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Project Overview

Project A1 is concerned with the realisation of dark energy in higher-dimensional
theories and the possible observational consequences. This encompasses

•moduli stabilisation in heterotic string theory and F-theory,

•mechanisms to up- or downlift the vacuum energy to the right value,

• the connection of uplifting to supersymmetry breaking and mirage mediation,

• realisation of quintessence from an (anomalous) dilatation symmetry,

• and possible time variations of fundamental constants.

Dark Energy in Higher-Dimensional Theories

Veff

φ

CC

Quintessence

• Effective potential is generally a sum of different contributions (curvature,
branes, singularities, fluxes, higher-dimensional cosmological constants,. . . )

• Two possible places for dark energy:

– tunable minimum: acts as cosmological constant (CC)

– runaway directions: quintessence

•Quintessence implies that the dark energy equation of state, and possibly
fundamental constants, vary in time

• In the (metastable, long-lived) minimum, only one number measurable, need
indirect clues

• Realisation in string theory: Moduli stabilisation and up-/downlifting of min-
imum provide correct value for vacuum energy, generating particular mass
spectra

• Bottom-up approach: dilatation symmetry, conical singularities in extra di-
mensions provide quintessence potentials or tuning mechanisms

Conical singularities, characterised by a
deficit angle, in rugby-shaped extra di-
mensions. The internal space is sta-
bilised by a bulk cosmological constant
and a gauge field flux. The deficit an-
gle can (partially) cancel a cosmological
constant on the branes.

String Theory Realisation: Type II, Heterotic
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String theory has various ingredi-
ents which enter the effective po-
tential:

• Branes and orientifold planes

• Fluxes

• Curvature

• Gaugino condensates

• Localised Matter fields [Löwen, Nilles, Phys. Rev. D77;
Braun, Hebecker, Lüdeling, Valandro, Nucl. Phys. B815]

String compactifications generally have a number of scalar “moduli” fields that parameterise e.g. the size and shape of the extra dimensions,
brane configurations or gauge couplings. These fields are initially massless and need to be stabilised to obtain a reasonable low-energy theory.
This can be accomplished e.g. by introducing fluxes, background values of p-form field strengths, or by including non-perturbative effects such
as gaugino condensation.

Furthermore, supersymmetry needs to be broken and the vacuum energy must be adjusted to the observed value. These effects are related e.g.
in the KKLT scenario where D3 branes are used and in heterotic models with hidden sector matter fields.

Rolling Quintessence

In many higher-dimensional models, couplings are re-
lated to the expectation values of fields (for example,
in the heterotic string, the gauge coupling is a function
of the dilaton). A rolling scalar field can hence lead to
the variation of couplings and masses. Indeed a vari-
ation of the fine structure constant has been claimed
to be detected (α being smaller in the past). These
observations, made by looking at the light coming from
distant quasars, seem to be inconsistent with low red-
shift constraints, such as the Oklo natural reactor and
meteorites, but also laboratory experiments with atomic
clocks. Current data, therefore, suggests that any vari-
ation of the fine structure constant has to be negligible
at low redshift and it can only be consistent with non-
zero variation claimed by of Murphy et al. provided the
scalar field has a non-linear evolution. This could in
principle be accomplished in the mass-varying neutrino
scenario.

Evolution of quintessence field ϕ as function of redshift in a “stopping growing neu-
trinos” scenario:
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Figure 1: Variations in the stopping growing neutrino model of [21℄. Left:evolution of the osmon �eld. Right: additional variation of the Higgs v.e.v.aording to Eq. (45).to the diret oupling (43) an be desribed by our method of evolution fatorsln, even though the ln need not be stritly monotoni due to the osillationsin '. However, for h�i=MX we now have one variation linearly proportionalto the variation of ', Eq. (43) and an additional one with a nonlinear depen-dene, Eq. (45-46). A simple treatment with ommon evolution fators for allvariations will no longer be appliable. Due to the additional '-dependene ofh�i=MX we may have separate evolution fators for h�i=MX , di�erent from the(ommon) evolution fators for the other ouplings.For example, the \linear ontribution" (43) may dominate at BBN and in-due a positive l6 ommon for all ouplings. In the range z < 10 the \non-linearontribution" (45) ould be more important, leading to e�etively negative l3;4for h�i=MX . (Suh an e�et ould, in priniple, relieve the tension between 7Liand a positive �-variation at high z.) In pratie, we alulate � ln�X and� ln h�iMP at eah epoh diretly from the model, and extrat the varying ou-plings and observables as explained in Setion 3 of [1℄. Then we may searh fora set of parameters Æ, R0 whih minimizes the �2 for all measured variations.The stopping growing neutrino model has an osillation in h�i that growsboth in frequeny and amplitude at late times as ' approahes its asymptotivalue. Suh osillations must not be too strong as measurements between z = 2and today would measure a high rate of hange. The osillation may be madearbitrarily small by hoosing small R0. The restritions from the low-z epohsare atually so strong that to a good approximation the non-linear ontribution� R0 an be negleted. However, the linear variation (43) is independent ofR0. It an be desribed by our method of evolution fators and yields for ourset of parameters the ratios l1=l4 = 0:008;l2=l4 = 0:09;l3=l4 = 0:44;l6=l4 = 175: (47)20

[Wetterich, Phys. Lett. B655; Dent, Stern, Wetterich, JCAP 0901]

Mirage Spectrum
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After adjusting the vacuum energy, a mirage pattern appears both in KKLT-like type IIB
flux compactification and in heterotic models:

[Choi,Falkowski, Nilles, Olechowski, Nucl. Phys B718; Löwen, Nilles, Phys. Rev. D77]

•Mixture of modulus- and anomaly-mediated supersymmetry breaking

• Apparent unification of gaugino masses at intermediate “mirage” scale without actual
thresholds

•Masses of moduli, gravitino and gauginos separated by “little hierarchy”
Ω = log MP

m3/2
∼ 4π, while soft scalar masses show larger model dependence

• Gaugino masses exhibit distinct pattern [Choi, Nilles, JHEP 0704]

Mirage Spectrum: Cosmological Bounds

Fig. 7 : Constraints on the f�;m3=2g parameter spae in pure mirage mediation. In the brown strip thethermal neutralino abundane satis�es the WMAP bounds. Below the strip the thermal abundane istoo low whereas above it is too large. In the pink area (above the LEP region) the stau is the LSP. Thearea below the blak urve is exluded by the b ! s onstraint. The publi odes SOFTSUSY [49℄ andmirOMEGAs [50℄ have been used.
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Fig. 8 : Same as Fig. 7. The area between the two blak urves on the right side is exluded by theb! s onstraint. 18 [Löwen, Nilles, Nucl. Phys. B827]
The mirage spectrum is controlled by a parameter α which determines the ratio of modulus
and anomaly mediation (α = 0 corresponds to pure modulus mediation, α = ∞ to pure
anomaly mediation). The plot shows constraints on the {α, m3/2} parameter space from
various mostly cosmological bounds. In the brown strip, the neutralino thermal abundance
satisfies the WMAP bound.


