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5D Heterotic M-theory including anti-branes.
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What | say today will be valid for a single anti-brane, as
shown, but generalizes trivially to an arbitrary number of
these objects.



A Toy Model of the Warping in Heterotic.
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Bulk equation of motion: 5O =0

At the boundaries: D,®|,—o = —S() , Dy®|y=rp = +S(n+1)

At the branes: —D,®|,—y + + Dy®|y=y,,— = S



Perform the split: b = ¢o(z") + o(z" + y)

mp
/ b dy = 0
0

Bulk equation becomes:

190 +

16+ Dy =0

Integrate the bulk equations across the orbifold and use

boundary conditions:-

190 + ZS(p) =0
P

Look at the case where warping is weak and 4d derivatives
are small and substitute this back into the bulk equation:-

Dz% — Zs(p)'
p



So in the end we have a system of equations
for the warping:-

. 2 .
Bulk: D2 =) S
p
Boundaries:-
Dyoly=0 = _S(O) ) Dy@ly=np = JrS(NH)

Branes:-

_qub‘y:y(p) + Dy¢‘y:y(p)_ — S(p)




E.G. |: The supersymmetric vacuum

® Sources S are the tensions of the branes.

® Sum of the charges on the compact space is zero.

® Obijects are BPS so tension = charge.

® Therefore Z S = 0 and the bulk equation becomes

2 1
D2p=0.

The warping in the supersymmetric vacuum
is linear in y.



E.G. 2:Warping due to matter fluctuations

® The sources S are now the kinetic and potential terms

for brane and boundary localized fields.

® Therefore Z S # 0 (matter on different objects is
independent).

® So in this case bulk equation is D¢ = > 5.

The warping due to matter field fluctuations is
quadratic. This is typical of any change away from the
pure tension vacuum in heterotic M-theory.



E.G. 3:Anti-branes in heterotic M-theory.

® Sources S are the tensions of the branes and anti-
branes.

® Sum of the charges on the compact space is zero.
® For an anti-brane charge = — tension.

® So tensions do not sum to zero and we have in the

bulk D¢ =) 5.

Thus the warping due to the anti-brane is
quadratic in .



Heterotic M-theory in five dimensions:

The bulk theory:
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e |/ :Volume of the Calabi-Yau.

e b" :Shape of the Calabi-Yau.



Boundary theories:
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and similarly on the other boundary

Brane theories:
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These actions are supplemented by some
Bianchi identities:

(AGQ)yvyp = —4K2(J50 8(y) + Tyt Vo(y — 7p)

k N
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Where the magnetic sources here are determined
by the matter and gauge field fluctuations.
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So we just follow a very similar procedure to that
shown in the toy model:

® Ve need a metric ansatz:

dS% — CL2 (y7 xu)g4Mdeude T b2 (y7 xﬂ)dyQ
Vo= V(y,a")
¥ = b¥(y,xH) .

® We need embeddings for the branes
(appears in the induced metric etc.).

Xt = o Y =y (o)



Solve for the warping as before:
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Here y has been rescaled to give zand h is a
linear function in z.

p 1 N—+1
h(2) = D1z = 29) = 5 D 7" 2 (2(a) = 2) —

q=0 q=0



Points to notice:

® The warping is quadratic as promised. As we turn the
anti-brane into a brane (9 — () then it goes back to
being linear.

® The orbifold average of the z dependent parts are
zero.

® The warpings are all controlled by the parameter:

bo

€S — €0
Vo

Four dimensional heterotic M-theory is constructed
as an expansion in this quantity.



An example:
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® Red line is a supersymmetric case with one brane.

® The green line is what happens if you add an anti-brane.



Results: The four dimensional
effective theory.

® We can use these warpings to systematically derive
the four dimensional effective theory by dimensional
reduction.

® Today | will present parts of the bosonic action. | will
start with zeroth and first order in €5 and then move
oh to some terms at second order.

Split up the first order result into
pieces which contain the sum of the : S = S50 + Si1
tensions and pieces which do not.
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Supersymmetric in form despite containing anti-brane
moduli.



Given these definitions of complex fields:
N
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The kinetic terms on the previous slide are reproduced
by the following Kahler and super potentials.
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® This, up to a factor of 2, is just the tension of the anti-brane.

® So, from the point of view of moduli stabilization, the "KKLT’
procedure of just adding the anti-brane energy to the
supersymmetric theory is exact to first order....

® ...up to a correction to the gauge kinetic functions which |
will present now, and corrections to the matter Lagrangian.



4d gauge kinetic terms to first order:
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® The changes from the supersymmetric case have
important physical consequences: they can change

which boundary undergoes gaugino condensation for
example.
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These kinetic terms can be written in terms of a "gauge

kinetic function’ which, in this non-supersymmetric
system, is no longer holomorphic in the complex fields.
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The second order potential can also be obtained
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® The first four terms are the expected coulomb forces between the
branes.

® The last two terms are new. They are in no sense smaller than the
coulomb terms.

® We would expect similar terms to arise in other contexts such as type
Il string theories.



2.0 —
1.6 —

1.2 —

04— mmm e = L -

|
|
|
|
|
|
|
|
|
|
|
0.8 — :
|
|
L
|
|
0.0 — :
-0.4 —] -
-0.8 — 4=
12— -~

P L

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

® Note these potentials would be straight lines in the
case of the naive coulomb force.

® Note these inter-brane forces are second order in €g
and so relatively weak in any controlled regime of
moduli space.



A simple example.
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o oV gives size of orbifold
° o9 gives size of Calabi-Yau

® Z s position of anti-brane

® {1,42,( are charges of fixed planes and anti-brane
respectively (g; + g2 + g = 0)



Extensions:

® Flux can be added - resulting potential terms
essentially unchanged from SUSY case:
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® Gaugino condensation can be added. Only change from
SUSY case is due to change in G.K.F.
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Conclusions

We have included anti-branes in the vacuum of heterotic
M-theory.

There are unexpected forces between the branes and
anti-branes. These are vital in any discussion of the
cosmology or stabilization of anti-branes.

There are corrections to the gauge kinetic functions
which change the potential obtained from gaugino
condensation.

One can calculate the supersymmetry breaking seen in
the matter sector explicitly (next thing to be done).

Similar conclusions would be expected in other contexts
involving anti-branes.



