# **Unification of Flavor, CP and Modular Symmetries**

Hans Peter Nilles

Bethe Center for Theoretical Physics (bctp) and Center of Science and Thought (CST) Universität Bonn



Unification of Flavor, CP and Modular Symmetries, Planck2019, Granada, June 2019 – p. 1/26

# **Flavor symmetries**

Flavor symmetries are important ingredients of the SM

- Yukawa interaction for various families
- masses and mixings for quarks and leptons
- the question of CP-symmetry and its violation

Complicated structure not well understood

- different structures in quark and lepton sectors
- CP-violation needs complexity
- Flavor symmetries are highly non-universal

#### Question about the origin of flavor and CP

## **Flavor from String Theory**

String theory provides a variety of (discrete) flavor symmetries. This comes from the

- geometrical structure of extra dimensions
- string selection rules

We present a new and general method to determine the flavor symmetries of string theory

- it is based on outer automorphism of the Narain space group
- it unifies flavor and CP symmetries
- it includes modular symmetries in a nontrivial way

## Outline

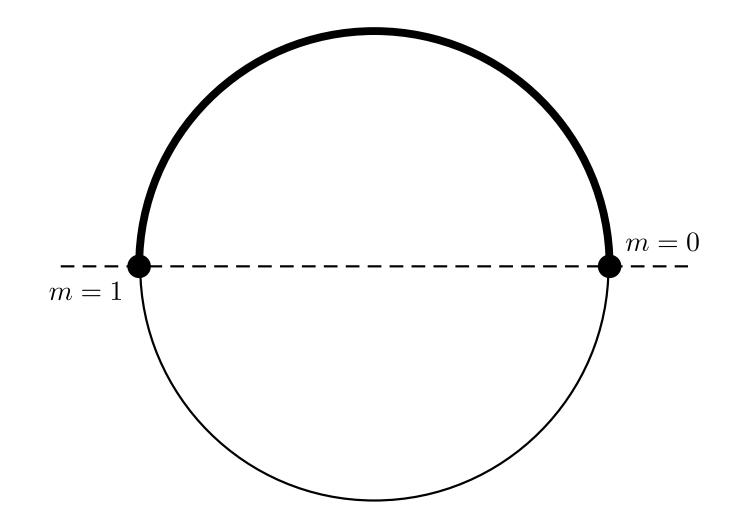
- Ithe traditional approach to flavor symmetries via guesswork (Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)
- connections between flavor and CP

(Nilles, Ratz, Trautner, Vaudrevange, 2018)

- the Narain lattice and its outer automorphisms
- modular symmetries enhance "traditional" flavor symmetries (Baur, Nilles, Trautner, Vaudrevange, 2019)
- non-universal behaviour in moduli space
- explicit example of 2d  $Z_3$  orbifold and its "landscape" of flavor symmetries
- lessons from string theory for model building

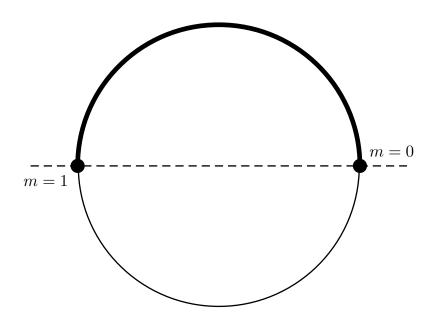
(Baur, Nilles, Trautner, Vaudrevange, to appear)

#### **Guessing symmetries: Interval** $S_1/Z_2$



## **Discrete symmetry** $D_4$

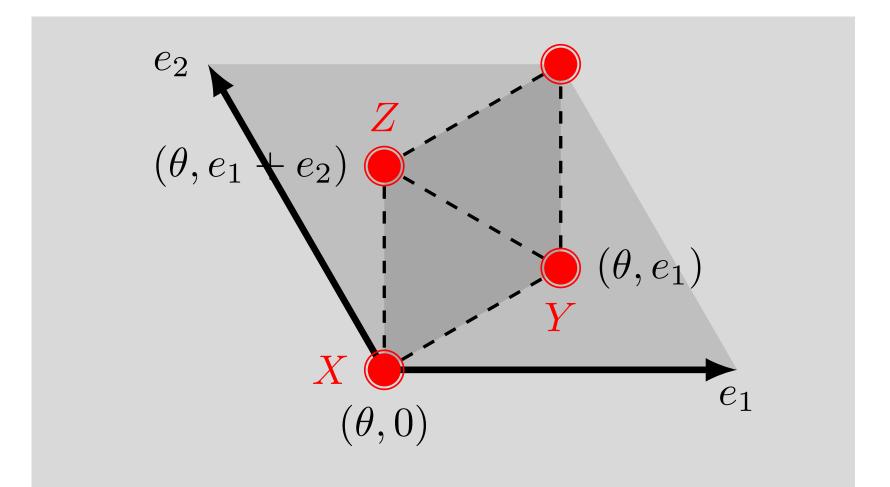
- bulk and brane fields
- S<sub>2</sub> symmetry from interchange of fixed points
- $Z_2 \times Z_2$  symmetry from brane field selection rules



- $D_4$  as multiplicative closure of  $S_2$  and  $Z_2 \times Z_2$
- $D_4$  a non-abelian subgroup of  $SU(2)_{\text{flavor}}$
- flavor symmetry for the two lightest families

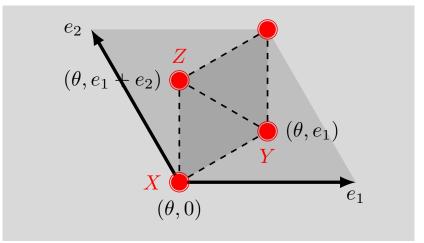
(Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)

# **Orbifold** $T_2/Z_3$



# **Discrete symmetry** $\Delta(54)$

- untwisted and twisted fields
- S<sub>3</sub> symmetry from interchange of fixed points
- $Z_3 \times Z_3$  symmetry from orbifold selection rules



- $\Delta(54)$  as multiplicative closure of  $S_3$  and  $Z_3 \times Z_3$
- ▶  $\Delta(54)$  a non-abelian subgroup of  $SU(3)_{\text{flavor}}$
- flavor symmetry for three families of quarks and leptons (Kobayashi, Nilles, Ploeger, Raby, Ratz, 2006)

# $\Delta(54)$ group theory

 $\Delta(54)$  is a non-abelian group and has representations:

- one trivial singlet  $1_0$  and one nontrivial singlet  $1_-$
- two triplets  $3_1$ ,  $3_2$  and corresponding anti-triplets  $\overline{3}_1$ ,  $\overline{3}_2$
- **•** four doublets  $2_k$  (k = 1, 2, 3, 4)

Some relevant tensor products are:

$$3_1 \otimes \overline{3}_1 = 1_0 \oplus 2_1 \oplus 2_2 \oplus 2_3 \oplus 2_4$$

 $2_k \otimes 2_k = 1_0 \oplus 1_- \oplus 2_k$ 

 $\Delta(54)$  is a good candidate for a flavour symmetry.

#### But where is CP?

## **CP** as outer automorphism

Outer automorphisms map the group to itself but are not group elements themselves

- $\Delta(54)$  has outer automorphism group  $S_4$
- CP could be  $Z_2$  subgroup of this  $S_4$
- Physical CP transforms (rep) to  $(rep)^*$

This gives an intimate relation of flavour and CP symmetry

- OP broken due to the presence of winding modes
- Iepto-genesis through decay of winding modes
- CP-violation à la CKM via field dependent Yukawa couplings (Nilles, Ratz, Trautner, Vaudrevange, 2018)

# Search for a general method

We have seen that even in simple systems we obtain sizeable flavor groups

- $D_4$  for the interval
- $\Delta(54)$  for the 2-dimensional  $Z_3$  orbifold

Did we find the complete flavor symmetry in these cases?

In reality we have even six compact dimensions

- variety of complicated group structures possible
- dependence on localisation of fields in extra dimensions

A general mechanism to find the complete set of flavor symmetries is based on the

outer automorphisms of the Narain space group.

(Baur, Nilles, Trautner, Vaudrevange, 2019)

#### **The Narain Lattice**

In the string there are *D* right- and *D* left-moving degrees of freedom  $Y = (y_R, y_L)$ . *Y* compactified on a 2*D* torus

$$Y = \begin{pmatrix} y_R \\ y_L \end{pmatrix} \sim Y + E\hat{N} = \begin{pmatrix} y_R \\ y_L \end{pmatrix} + E \begin{pmatrix} n \\ m \end{pmatrix}$$

defines the Narain lattice with

- the string's winding and Kaluza-Klein quantum numbers n and m
- the Narain vielbein matrix E that depends on the moduli of the torus: radii, angles and anti-symmetric tensor fields B.

#### **The Narain Space Group**

A  $Z_K$  orbifold with twist  $\Theta$  leads to the identification

$$Y \sim \Theta^k Y + E\hat{N}$$
 where  $\Theta = \begin{pmatrix} \theta_R & 0 \\ 0 & \theta_L \end{pmatrix}$  and  $\Theta^K = 1$ 

with  $\theta_L$ ,  $\theta_R$  elements of SO(D). For a symmetric orbifolds  $\theta_L = \theta_R$  (we do not include roto-translations here).

The Narain space group  $g = (\Theta^k, E\hat{N})$  is then generated by

twists  $(\Theta, 0)$  and shifts  $(1, E_i)$  for  $i = 1 \dots 2D$ 

Outer automorphisms map the group to itself but are not elements of the group.

#### **Modular Transformations**

Modular transformation exchange windings and momenta and act nontrivially on the moduli of the torus. In D = 2 these transformations are connected to the group SL(2, Z) acting on Kähler and complex structure moduli. The group SL(2, Z) is generated by two elements

$$S, T:$$
 with  $S^4 = 1$  and  $S^2 = (ST)^3$ 

On a modulus M with have the transformations

$$S: M \to -\frac{1}{M}$$
 and  $T: M \to M+1$ 

Further transformations might include  $M \rightarrow -\overline{M}$  and mirror symmetry between Kähler and complex structure moduli.

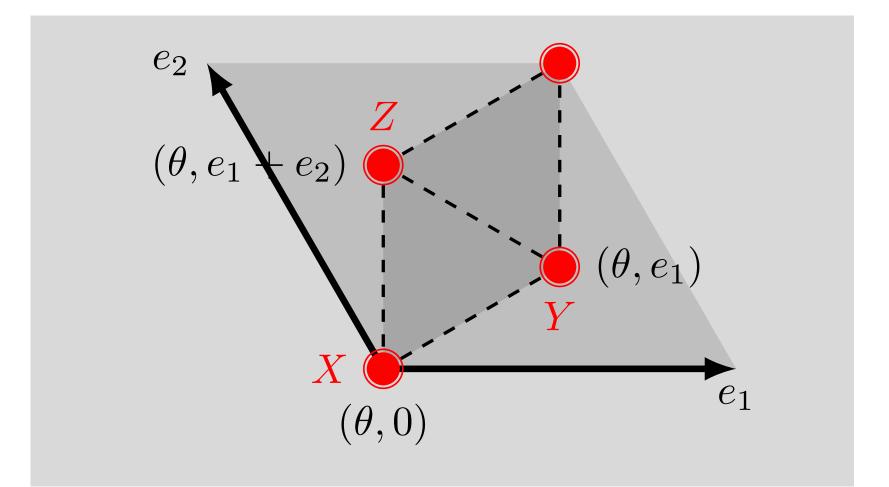
#### **Candidate symmetries**

As outer automorphisms of the Narain space group we might find

- Itraditional flavor symmetries which are universal in moduli space
- a subset of the modular transformations that act as symmetries at specific "points" in moduli space
- at these "points" we shall have an enhanced symmetry that combines the traditional flavor symmetry with some of the modular symmetries

The full flavor symmetry is non-universal in moduli space At generic points in moduli space we have the universal traditional flavor symmetry

# **Orbifold** $T_2/Z_3$



# **Example:** $T_2/Z_3$ **Orbifold**

On the orbifold some of the moduli are frozen

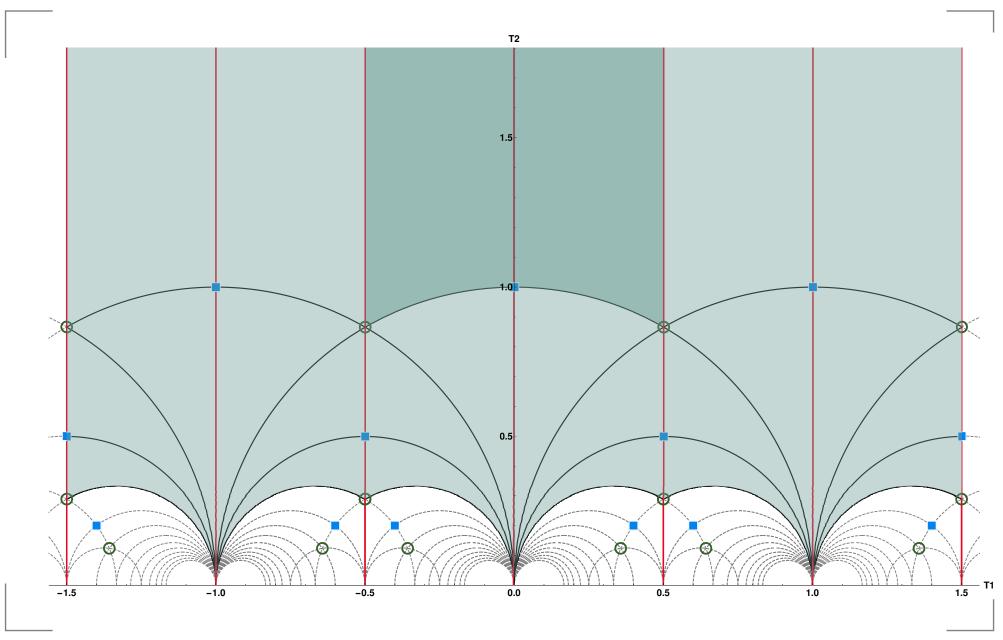
- I lattice vectors  $e_1$  and  $e_2$  have the same length
- angle is 120 degrees

Modular transformations form a subgroup of SL(2, Z)

- $\Gamma(3)$  as a mod(3) subgroup of SL(2, Z); ( $\Gamma(3) = A_4$ )
- $\Gamma(3)$  acts on the moduli
- twisted fields transform under a bigger group T', (similar to enhancement of SO(3) to SU(2) for spinors)
  (Lauer, Mas, Nilles, 1989; Lerche, Lüst, Warner, 1989)
- transformation  $M \rightarrow -\overline{M}$  completes the picture

#### Full group is SG(48,29) with 48 elements

# Moduli space of $\Gamma(3)$



Unification of Flavor, CP and Modular Symmetries, Planck2019, Granada, June 2019 - p. 18/26

# **Flavour Symmetries I**

Generic point in moduli space.

Outer automorphisms of the Narain space group are

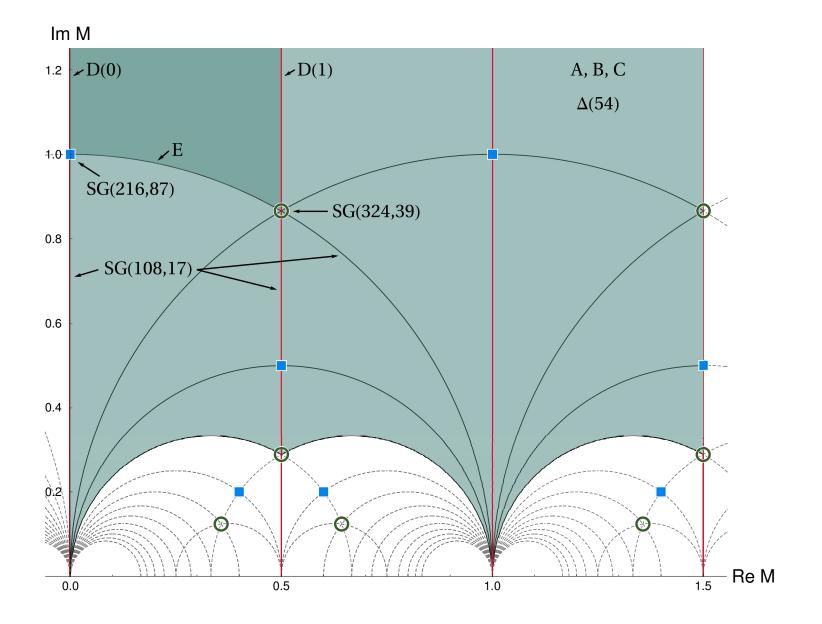
• shift 
$$A = (1_4; \frac{1}{3}, \frac{2}{3}, 0, 0)$$

**•** and shift 
$$B = (1_4; 0, 0, \frac{1}{3}, \frac{1}{3})$$

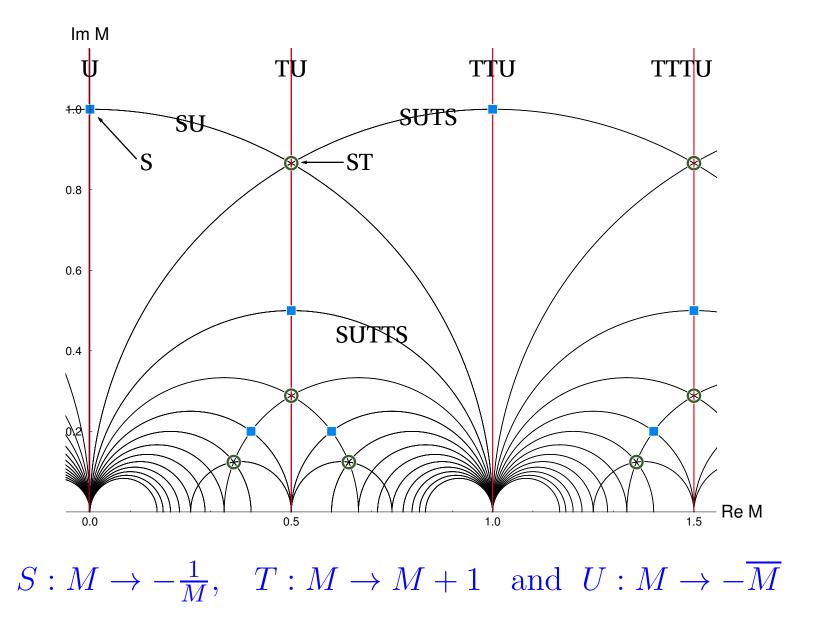
■ a left-right symmetric rotation  $C = (-1_4; 0, 0, 0, 0)$ Multiplicative closure of *A*, *B* and *C* leads to  $\Delta(54)$ .

- the earlier guesswork gave the correct result!
- but the new method produces the result automatically
- can be generalised easily to more complicated situations (like, e.g. six dimensions)

## **Moduli space of flavour groups**



#### **Fixed lines and points**



Unification of Flavor, CP and Modular Symmetries, Planck2019, Granada, June 2019 - p. 21/26

## **Flavour Symmetries II**

The red lines:

These are fixed lines under T and U. We have

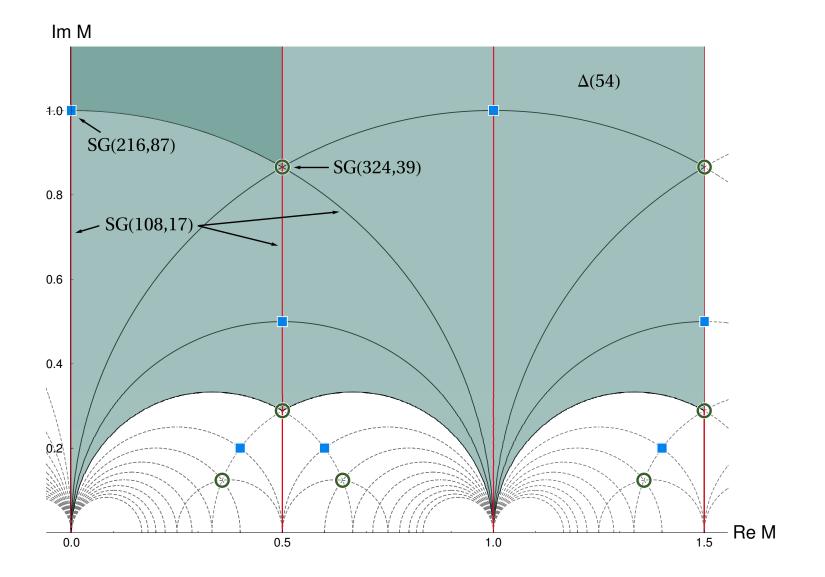
- $\blacksquare$  again A, B, and C
- and a left-right symmetric reflection D

Multiplicative closure of leads to SG(108, 17). This includes the formerly discussed CP-transformation! Unification of flavor and CP (spontaneous breakdown away from the line).

The circles: e.g. fixed lines under S and U

- $\bullet$  new asymmetric reflection E (instead of D)
- again SG(108, 17) but differently aligned
- enhanced with different  $Z_2$  from  $S_4 = Out(\Delta(54))$

#### **Moduli space of flavour groups**



# **Flavour Symmetries III**

Blue squares: two lines meet

• enhancement to SG(216, 87)

The small circles: three lines meet

- $\blacksquare$  maximum enhancement to SG(324, 39)
- The modular group T' has 24 elements, but not all of them lead to an enhancement of the flavor group  $\Delta(54)$ .

Only the elements within  $S_4$  of the outer automorphisms of  $\Delta(54)$  are relevant

- this leads to unification of flavour and CP
- OP exact at those fixed lines and points

## Messages

We have designed a generic method to find all flavor symmetries (based on the Narain space group)

- unification of traditional (discrete) flavor, CP und modular symmetries
- traditional flavor symmetry is universal in moduli space
- there are non-universal enhancements (including CP at some places (broken in generic moduli space))
- not the full modular transformations can appear as symmetries
- the potential flavor groups are large (in our case already up to SG(324, 39) for two extra dimensions)

#### Consequences

This opens a new arena for flavor model building

- a new look at CP as discrete gauge symmetry (Nilles, Ratz, Trautner, Vaudrevange, 2018)
- modular symmetries for flavor (Altarelli, Feruglio, 2006; Feruglio, 2017)
- groups are large and allow for flexibility (Hagedorn, König, 2018)
- the concept of local flavor symmetries allows different flavor groups for different sectors of the theory

(Baur, Nilles, Trautner, Vaudrevange, 2019)

- non-universal structure from modular symmetries (there is still the traditional universal flavor group)
- different flavor symmetries for quarks and leptons are no surprise