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Project Overview

Project A1 is concerned with the realisation of dark energy in higher-dimensional
theories and the possible observational consequences. This encompasses

•moduli stabilisation in heterotic string theory and F-theory,

•mechanisms to up- or downlift the vacuum energy to the right value,

• the connection of uplifting to supersymmetry breaking and mirage mediation,

• realisation of quintessence from an (anomalous) dilatation symmetry,

• and possible time variations of fundamental constants.

Dark Energy in Higher-Dimensional Theories
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• Effective potential is generally a sum of different contributions (curvature,
branes, singularities, fluxes, higher-dimensional cosmological constants,. . . )

• Two possible places for dark energy:

– tunable minimum: acts as cosmological constant (CC)

– runaway directions: quintessence

•Quintessence implies that the dark energy equation of state, and possibly
fundamental constants, vary in time

• In the (metastable, long-lived) minimum, only one number measurable, need
indirect clues

• Realisation in string theory: Moduli stabilisation and up-/downlifting of min-
imum provide correct value for vacuum energy, generating particular mass
spectra

• Bottom-up approach: dilatation symmetry, conical singularities in extra di-
mensions provide quintessence potentials or tuning mechanisms

Conical singularities, characterised by a
deficit angle, in rugby-shaped extra di-
mensions. The internal space is sta-
bilised by a bulk cosmological constant
and a gauge field flux. The deficit an-
gle can (partially) cancel a cosmological
constant on the branes.

String Theory Realisation: Type II, Heterotic
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String theory has various ingredi-
ents which enter the effective po-
tential:

• Branes and orientifold planes

• Fluxes

• Curvature

• Gaugino condensates

• Localised Matter fields [Löwen, Nilles, Phys. Rev. D77;
Braun, Hebecker, Lüdeling, Valandro, Nucl. Phys. B815]

String compactifications generally have a number of scalar “moduli” fields that parameterise e.g. the size and shape of the extra dimensions,
brane configurations or gauge couplings. These fields are initially massless and need to be stabilised to obtain a reasonable low-energy theory.
This can be accomplished e.g. by introducing fluxes, background values of p-form field strengths, or by including non-perturbative effects such
as gaugino condensation.

Furthermore, supersymmetry needs to be broken and the vacuum energy must be adjusted to the observed value. These effects are related e.g.
in the KKLT scenario where D3 branes are used and in heterotic models with hidden sector matter fields.

Rolling Quintessence

In many higher-dimensional models, couplings are re-
lated to the expectation values of fields (for example,
in the heterotic string, the gauge coupling is a function
of the dilaton). A rolling scalar field can hence lead to
the variation of couplings and masses. Indeed a vari-
ation of the fine structure constant has been claimed
to be detected (α being smaller in the past). These
observations, made by looking at the light coming from
distant quasars, seem to be inconsistent with low red-
shift constraints, such as the Oklo natural reactor and
meteorites, but also laboratory experiments with atomic
clocks. Current data, therefore, suggests that any vari-
ation of the fine structure constant has to be negligible
at low redshift and it can only be consistent with non-
zero variation claimed by of Murphy et al. provided the
scalar field has a non-linear evolution. This could in
principle be accomplished in the mass-varying neutrino
scenario.

Evolution of quintessence field ϕ as function of redshift in a “stopping growing neu-
trinos” scenario:
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Figure 1: Variations in the stopping growing neutrino model of [21℄. Left:evolution of the 
osmon �eld. Right: additional variation of the Higgs v.e.v.a

ording to Eq. (45).to the dire
t 
oupling (43) 
an be des
ribed by our method of evolution fa
torsln, even though the ln need not be stri
tly monotoni
 due to the os
illationsin '. However, for h�i=MX we now have one variation linearly proportionalto the variation of ', Eq. (43) and an additional one with a nonlinear depen-den
e, Eq. (45-46). A simple treatment with 
ommon evolution fa
tors for allvariations will no longer be appli
able. Due to the additional '-dependen
e ofh�i=MX we may have separate evolution fa
tors for h�i=MX , di�erent from the(
ommon) evolution fa
tors for the other 
ouplings.For example, the \linear 
ontribution" (43) may dominate at BBN and in-du
e a positive l6 
ommon for all 
ouplings. In the range z < 10 the \non-linear
ontribution" (45) 
ould be more important, leading to e�e
tively negative l3;4for h�i=MX . (Su
h an e�e
t 
ould, in prin
iple, relieve the tension between 7Liand a positive �-variation at high z.) In pra
ti
e, we 
al
ulate � ln�X and� ln h�iMP at ea
h epo
h dire
tly from the model, and extra
t the varying 
ou-plings and observables as explained in Se
tion 3 of [1℄. Then we may sear
h fora set of parameters Æ, R0 whi
h minimizes the �2 for all measured variations.The stopping growing neutrino model has an os
illation in h�i that growsboth in frequen
y and amplitude at late times as ' approa
hes its asymptoti
value. Su
h os
illations must not be too strong as measurements between z = 2and today would measure a high rate of 
hange. The os
illation may be madearbitrarily small by 
hoosing small R0. The restri
tions from the low-z epo
hsare a
tually so strong that to a good approximation the non-linear 
ontribution� R0 
an be negle
ted. However, the linear variation (43) is independent ofR0. It 
an be des
ribed by our method of evolution fa
tors and yields for ourset of parameters the ratios l1=l4 = 0:008;l2=l4 = 0:09;l3=l4 = 0:44;l6=l4 = 175: (47)20

[Wetterich, Phys. Lett. B655; Dent, Stern, Wetterich, JCAP 0901]

Mirage Spectrum
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After adjusting the vacuum energy, a mirage pattern appears both in KKLT-like type IIB
flux compactification and in heterotic models:

[Choi,Falkowski, Nilles, Olechowski, Nucl. Phys B718; Löwen, Nilles, Phys. Rev. D77]

•Mixture of modulus- and anomaly-mediated supersymmetry breaking

• Apparent unification of gaugino masses at intermediate “mirage” scale without actual
thresholds

•Masses of moduli, gravitino and gauginos separated by “little hierarchy”
Ω = log MP

m3/2
∼ 4π, while soft scalar masses show larger model dependence

• Gaugino masses exhibit distinct pattern [Choi, Nilles, JHEP 0704]

Mirage Spectrum: Cosmological Bounds

Fig. 7 : Constraints on the f�;m3=2g parameter spa
e in pure mirage mediation. In the brown strip thethermal neutralino abundan
e satis�es the WMAP bounds. Below the strip the thermal abundan
e istoo low whereas above it is too large. In the pink area (above the LEP region) the stau is the LSP. Thearea below the bla
k 
urve is ex
luded by the b ! s
 
onstraint. The publi
 
odes SOFTSUSY [49℄ andmi
rOMEGAs [50℄ have been used.
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Fig. 8 : Same as Fig. 7. The area between the two bla
k 
urves on the right side is ex
luded by theb! s
 
onstraint. 18 [Löwen, Nilles, Nucl. Phys. B827]
The mirage spectrum is controlled by a parameter α which determines the ratio of modulus
and anomaly mediation (α = 0 corresponds to pure modulus mediation, α = ∞ to pure
anomaly mediation). The plot shows constraints on the {α, m3/2} parameter space from
various mostly cosmological bounds. In the brown strip, the neutralino thermal abundance
satisfies the WMAP bound.


