \quad Y=y_{(p)}\left(\sigma^{\mu}\right)
$$

Solve for the warping as before:

$$
\begin{aligned}
\frac{a_{(p)}}{a_{0}} & =1-\epsilon_{0} \frac{b_{0}}{3 V_{0}} b_{0}^{k}\left[h_{(p) k}-\delta_{k}\left(z^{2}-\frac{1}{3}\right)\right] \\
\frac{V_{(p)}}{V_{0}} & =1-2 \epsilon_{0} \frac{b_{0}}{V_{0}} b_{0}^{k}\left[h_{(p) k}-\delta_{k}\left(z^{2}-\frac{1}{3}\right)\right] \\
b_{(p)}^{k} & =b_{0}^{k}+2 \epsilon_{0} \frac{b_{0}}{V_{0}}\left[\left(h_{(p)}^{k}-\frac{1}{3} h_{(p) l} b_{0}^{k} b_{0}^{l}\right)-\left(\delta^{k}-\frac{1}{3} \delta_{l} b_{0}^{k} b_{0}^{l}\right)\left(z^{2}-\frac{1}{3}\right)\right]
\end{aligned}
$$

Here y has been rescaled to give z and h is a linear function in z.

$$
h_{(p) k}(z)=\sum_{q=0}^{p} \tau_{k}^{(q)}\left(z-z_{(q)}\right)-\frac{1}{2} \sum_{q=0}^{N+1} \tau_{k}^{(q)} z_{(q)}\left(z_{(q)}-2\right)-\delta_{k}
$$

Points to notice:

- The warping is quadratic as promised. As we turn the anti-brane into a brane $(\delta \rightarrow 0)$ then it goes back to being linear.
- The orbifold average of the z dependent parts are zero.
- The warpings are all controlled by the parameter:

$$
\epsilon_{S}=\epsilon_{0} \frac{b_{0}}{V_{0}}
$$

Four dimensional heterotic M-theory is constructed as an expansion in this quantity.

An example:

- Red line is a supersymmetric case with one brane.
- The green line is what happens if you add an anti-brane.

Results:The four dimensional effective theory.

- We can use these warpings to systematically derive the four dimensional effective theory by dimensional reduction.
- Today I will present parts of the bosonic action. I will start with zeroth and first order in ϵ_{S} and then move on to some terms at second order.

Split up the first order result into pieces which contain the sum of the : $\quad S=S_{\delta^{0}}+S_{\delta^{1}}$ tensions and pieces which do not.

$$
\begin{align*}
& S_{\delta^{0}}=S_{4}^{\text {moduli }}+S_{4}^{\text {gauge }}+S_{4}^{\text {matter }} \\
& S_{4}^{\text {moduli }}=-\frac{1}{2 \kappa_{4}^{2}} \int d^{4} x \sqrt{-g_{4}}\left[\frac{1}{2} R_{4}+\frac{3}{4}(\partial \beta)^{2}+\frac{1}{4}(\partial \phi)^{2}+\frac{1}{4} e^{-2 \phi}(\partial \sigma)^{2}+\frac{1}{4} G_{k l} \partial b^{k} \partial b^{l}+e^{-2 \beta} G_{k l} \partial \chi^{k} \partial \chi^{l}\right. \\
& +\frac{1}{4} \mathcal{K}_{a \bar{b}}(\mathfrak{z}) \partial \mathfrak{z}^{a} \partial \overline{\mathfrak{z}} \overline{\bar{b}}+2 \epsilon_{0} \sum_{p=1}^{N} \tau_{k}^{(p)} z_{(p)} e^{-2 \phi} \partial \sigma \partial\left(n_{(p)}^{k} \nu_{(p)}\right)+\frac{\epsilon_{0}}{2} \sum_{p=1}^{N} b^{k} \tau_{k}^{(p)} e^{\beta-\phi}\left(\partial z_{(p)}\right)^{2} \tag{41}\\
& +2 \epsilon_{0} \sum_{p=1}^{N} \frac{\tau_{l}^{(p)} \tau_{k}^{(p)}}{\tau_{m}^{(p)} b^{m}} e^{-\phi-\beta}\left(\chi^{l} \chi^{k}\left(\partial z_{(p)}\right)^{2}-2 \chi^{k} \partial\left(n_{(p)}^{l} \nu_{(p)}\right) \partial z_{(p)}+\partial\left(n_{(p)}^{k} \nu_{(p)}\right) \partial\left(n_{(p)}^{l} \nu_{(p)}\right)\right) \\
& \left.+\lambda\left(d_{i j k} b^{i} b^{j} b^{k}-6\right)\right] \\
& S_{4}^{\text {gauge }}=-\frac{1}{16 \pi \alpha_{\mathrm{GUT}}} \int d^{4} x \sqrt{-g_{4}}\left[e^{\phi}\left(\operatorname{tr} F_{(0)}^{2}+\operatorname{tr} F_{(N+1)}^{2}\right)-\frac{1}{2} \sigma \epsilon_{\mu \nu \rho \gamma}\left(F_{(0)}^{\mu \nu} F_{(0)}^{\rho \gamma}+F_{(N+1)}^{\mu \nu} F_{(N+1)}^{\rho \gamma}\right)\right. \tag{42}\\
& \left.+\sum_{p=1}^{N}\left([\Im \Pi]_{(p) u w} E_{(p)}^{u} E_{(p)}^{w}-\frac{1}{2}[\Re \Pi]_{(p) u w} \epsilon_{\mu \nu \rho \gamma} E_{(p)}^{u \mu \nu} E_{(p)}^{w \rho \gamma}\right)\right] \\
& S_{4}^{\text {matter }}=-\int d^{4} x \sqrt{-g_{4}} \sum_{p=0, N+1}\left[\frac { 1 } { 2 } \left(e^{-\beta} G_{(p) M N} D C_{(p)}^{M x} D \bar{C}_{(p) x}^{N}-2 e^{-2 \beta} G_{k l} \omega_{1 \mu}^{(p) k} \partial^{\mu} \chi^{l}\right.\right. \tag{43}\\
& \left.\left.+e^{-\phi-2 \beta} G_{(p)}^{M N} \frac{\partial W_{(p)}}{\partial C_{(p)}^{M x}} \frac{\partial \bar{W}_{(p)}}{\partial \bar{C}_{(p) x}^{M}}+e^{-2 \beta} \operatorname{tr}\left(D_{(p)}^{2}\right)\right)\right]
\end{align*}
$$

Supersymmetric in form despite containing anti-brane moduli.

Given these definitions of complex fields:

$$
\begin{aligned}
S & =e^{\phi}+\epsilon_{0} e^{\beta} \sum_{p=1}^{N}\left(\tau_{k}^{(p)} b^{k}\right) z_{(p)}^{2}+i\left(\sigma+2 \epsilon_{0} \sum_{p=1}^{N} \tau_{k}^{(p)} \chi^{k} z_{(p)}^{2}\right) \\
& =e^{\phi}+i \sigma+\epsilon_{0} \sum_{p=1}^{N} \tau_{k}^{(p)} z_{(p)}^{2} T^{k} \\
T^{k} & =e^{\beta} b^{k}+2 i \chi^{k} \\
Z_{(p)} & =\tau_{k}^{(p)} b^{k} e^{\beta} z_{(p)}+2 i \tau_{k}^{(p)}\left(-n_{(p)}^{k} \nu_{(p)}+\chi^{k} z_{(p)}\right) \\
& =z_{(p)} \tau_{k}^{(p)} T^{k}-2 i \tau_{k}^{(p)} n_{(p)}^{k} \nu_{(p)},
\end{aligned}
$$

The kinetic terms on the previous slide are reproduced by the following Kahler and super potentials.

$$
\kappa_{4}^{2} K_{\text {scalar }}=K_{D}+K_{T}+\mathcal{K}+K_{\text {matter }}
$$

$$
\begin{aligned}
K_{D} & =-\ln \left[S+\bar{S}-\epsilon_{0} \sum_{p=1}^{N} \frac{\left(Z_{(p)}+\bar{Z}_{(p)}\right)^{2}}{\tau_{k}^{(p)}\left(T^{k}+\bar{T}^{k}\right)}\right] \\
K_{T} & =-\ln \left[\frac{1}{48} d_{k l m}\left(T^{k}+\bar{T}^{k}\right)\left(T^{l}+\bar{T}^{l}\right)\left(T^{m}+\bar{T}^{m}\right)\right] \\
\mathcal{K}(\mathfrak{z}) & =-\ln \left[2 i(\mathcal{G}-\overline{\mathcal{G}})-i\left(\mathfrak{z}^{p}-\overline{\mathfrak{z}}^{p}\right)\left(\frac{\partial \mathcal{G}}{\partial \mathfrak{z}^{p}}+\frac{\partial \overline{\mathcal{G}}}{\partial \overline{\mathfrak{z}}^{p}}\right)\right] \\
K_{\text {matter }} & =e^{K_{T} / 3} \sum_{p=0, N+1} G_{(p) M N} C_{(p)}^{M x} \bar{C}_{(p) x}^{N}, \\
W_{(p)} & =\sqrt{4 \pi \alpha_{\mathrm{GUT}}} \sum_{I, J, K} \lambda_{I J K} f_{x y z}^{(I J K)} C_{(p)}^{I x} C_{(p)}^{J y} C_{(p)}^{K z}
\end{aligned}
$$

$$
\begin{aligned}
& S_{\delta^{1}}=-\int d^{4} x \sqrt{-g_{4}} \mathcal{V}_{1} \\
& \mathcal{V}_{1}=\kappa_{4}^{-2} \frac{\epsilon_{0}}{(\pi \rho)^{2}} e^{-\phi-2 \beta} b^{k} \delta_{k}
\end{aligned}
$$

- This, up to a factor of 2 , is just the tension of the anti-brane.
- So, from the point of view of moduli stabilization, the 'KKLT' procedure of just adding the anti-brane energy to the supersymmetric theory is exact to first order....
-up to a correction to the gauge kinetic functions which I will present now, and corrections to the matter Lagrangian.

4d gauge kinetic terms to first order:

$$
\begin{align*}
S_{4}^{\mathrm{GKF}}=\frac{-1}{32 \pi \alpha_{\mathrm{GUT}}} \int d^{4} x \sqrt{-g_{4}} & {\left[\left(e^{\phi}+\epsilon_{0} e^{\beta} b^{k}\left(\sum_{p=0}^{N+1} \tau_{k}^{(p)}\left(z_{(p)}^{2}-2 z_{(p)}\right)+\frac{4}{3} \delta_{k}\right)\right) \operatorname{tr}\left(F_{(0)}^{2}\right)\right.} \\
& +\left(e^{\phi}+\epsilon_{0} e^{\beta} b^{k}\left(\sum_{p=0}^{N+1} \tau_{k}^{(p)} z_{(p)}^{2}-\frac{2}{3} \delta_{k}\right)\right) \operatorname{tr}\left(F_{(N+1)}^{2}\right) \\
- & \frac{1}{2}\left(\sigma+2 \epsilon_{0}\left(\sum_{p=1}^{N} \beta_{k}^{(p)} \chi^{k}\left(z_{(p)}^{2}-2 z_{(p)}\right)-\beta_{k}^{(N+1)} \chi^{k}+2 \sum_{p=1}^{N} \tau_{k}^{(p)}\left(n_{(p)}^{k} \nu_{(p)}\right)\right)\right) \epsilon_{\mu \nu \rho \sigma} F_{(0)}^{\mu \nu} F_{(0)}^{\rho \sigma} \\
& \left.-\frac{1}{2}\left(\sigma+2 \epsilon_{0}\left(\sum_{p=1}^{N} \beta_{k}^{(p)} \chi^{k} z_{(p)}^{2}+\beta_{k}^{(N+2)} \chi^{k}\right)\right) \epsilon_{\mu \nu \rho \sigma} F_{(N+1)}^{\mu \nu} F_{(N+1)}^{\rho \sigma}\right] \tag{63}
\end{align*}
$$

- The changes from the supersymmetric case have important physical consequences: they can change which boundary undergoes gaugino condensation for example.

These kinetic terms can be written in terms of a `gauge kinetic function' which, in this non-supersymmetric system, is no longer holomorphic in the complex fields.

$$
f_{(0)}=S-\epsilon_{0}\left[\tau_{k}^{(N+1)} T^{k}+2 \sum_{p=1}^{N} Z_{(p)}-\frac{2}{3} \delta_{k}\left(T^{k}+\bar{T}^{k}\right)\right.
$$

$$
\left.+\delta_{k}\left(T^{k}-\bar{T}^{k}\right)\left(\left(\frac{Z_{(\bar{p})}+\bar{Z}_{(\bar{p})}}{\bar{\tau}_{k}\left(T^{k}+\bar{T}^{k}\right)}\right)^{2}-2 \frac{Z_{(\bar{p})}+\bar{Z}_{(\bar{p})}}{\bar{\tau}_{k}\left(T^{k}+\bar{T}^{k}\right)}\right)\right]
$$

$f_{(N+1)}=S+\epsilon_{0}\left[\tau_{k}^{(N+1)} T^{k}-\frac{1}{3} \delta_{k}\left(T^{k}+\bar{T}^{k}\right)-\delta_{k}\left(T^{k}-\bar{T}^{k}\right)\left(\frac{Z_{(\bar{p})}+\bar{Z}_{(\bar{p})}}{\bar{\tau}_{k}\left(T^{k}+\bar{T}^{k}\right)}\right)^{2}\right]$

The second order potential can also be obtained

$\mathcal{V}_{2}=\frac{1}{(\pi \rho)^{2} \kappa_{4}^{2}} \epsilon_{0}^{2} e^{-\beta-2 \phi} G^{k l} \delta_{l}\left[\sum_{p=0}^{\bar{p}-1} \tau_{k}^{(p)} \bar{z}-\sum_{p=\bar{p}+1}^{N+1} \tau_{k}^{(p)} \bar{z}-\sum_{p=0}^{\bar{p}-1} \tau_{k}^{(p)} z_{(p)}\right.$

$$
\left.+\sum_{p=\bar{p}+1}^{N+1} \tau_{k}^{(p)} z_{(p)}+\sum_{p=0}^{N+1} \tau_{k}^{(p)}\left(1-z_{(p)}\right) z_{(p)}-\frac{2}{3} \delta_{k}\right]
$$

- The first four terms are the expected coulomb forces between the branes.
- The last two terms are new. They are in no sense smaller than the coulomb terms.
- We would expect similar terms to arise in other contexts such as type Il string theories.

- Note these potentials would be straight lines in the case of the naive coulomb force.
- Note these inter-brane forces are second order in ϵ_{S} and so relatively weak in any controlled regime of moduli space.

A simple example.

$$
\begin{aligned}
S=-\frac{1}{2 \kappa_{4}^{2}} \int \sqrt{-g} d^{4} x\left[\frac{R}{2}\right. & +\frac{3}{4}(\partial \beta)^{2}+\frac{1}{4}(\partial \phi)^{2} \\
& +\frac{1}{2}|q| e^{\beta-\phi}(\partial \bar{z})^{2}+2|q| e^{-2 \beta-\phi} \\
+ & \left.e^{-\beta-2 \phi}\left(6|q| q_{1} \bar{z}-6|q| q_{2} \bar{z}+6 q^{2}(1-\bar{z}) \bar{z}+6|q| q_{2}-\frac{4}{3} q^{2}\right)\right]
\end{aligned}
$$

- e^{β} gives size of orbifold
- e^{ϕ} gives size of Calabi-Yau
- \bar{z} is position of anti-brane
- q_{1}, q_{2}, q are charges of fixed planes and anti-brane respectively $\left(q_{1}+q_{2}+q=0\right)$

Extensions:

- Flux can be added - resulting potential terms essentially unchanged from SUSY case:

$$
\begin{aligned}
& W_{\text {flux }}=\frac{\sqrt{2}}{\kappa_{4}^{2}}\left(\mathcal{X}^{\underline{A}} \mathcal{G}_{\underline{A}}-\tilde{\mathcal{X}}_{\underline{B}} \mathcal{Z}^{\underline{B}}\right) \\
& W_{\text {flux }}=\frac{\sqrt{2}}{\kappa_{4}^{2}} \epsilon_{0} \frac{v^{\frac{1}{6}}}{(\pi \rho)^{2}}\left(\frac{1}{6} \tilde{d}_{\underline{a b c}} \mathfrak{z}^{\underline{a}} \mathfrak{b}_{\mathfrak{b}}^{\underline{b}} \underline{\underline{c}}_{n}^{0}-\frac{1}{2} \tilde{d}_{\underline{a b c}} \mathfrak{z}^{\underline{a}} \underline{b}^{\underline{b}} n^{\underline{c}}-\mathfrak{z}^{\underline{\underline{a}}} n_{\underline{a}}-n_{0}\right) \\
& V_{\text {flux }}=e^{\kappa_{4}^{2} K_{\bmod }}\left(K_{\bmod }^{i \bar{j}} D_{i} W_{\text {flux }} D_{\bar{j}} \bar{W}_{\text {flux }}-3 \kappa_{4}^{2}\left|W_{\text {flux }}\right|^{2}\right)
\end{aligned}
$$

- Gaugino condensation can be added. Only change from SUSY case is due to change in G.K.F.

$$
\begin{aligned}
V_{\mathrm{c}+\mathrm{c} / \mathrm{f} \mathrm{f}}=\frac{1}{2} e^{\kappa_{4}^{2} K_{\bmod }} & \left(\kappa_{4}^{2}\left|A \epsilon(S+\bar{S}) e^{-\epsilon f}\right|^{2}+\bar{A} \kappa_{4}^{2} \epsilon(S+\bar{S}) e^{-\epsilon \bar{f}} W_{\text {flux }}+\kappa_{4}^{2} \bar{W}_{\text {flux }} A \epsilon(S+\bar{S}) e^{-\epsilon f}\right) \\
& +e^{\kappa_{4}^{2} K_{\bmod }}\left(K_{\bmod }^{i \bar{j}} D_{i} W_{\text {flux }} D_{\bar{j}} \bar{W}_{\text {flux }}-3 \kappa_{4}^{2}\left|W_{\text {flux }}\right|^{2}\right)
\end{aligned}
$$

Conclusions

- We have included anti-branes in the vacuum of heterotic M-theory.
- There are unexpected forces between the branes and anti-branes. These are vital in any discussion of the cosmology or stabilization of anti-branes.
- There are corrections to the gauge kinetic functions which change the potential obtained from gaugino condensation.
- One can calculate the supersymmetry breaking seen in the matter sector explicitly (next thing to be done).
- Similar conclusions would be expected in other contexts involving anti-branes.

