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Chapter 1

Introduction

“Oh, a sleeping drunkard
up in Central Park,

and a lion-hunter
in the jungle dark,

and a Chinese dentist,
and a British queen

all fit together
in the same machine.”

Kurt Vonnegut, Cat’s Cradle

The history of physics is essentially a story of unification. The most outstanding
transformations in the perception of our reality, have all been driven by ideas that
attempt to explain phenomena which were thought to have entirely different ori-
gins, within the same unifying framework.

It is worth noticing the long devenir of unifying ideas in a quest for describing
all objects we experience in terms of their elementary constituents and interac-
tions. In the microscopic regime, where the main role is played by the electro-weak
and strong interactions, quantum field theory arrived at its greatest glory after
the formulation of the standard model of particle physics (SM), in which the in-
teractions are understood in terms of the exchange of the spin 1 carriers of the
gauge symmetry GSM = SU(3)C × SU(2)L × U(1)Y . Quantum chromodynamics is
described by SU(3)C , whereas SU(2)L × U(1)Y accounts for the electroweak inter-
actions. In the standard model, quarks and leptons from the three known families
are incorporated as chiral fermions transforming in irreducible representations of
GSM . The masses for these particles are generated by the VEV of a scalar Higgs
doublet after the spontaneous breaking of SU(2)L × U(1)Y down to U(1)EM .

1



2 CHAPTER 1. INTRODUCTION

Despite its predictive power, there is a need for physics beyond the standard model.
From the theoretical point of view, the Higgs mass is not protected towards the
cutoff scale of the theory, which is known as the hierarchy problem. On the ob-
servational side, neutrino masses, dark matter and the baryon asymmetry of the
universe are still calling for an explanation.

Early measurements of the coupling constants hinted at the possibility that they
could coincide at energy scales of the order of 1014 − 1015 GeV. In that case, it
seems possible to unify the interactions, so that at higher energies they are de-
scribed by only one coupling constant and one gauge group factor. This is the
underlying idea of grand unified theories (GUTs) [1]. These models do not only
allow for the unification of the interactions, but also permit to incorporate the
fields of the (MS)SM in representations of the unifying group. Among the most
widely discussed GUTs, SU(5) is the simplest alternative. There, each family of
quarks and leptons is contained in a 10- and a 5-plet. One step further, when
SO(10) is considered to be the unifying group, one observes that a 16-plet serves
to accommodate one complete SM family in addition to an extra singlet [2]. This
extra field can be used to generate neutrino masses via the see-saw mechanism.
The general problem of such models is, that, when considering the Higgs to arise
from a higher reprsentation, one also obtains some color-triplets which lead to fast
proton decay. In addition, precision measurements of the coupling constants at
the electro-weak scale made less and less likely that they meet at a certain point.
Among the positive features of GUT schemes, we have a prediction for the weak
mixing angle θW and an explanation for the quantization of the electromagnetic
charge.

Supersymmetry (SUSY) assigns a new field (superpartner) to each particle of the
standard model, so that the spectrum is made fermion-boson symmetric [3]. The
contributions of the superpartners can make the quadratic corrections to the Higgs
mass vanish. This constitutes an elegant solution to the hierarchy problem. The
minimal supersymmetric extension of the standard model (MSSM), is the most
widely studied candidate among supersymmetric theories. To prevent this model
from being a phenomenological catastrophe, one is forced to introduce a Z2 R-
symmetry [4] in order to forbid dangerous proton decay operators. This symmetry
predicts the stability of the lightest supersymmetric particle (LSP). Such a parti-
cle is a promising candidate for dark matter. Another nice feature of the MSSM
is that gauge coupling unification can be achieved at energy scales of the order of
1016 GeV [5]. This revives the possibility for GUT scenarios to be realized in nature.

Gravity is still a missing piece in the game of unification. All attempts to ar-
rive at a quantum version of Einstein’s theory of gravity have turned out to be
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unsatisfactory. String theory seems the most promising framework to incorporate
gravity as a quantum theory. It differs form the standard field theory approach in
the sense that particles are no longer treated as point-like but as extended objects
(strings) [6] embedded into some D-dimensional space-time (target space).

Consistent tachyon-free string theories can be achieved by imposing worldsheet
supersymmetry. In order to prevent Lorentz invariance of the model from being
spoiled by quantum effects, one has to fix the dimension of the target space to be
D = 10. There are five consistent string theories. They are related by a network
of dualities which makes them to be thought of as different limits of an underlying
11-dimensional M-theory. A realistic stringy description has to give a target space
which is manifestly four dimensional. This can be done by considering the target
space to decompose a direct product of Minkowski space and some compact com-
pact six dimensional manifold.

In this work we concentrate in those stringy scenarios originating from the E8 ×E8

heterotic string [7, 8], this is a theory with N = 1 SUSY in ten dimensions. In the
spirit realizing some of the very special features of the (MS)SM, many compactifi-
cation schemes have been implemented. Among those, orbifolds [9, 10] correspond
to the simplest case. Despite their simplicity, these models have proven to be very
fruitful in the search for realistic vacua, as seen e.g. in the case of the Z6-II mini-
landscape [11, 12] and the Z2 × Z2 orbifold model [13]. It was found that the
models of physical relevance exhibit some statistical preference for a µ term of the
order of the order of the gravitino mass, intermediate scale SUSY breaking and
top-Yukawa unification [14].

As pointed out previously, the MSSM requires of a Z2 R-symmtery which forbids
dangerous dimension four operators. Still, proton decay can proceed via operators
of dimension five, unless one imposes proton hexality [15], this R-symmetry seems
problematic because the charge assignment is not compatible with grand unifica-
tion. A novel proposal to circumvent this problem is to look for an anomaly-free
R-symmetry which is in agreement with grand unification, forbids dimension four
and five proton decay operators and in addition forbids the µ term [16]. This
symmetry has to be broken by quantum effects to a remnant which looks like the
standard Z2. For the case of SO(10) GUTs, it was found that there is only one
possible ZR

4 -symmetry with the previous properties [16]. A symmetry with this
features was found in the context of the Z2 × Z2 orbifold [18]. The appearance of
candidates for the ZR

4 is related to the presence of Z2 symmetries in the orbifold.
In this spirit, we attempt to study the possibilities to achieve realistic models in
the Z2 × Z4 orbifold, which seems to be a suitable ground for stringy realizations
of the ZR

4 [16].
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Summary

This work is structured in the following fashion: In the second chapter we discuss
the construction of the ten dimensional heterotic string as well as the construc-
tion of the massless string spectrum in orbifold compactifications. In the spirit of
finding a systematic procedure to determine the R-symmetries present in a given
orbifold model, chapter three is devoted to a review of some relevant results from
orbifold CFT´s and to a study of discrete remnants of the Lorentz group for some
factorizable and non factorizable ZN orbifolds. We will investigate which of these
remnants introduce R-symmetries in the model. In chapter four we focus on theZ2×Z4 orbifold. First we discuss some of its geometrical features, then we describe
the algorithm implemented to look for all inequivalent embeddings allowed by the
point group. Then we focus on those models in which an SO(10) GUT scheme can
be accommodated.



Chapter 2

Heterotic String Theory on
Orbifold Backgrounds

“Soubéssemo-las nós e as coisas do céu teriam outros nomes”

José Saramago, Memorial do Convento

This chapter is devoted to the construction of the heterotic string and the com-
pactification procedures one can follow in order to obtain an effective model in
four dimensions. The excessive amount of supersymmetry at which one arrives
when considering purely toroidal compactifications makes them uninteresting for
phenomenological reasons. A chiral spectrum can only be obtained by introducing
more sophisticated backgrounds, among which orbifolds seem to be the simplest
alternative. The first sections involve the construction of all geometrical quantities
required for the proceeding discussions. Further we establish the mode expansions,
quantization conditions and massless spectrum for the 10D heterotic theory and
their four dimensional versions derived from toroidal and orbifold compactifica-
tions.

2.1 Lattices

In general, a lattice Γ of rank d can be defined as a free abelian group Zd described
by a finite number of generators eα (α = 1, ..., d) [19], such that:

Γ =

{

d
∑

α=1

nαeα | nα ∈ Z}
Each such lattice can be seen as a discrete set of points in Rd, from which the
lattice inherits a metric gαβ = (eα, eβ). Provided such a bilinear form, the dual

5
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lattice of Γ is defined as

Γ∗ :=
{

ξ ∈ Rd | (ξ, λ) ∈ Z; ∀λ ∈ Γ
}

If gαβ ∈ Z for all α, β the lattice is called integral. For integral lattices it is obvi-
ous that Γ ⊂ Γ∗. The lattice is said to be even if all of its elements are even i.e.
λ2 = (λ, λ) ∈ 2Z ∀λ ∈ Γ. A self dual lattice is defined such that it fulfills Γ = Γ∗.

A d-dimensional torus Td can be understood as Rd/Γ, meaning that any two
points in the d-dimensional space are identified if they differ by any vector in a
lattice Γ.

2.2 Orbifolds and further useful constructions

Given a finite group1 P ⊂ Aut(Γ), one can construct a d dimensional orbifold by
dividing P out of the torus. Such quotient manifolds define an orbifold [20]:O ≡ Td/P = Rd/S,

where the space group S is defined as S = P ⋉ Γ. An element g = (θ, λ) ∈ S,
θ ∈ P , λ ∈ Γ acts on Rd via:

g : Rd → Rd

x 7→ gx = θx+ λ,

so that x and gx are identified upon orbifolding.

Given the structure of S, its elements can be grouped into classes whose members
share the same point group element. These sets are called sectors. The untwisted
sector contains the identity element, whereas the twisted sector Tθ is associated to
the non-trivial element θ ∈ P .

Two elements g1 and g2 are conjugate to each other, g1 ∼ g2, take g1 = (θ, λ),
if the equivalence relation2

g2 = hg1h
−1 = (θ, ωλ+ (1− θ)λ′), for some h = (ω, λ′) ∈ S. (2.1)

is satisfied. Provided an element g of S, its corresponding conjugacy class [g] is
the set of all members of S which are conjugate to g. As an immediate corollary

1For our purposes only Euclidean lattices are of relevance so that the automorphism group of
Γ is always a subgroup of O(d).

2We specialize to the case of Abelian point groups.
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one has: [g1] = [g2] iff g1 ∼ g2.

The space group does not act freely on Rd. Given a non-trivial element g =
(θ, λ) ∈ S, a point zf which fulfills

zf = gzf = θzf + λ (2.2)

is called a fixed point of g. If eq. (2.2) is satisfied not only by a single point but by
a connected subspace of dimension d′, we will refer to it as a fixed torus.

If θ has order n and (1−θ) has full rank, g = (θ, λ), λ ∈ Γ has only one fixed point
of the form zf = β/n for some β ∈ Γ. In case g has some fixed line (torus), such
subspace will intersect with points given by 1/n times a lattice vector.

Consider now two fixed points zf1 = g1zf1 and zf2 = g2zf2, with g2 related to
g1 via eq. (2.1), then

zf2 = hzf1 = ωzf1 + λ′ . (2.3)

The above relation implies that these two fixed points (tori) are equivalent under
the space group. Inequivalent fixed points are thus in a one to one relation with
the conjugacy classes whose elements act non-freely on Rd.

Orbifolds are flat spaces with curvature singularities situated at the position of
the fixed points. This can be easily inferred from the fact that the local holonomy
group of the orbifold is trivial almost everywhere, only at the fixed points we can
find a discrete non trivial holonomy which in general is a subgroup of P .

2.2.1 Lattice Deformations

As discussed before, only isometries of the lattice can be consistently modded out
of Td(Γ). One can look at all possible lattices on which a certain point group
acts crystallographically. For instance, any element ρ ∈ Aut(Γ) which satisfies
ρθρ−1 ∈ P , for all θ ∈ P , induces a lattice ρΓ for which P is a set of isometries.
However, such elements are not of much interest since there is no way to distinguish
between Td(Γ)/P and Td(ρΓ)/P .

The basis {eα}α=1,...,d is specified by a set of angles and radii which one can set
to vary continously while preserving linear independence. Consider a continuous
parameter ξ which accounts for one such transformation. We denote the deformed
lattice spanned by {eα(ξ)}α=1,...,d by Γ(ξ), with Γ(0) being the lattice generated
by the simple roots of a semi-simple Lie algebra g. The deformed torus metric
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gαβ(ξ) = (eα(ξ), eβ(ξ)) needs to satisfy

θTg(ξ)θ = g(ξ), ∀θ ∈ P . (2.4)

in order to preserve P as a subgroup of Aut(Γ(ξ)). Note that in the above equa-
tion we have implicitly imposed that the elements of the point group are invariant
under the deformation. This is indeed the case, because the isometries can not
encompass the continuous variation of ξ.

On the orbifold T(Γ)/P , one is only allowed to perform lattice deformations which
are consistent with eqn. (2.4). Such continuous transformations are in close relation
to the presence of moduli fields in the spectrum of the heterotic theory compacified
on this orbifold background.

2.3 The Heterotic String

Closed string theories are characterized by having the left- and right-movers de-
coupled [21]. One is therefore permitted to construct a theory of closed strings in
which the left-moving modes are described by the 26D bosonic string theory and, in
order prevent the appearence of tachyonic states and allow for space-time fermions,
the right-moving modes are taken as those of the 10D superstring. The so-called
heterotic string possesses in turn (NL,NR) = (0, 1) world-sheet supersymmetries.

At first it may seem not so clear how the target space of this theory looks. In
its earliest formulation [8], the left movers were described by an alternative con-
struction which makes use of 10 bosonic and 32 fermionic coordinates to cancel the
conformal anomaly of 10+32/2 = 26. This fermionic description makes it obvious
that the heterotic theory is in fact ten-dimensional, given that there are only ten
coordinates with both left and right moving degrees of freedom [23]. The fact that
two world-sheet Majorana-Weyl fermions play the role of one holomorphic boson,
allows for the replacement of the fermions by 16 bosonic fields in the left moving
sector, recovering then the standard bosonic string theory. In what follows we
concentrate on the bosonic formulation given the intuitive geometric description it
provides.

The world sheet action for the heterotic string has the form:

S =
1

π

∫

d2σ
(

2∂+Xµ∂−X
µ + iψµ∂+ψ

µ + 2∂+XI∂−X
I
)

, (2.5)

where the world sheet metric has been fixed in light-cone coordinates σ± = τ ± σ.
The target space coordinates Xµ(τ, σ) µ = 0, ..., 9 embed the world sheet into the
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target space M10. Using the equations of motion, such coordinates can also be
decomposed as:

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) . (2.6)

Xµ
R(τ − σ) together with the fermionic fields ψµ(τ − σ) correspond to the super-

string right movers, while the 26 bosonic coordinates are described by Xµ
L(τ + σ)

and XI(τ + σ), where I = 1, ..., 16.

As discussed before, heterotic strings are subjected to closeness contraints:

Xµ(τ, σ + π) = Xµ(τ, σ), (2.7)

so that the space-time coordinates allow for mode expansions of the form

Xµ(τ, σ) = xµ + (pµ
L + pµ

R)τ +
∑

n∈Z
n 6=0

1

n

[

αµ
ne

−2in(τ−σ) + α̃µ
ne

−2in(τ+σ)
]

. (2.8)

From the boundary condition (2.7), it follows that the left and right moving mo-
menta must match:

pL = pR ≡ p

2
. (2.9)

For the right moving fermions one has the freedom to impose either periodic (Ra-
mond) or anti-periodic (Neveu-Schwarz) boundary conditions: ψµ(τ − (σ + π)) =
±ψµ(τ − σ). Mode expansions consistent with these periodicities are given by

ψµ(τ − σ) =



















∑

n∈Z dµ
ne

−2in(τ−σ) (R)

∑

r∈Z+ 1
2

bµr e
−2ir(τ−σ) (NS)

(2.10)

The extra sixteen bosonic fieldsXI in the left moving sector have to be compactified
on a torus T16, in order to preserve modular invariance. In this framework strings
can close after encircling the torus a certain amount of times

XI(τ + (σ + π)) = XI(τ + σ) + π
16
∑

ℓ=1

wℓe
I
ℓ , I = 1, ..., 16 ,

where wℓ ∈ Z are the winding numbers and the basis vectors eI span some lattice
Γ16. Modular invariance requires the lattice to be even and self dual. The only
Euclidean structures with such properties are either the root lattice of E8×E8 or
that of Spin(32)/Z2. By choosing any of these compacification lattices one sets the
gauge group to be either E8×E8 or SO(32). In fact, these are the only alternatives
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which allow for anomaly cancelation in a ten dimensional supergravity theory [22].
Since the gauge group arises from the compact coordinates XI they are often called
gauge degrees of freedom. The mode expansion for these extra left movers reads

XI(τ + σ) = xI + pI(τ + σ) +
∑

n∈Z
n 6=0

1

n
α̃I

ne
−2in(τ+σ), (2.11)

where p ∈ Γ16 is the quantized internal momentum of the string.

2.3.1 Light Cone Quantization

Upon quantization, the only non vanishing (anti-) commutation relations between
the modes present in eqs. (2.8), (2.10) and (2.11) are

[αµ
n, α

ν
m] = nδn+mη

µν , [α̃µ
n, α̃

ν
m] = nδn+mη

µν ,
[

α̃I
n, α̃

J
m

]

= nδn+mδ
IJ ,

{bµr , bνs} = δr+sη
µν , {dµ

n, d
ν
m} = δn+mη

µν .

The reality conditions imposed on both bosonic and fermionic coordinates together
with the previous equations, make it possible to interpret these modes as creation
(n, r < 0) and annihilation operators (n, r > 0). This motivates the definition of
the string-Hilbert space H which is composed of tensor products between left- and
right-moving states carrying the same momentum. However conformal and super-
conformal invariance of the left and right moving sectors plague the spectrum of
states which are not physically meaningful. To overcome this problem one has to
require the states in Hilbert space to be in agreement with the quantum version of
the following constraints

T++ = T−− = 0, TF = 0, (2.12)

in which Tαβ is the stress-energy tensor and TF is the world sheet supersymmetry
current; the explicit expressions for these quantities are

T++ = −∂+X
µ∂+Xµ − ∂+X

I∂+XI , (2.13)

T−− = −∂−Xµ∂−Xµ − i

2
ψµ∂−ψµ, (2.14)

TF = ψµ∂−Xµ . (2.15)

The mode expansions of these operators

T++ =
∑

n∈Z L̃ne
−2in(τ+σ), T−− =

∑

n∈ZLne
−2πin(τ−σ),
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TF =



















∑

n∈Z Fne
−2in(τ−σ) (R)

∑

r∈Z+ 1
2

Gre
−2ir(τ−σ) (NS)

define the generators of the super-Virasoro algebra. From equation (2.12) it follows
that a physical state |φ〉 needs to satisfy

L̃n |φ〉 = Ln |φ〉 , ∀n > 0 (2.16)

Fn |φ〉 = Gr |φ〉 = 0, ∀n, r > 0 (2.17)

(L0 − aR) |φ〉 = (L̃0 − aL) |φ〉 = 0 . (2.18)

In the last equation, the coefficients aL/R have been introduced to account for the
effects of normal ordering. In the left-moving sector one has aL = 1, while in the
right-moving sector aR equals 0 and 1

2
for R and NS sectors, respectively.

Yet another possibility to remove the non physical degrees of freedom is by making
an additional gauge choice in which the super-Virasoro constraints are implicitly
satisfied. In light cone coordinates

X± =
1√
2
(X0 ±X1),

it is known that one has enough freedom to fix the gauge in such way that only
the transverse coordinates X i and ψi i = 2, ..., 9 remain physical [23]. This gauge
choice leaves us with a theory which is manifestly covariant under the transverse
SO(8) little group of the Lorentz group SO(9,1).

Now we are able to compute the mass spectrum of the theory. The mass squared
operator in the light-cone gauge is

M2 = M2
L +M2

R,

with the constraint M2
L = M2

R imposed by eqn. (2.9). The left moving mass
operator is given by

M2
L

4
=
pIpI

2
+ Ñ − 1 , (2.19)

where

Ñ =

∞
∑

n=1

(α̃i
−nα̃

i
n + α̃I

−nα̃
I
n) ,
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is the number operator in the left moving sector. For the right movers one has

M2
R

4
=



























∞
∑

m=0

mdi
−md

i
m +N (R)

∞
∑

r= 1
2

rbi−rb
i
r +N − 1

2
(NS)

(2.20)

with N =
∑∞

n=1 α
i
−nα

i
n. The above equation can be written more compactly after

bosonization of the fermionic degrees of freedom. This procedure allows for a
weight q in the vector or spinor lattice of SO(8), to account for the effects of the
fermionic modes when the GSO projection is introduced. In terms of the right
moving momentum q, the mass operator takes the form

M2
R

4
=
q2

2
+N − 1

2
. (2.21)

As expected from the bosonic string, the ground state |0〉L in the left moving sector
is tachyonic. The massless states from this side are:

(i) α̃i
−1 |0〉L which transform in the vector representation 8v of SO(8).

(ii) The Lorentz scalars α̃I
−1 |0〉L and |p〉L with p2 = 2. The former relation is

only satisfied by the 480 roots of SO(32) or E8×E8 depending on the choice
of Γ16.

In the low energy regime massive string excitations remain uninteresting since
their masses are of the order of the string scale Ms ∼ 1017 GeV [24, 25]. The right
moving sector lacks negative mass states, so that |0〉L cannot be used to build
physical states. From eq. (2.21) we see that massless states are characterized by
N = 0 and q2 = 1, this condition is only satisfied by the following right moving
momenta3

(i) qv =
(

±1, 0, 0, 0
)

corresponding to the weights of the vector representation
8v of SO(8).

(ii) qs =
([

±1
2
,±1

2
,±1

2
,±1

2

])

, which give the weights of the spinor representation
8s of SO(8).

Tensoring the states previously described one finally arrives at the massless spec-
trum of the ten dimensional heterotic string:

3Here
(

±1, 0, 0, 0
)

means all possible permutations and
([

± 1
2 ,± 1

2 ,± 1
2 ,± 1

2

])

describe all the
combinations with an even number of minus signs.
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(i) |qv〉⊗|p〉L and |qv〉⊗α̃I
−1 |0〉L transform in the adjoint representation (248, 1)⊕

(1, 248) of E8×E8 or 496 of SO(32), so that these spin one fields correspond
to the gauge bosons of the theory. The states |qs〉 ⊗ |p〉L and |qs〉 ⊗ α̃I

−1 |0〉L
lead to the gauginos as expected for N = 1 supersymmetry.

(ii) The gauge singlets |qv〉⊗ α̃i
−1 |0〉L and |qs〉⊗ α̃i

−1 |0〉L yield the N = 1 SUGRA
multiplet. The states with bosonic right moving momentum decompose into
the following irreducible representations:

8v ⊗ 8v = 1 + 28 + 35v,

which correspond to the graviton g (35v), the dilation Φ (1), and the anti-
symmetric two form B (28). For the remaining 64 fermionic states one has
the decomposition

8s ⊗ 8v = 8c + 56c,

which give rise to the dilatino λ (8c) and the gravitino ψµ (56c). The subindex
c denotes cospinor representations, which arise in SO(8) as a consequence of
the triality of its Dynkin diagram.

2.4 Toroidal Compactifications

The remarkably simple spectrum we have achieved so far constitutes a beautiful
setup which encompasses all interactions of a ten dimensional world. There is no
doubt of the conceptual relevance of the heterotic theory as a geometric description
of fundamental interactions, however, its physical relevance is subjected to the
existence of a certain regime in which only the four space-time coordinates are
manifest. Such regime can be achieved by confining the extra dimensions to a
certain compact space. Let the 10D space M10 decompose into a direct product
of Minkowski space-time M3,1 and a six dimensional manifold M6:

M10 = M3,1 ×M6 . (2.22)

One can then assume that the volume of M6 is small enough, making any attempt
of detection unfeasible. A six dimensional torus T6 seems to be the simplest alter-
native, not only from the topological but also from the string theory side: the fact
that the torus is flat everywhere, guarantees the analytic solvability of the equa-
tions of motion for the compact coordinates so that the spectrum and interaction
can still be computed exactly.

Decompositions of the target space which have the form (2.22) can be consistent
with the requirement of Poincaré invariance in 4D. However, the clear distinction
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between compact and non compact coordinates hints at the breaking of the Lorentz
symmetry SO(9,1) of the tangent space, down to a subgroup which does not mix
between M3,1 and M6. Toroidal compactifications induce the minimal breaking

SO(9,1) → SO(3,1) × SO(6) ∼= SO(3,1) × SU(4) . (2.23)

For the transverse SO(8) one has

SO(8) → SO(2) × SO(6) ∼= U(1) × SU(4), (2.24)

where SO(2)∼=U(1) is the transverse component of SO(3,1) and coincides with the
helicity operator for massless states. In four dimensions, the SU(4) factor can only
be seen as an internal symmetry treating bosons and fermions in a different manner.
The winding numbers in the compact coordinates do not make any contribution to
the massless spectrum so that one finds the same states as irreducible representa-
tions of the unbroken subgroup of SO(8). The 10D gravitino decomposition

56c → 43/2 ⊕ 4−3/2 ⊕ 41/2 ⊕ 4−1/2 ⊕ 201/2 ⊕ 20−1/2,

permits us to determine the number of space-time supersymmetries since it coin-
cides with the number of 4D gravitini. The representations 43/2 and 4−3/2 pair up
to complete the helicity multiplets of four massless spin 3/2 fermions, and conse-
quently lead to N = 4 SUSY in four dimensions.

This last result is far from leading to a realistic description because supersym-
metric theories with N > 1 do not allow for a chiral spectrum. On the other hand,
a heterotic theory lacking any supersymmetry in 4D also remains uninteresting
since the SUSY breaking scale would be of the order of the compactification scale
and in that framework supersymmetry is unable to solve the hierarchy problem.
From these arguments it follows that the requirement of N = 1 SUSY in four
dimensions is unavoidable for any stringy attempt to make contact with particle
physics.

A phenomenologically interesting theory requires of a less trivial manifold. In
this sense, one would be interested in the interplay between the number of unbro-
ken supersymmetries and the topological properties of the manifold; in order to
determine its physical relevance. Each of the SUSY charges Qα induces variations
in all fields, weighted by an infinitesimal parameter ǫα. Unbroken supersymmetries
must lead to invariant backgrounds. This statement is trivially fulfilled in the case
of bosonic fields at the classical level, so that one only needs to require the variation
of the fermionic fields to be zero. For the 10D supergravity of the heterotic string
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these variations are4

δψµ = ∇µǫ, δλ = −1

2
Γµ∂µΦǫ, δχ = 0; µ, ν = 0, ..., 9 ,

corresponding to the variations of the gravitino, dilatino and gaugino, respectively.
The existence of any unbroken supersymmetry requires a constant dilaton ∂µΦ = 0
and a non-trivial solution for the following Killing spinor equation:

∇µǫ = 0,

hence ǫ does not depend on the 4D space-time coordinates. Due to the structure
of target space (see eq. (2.22)), it can also be written as

ǫ(yn) = ξ ⊗ η(yn),

where yn (n = 4, .., 9) are the coordinates of M6. The Majorana-Weyl supersym-
metry parameter ǫ decomposes as 16 → (2, 4) ⊕ (2̄, 4) under (2.23), so that ξ is a
constant Weyl spinor in four dimensions. Also note that η needs to satisfy

∇nη = 0,

meaning that in four dimensions each unbroken supersymmetry is associated to a
covariantly constant spinor of internal space. The Bianchi identity in M6 can be
written as:

[∇m,∇n]η =
1

4
RmnpqΓ

pqη = 0

where Γpq are the generators of SU(4). For the case of N = 1 SUSY in 4D, the
components RmnpqΓ

pq must be in a subgroup of SU(4) leaving one component of
η invariant. Under the breaking

SU(4) → SU(3) × U(1),

a spinor decomposes as 4 → 3−1 ⊕ 13, meaning that the presence of one unbroken
global SUSY in the low energy effective theory is only possible for compact spaces
with SU(3) holonomy. This is the defining property of Calabi-Yau manifolds [27].

2.5 Six Dimensional Orbifolds

As we already pointed out, orbifolds are almost flat spaces equipped with a set
of finite singular points with a non trivial holonomy group Q ⊆ P , so that, in

4These variations are valid only in the case of vanishing torsion, for more general expressions,
see e.g. [26]



16CHAPTER 2. HETEROTIC STRING THEORY ON ORBIFOLD BACKGROUNDS

principle one can construct a more realistic heterotic theory upon compactification
on a six dimensional orbifold for which Q is a subgroup of SU(3) [9].

To define the orbifold we consider a six dimensional lattice

Γ6 = {nαeα; nα ∈ Z, α = 1, ..., 6},

and a subgroup P of its automorphism group. We restrict to the case of abelian
point groups. In such cases P is given by a direct product of cyclic factors, so that
the action of any element ϑ ∈ P can be viewed as a rotation

ϑ = exp{2π(v1J45 + v2J67 + v3J89)} , (2.25)

where the coefficients v1, v2 and v3 serve to define a twist vector 5 v ≡ (0, v1, v2, v3).
The operators J45, J67 and J89 are the three Cartan generators of SO(6), so that P
consists of three cyclic factors at most, one per generator. Since we are interested
in P ⊂ SU(3), the twists v1, v2 and v3 are not all independent. This means that
Abelian point groups which lead to orbifolds with N = 1 SUSY in 4D must be of
the form ZN or ZN × ZM .

Provided the general breaking pattern for the transverse SO(8) described in eq.
(2.24), one can use the following complexified coordinates for the internal space

Z i = X2i+2 + iX2i+3, Z i∗ = X2i+2 − iX2i+3, (2.26)

for i = 1, 2, 3. The compact manifold can then be described by

M6 =
C3

S
,

where S is the space group described in section 2.2. These new coordinates make
explicit use of the fact that U(3) ⊂ SO(6), and allow for setting the orbifold action
on the internal coordinates to a diagonal form6

ϑ = diag(e2iπv1

, e2iπv2

, e2iπv3

), (2.27)

From the the supersymmetry condition ϑ ∈ SU(3), one can conveniently choose
the twist vector to satisfy

v1 + v2 + v3 = 0. (2.28)

5The first entry is introduced to indicate that there is no rotation along the generator of the
transverse component of the Lorentz group SO(3,1).

6Note that the coordinates Zi and Zi∗ transform under the fundamental and anti-fundamental
representations of SU(4), so that an element of the point group which acts as ϑ on Zi, acts as ϑ†

on Zi∗.
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If P = ZN one has only one generator θ, associated to a twisted vector

vN ≡ (0, v1, v2, v3).

The cyclicity condition (θN = 1) implies that the twists vi
N are all of order N

i.e. Nvi
N = 0 mod 1, for i = 1, 2, 3. In the case of P = ZN × ZM one has two

generators θ and ω related to the twists vectors vN and vM of order N and M
respectively. Each of these twist vectors has to satisfy eq. (2.28). We introduce the
notation T(k1,k2) for the twisted sector associated to θk1ωk2. An analogous notation
is used for the twisted sectors T(k) in ZN orbifolds.

In the complex basis of C3, where the elements of the point group are diago-
nal 3 × 3 matrices, the underlying lattice can be aligned in various ways insideC3. An orbifold O6 is called factorizable if its compactification lattice Γ6 can be
continuosly deformed7 to a direct product of three sublattices, each of which lies
completely on one complex plane. If that is not the case, each vector of the basis
has to be specified by three complex coordinates which are in general non-zero.
In such case the lattice is called non-factorizable. Note also that for factorizable
lattices, the independent twists θi = diag(f1i, f2i, f3i), fij = exp{2πiδijv

i} are also
lattice automorphisms.

2.6 The Orbifolded Superstring

On the orbifold we have more possibilities for stings to close in comparison to
toroidal compactifications. For the bosonic coordinates in 4D Minkowski space,
the boundary conditions remain identical as those depicted in eq. (2.7) whereas in
compact space, strings can close up to the action of a space group element [28]

Z i(σ + π) = (gZ)i(σ), i = 1, 2, 3; (2.29)

where g ∈ S is the constructing element of the string. Clearly, the untwisted sector
reproduces the boundary conditions one obtains from toroidal compactifications,
but orbifolding provides the necessary mechanisms to remove the unwanted grav-
itino and gaugino states from the spectrum.

We can consider a ZN × ZM orbifold and take some constructing element g =
(θk1ωk2, λ) ∈ S. The twisted boundary conditions are then determined by the local
twist vg ≡ k1vN + k2vM

Z i(σ + π) = e2πivi
gZ i(σ) + λi,

7Note that the only possible deformations permitted for a certain lattice are those which
commute with the point group P .
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It can be shown that a mode expansion consistent with the above equation requires
the string to wrap around the fixed point/torus zf = (1 − θk1ωk2)−1λ

Z i(τ, σ) = zi
f +

i

2

∑

n∈Z( α̃i
n−wi

n− wi
e−2i(n−wi)(τ+σ) +

αi
n+wi

n+ wi
e−2πi(n+wi)(τ−σ)

)

,

with wi = vi
g mod 1 (0 ≤ wi < 1). Note also that the twisted string is free of

momentum and winding number. Such an expansion provides a set of holomor-
phic twisted bosonic oscillators α̃i

n−wi, αi
n+wi for the right and left parts of the

string. Their anti-holomorphic counterparts can be found from the expansion of
the conjugate coordinate

Z i∗(τ, σ) = zi∗
f +

i

2

∑

n∈Z( α̃i∗
n+wi

n + wi
e−2i(n+wi)(τ−σ) +

αi∗
n−wi

n− wi
e−2i(n−wi)(τ+σ)

)

.

These relations are used to quantize the theory in the light cone gauge. As a result
one obtains that the commutation relations for the oscillators are all trivial except
for:

[

α̃i
n−wi, α̃

j∗
−m+wi

]

= (n− wi)δijδnm,
[

αi
n+wi, α

j∗
−m−wi

]

= (n+ wi)δijδnm.

In the presence of twisted oscillators the zero point energy receives the extra con-
tribution

δc =
1

2

3
∑

i=1

wi(1 − wi), (2.30)

which is the same for both, the right- and the left-moving sector.

The fermionic right-movers in internal space can also be rewritten as three holomor-
phic and three anti-holomorphic fermionic coordinates as in eq. (2.26). The twisted
boundary conditions for these fields are similar to those of the standard R and NS
sectors, but weighted by the phases introduced by the local twist. These phases
will shift the weight of the fermionic operators, and as a consequence, bosonization
will describe the effect of these modes in terms of a shifted right moving momentum
qsh = q+ vg, with q in the vector or spinor lattice of SO(8). The mass equation for
the right moving states reads

m2
R

4
=
q2
sh

2
+N − 1

2
+ δc, (2.31)

where N , counts the number of bosonic oscillators in the right moving sector.
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2.6.1 Space Group Action on Gauge Coordinates

The modular invariance properties of the one-loop partition function are preserved
only if the orbifold is allowed to act on the gauge coordinates. These coordinates
then transform under a non-trivial gauge twisting group G [9], provided an embed-
ding homomorphism

S →֒ G,

which acts consistently on both spaces such that, for a constructing element g ∈ S,
the boundary conditions in the gauge left movers read

XI(τ + (σ + π)) = (GgX)I(τ + σ) + πΛI ,

where Λ ∈ Γ16 is responsible for the winding modes (see e.g. eq. (2.11)). The
gauge twisting group is in general a subgroup of the automorphisms of E8×E8 or
Spin(32)/Z2. Although other posibilities may be interesting, here we specialize to
the case in which G is specified as a translational8 symmetry

(GgX)I = XI + πV I
g ,

where Vg is some 16 dimensional vector which respects the group structure of S
upon lattice identifications. When considering this kind of embedding, the mode
expansion for twisted strings differs from the one introduced in eq. (2.11) only by
the shifted left moving momentum psh = p+Vg. The embedding of the space group
into the gauge coordinates will break the gauge symmetry of the 10D heterotic
string down to a smaller subgroup. Further we will see that this kind of breaking
is rank-preserving. This is true for all freely acting embeddings one can conceive9.
From the previous arguments it follows that the mass equation for the twisted left
movers reads

m2
L

4
=
p2

sh

2
+ Ñ − 1 + δc, (2.32)

where the bosonic number operator for the left moving sector is given by

Ñ =
∑

n>−ωi

α̃i∗
−n−ωiα̃i

n+ωi +
∑

n>ωi

α̃i
−n+ωiα̃i∗

n−ωi +
∑

n>0

α̃I
−nα̃

I
n. (2.33)

For the abelian orbifolds consistent with the requirement of N = 1 supersymmetry
in 4D, the translational embeddings can be described byZN : (θk, nαeα) 7→ kVN + nαWα (2.34)ZN × ZM : (θk1ωk2, nαeα) 7→ k1VN + k2VM + nαWα (2.35)

8If one chooses G to be in the inner automorphism of the Lie algebra associated to Γ16, its
action can be realized as a shift [36].

9For examples of embeddings with non trivial stabilizers see e.g. [30].
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The simplest case in which one just embeds the point group (by specifying the
action of the generators θ and ω) is in agreement with modular invariance of the
vacuum-to-vacuum amplitude. The further embedding of the six dimensional lat-
tice is a freedom one has in terms of the discrete Wilson lines Wα [29].

In the ZN × ZM orbifold the choice of the vectors VN , VM and Wα (α = 1, ..., 6)
is not entirely arbitrary10. G must properly reproduce the structure of S while
preserving the modular invariance properties of the theory. Since θN and ωM equal
the identity element one has to guarantee that their action is trivial on the gauge
coordinates. The only trivial translations one has in this space are related to the
identifications imposed by the lattice Γ16. From these arguments we arrive at the
conditions

NV1,MV2 ∈ Γ16. (2.36)

For each lattice vector eα ∈ Γ one has to find an element ϑ = θk1ωk2 which leads
to the minimum power Nα for which the following relation is satisfied

Nα
∑

k=1

ϑkeα = 0.

Consider an element h = (ϑ, eα) ∈ S, its corresponding embedding is given by

Vh = (k1V1 + k2V2) +Wα.

On the other hand, the action of hNα = (ϑNα , 0) is associated to

VhNα = Nα(k1V1 + k2V2).

Consistency with the product structure of S implies that VhNα and NαVh can differ
at most by lattice vector from the sixteen dimensional lattice, so that the Wilson
line must satisfy

NαWα ∈ Γ16,

Due to this property, Nα is referred to as the order of the Wilson line. The set
of Wilson lines which are inequivalent can also be found by a similar procedure.
Consider for example, the case in which two basis vectors are related by a point
group transformation: ϑeα = mαβeβ for some mαβ ∈ Z for all α, β and for some
ϑ = θk1ωk2. An element h = (ϑ, eα) is embedded as Vh = (k1V1 + k2V2) + Wα.
Similarly, the shift for h2 is given by Vh2 = 2(k1V1+k2V2)+Wα+mαβWβ . Therefore
a consistent embedding requires

Wα −mαβWβ ∈ Γ16. (2.37)

10On ZN one also has to impose some consistency constraints, but these can be straighforwardly
derived from those we will derive for ZN × ZM .
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This equivalence of the Wilson lines is denoted as Wα ≃ mαβWβ .

The constraints at which one arrives by requiring modular invariant amplitudes
can be summarized in the following set of equations [31]

N(V 2
N − v2

N) = 0 mod 2, (2.38)

M(V 2
M − v2

M) = 0 mod 2, (2.39)

gcd(N,M)(VN · VM − vN · vM) = 0 mod 2, (2.40)

Nα(Wα · Vi) = 0 mod 2, (2.41)

gcd(Nα, Nβ)(Wα ·Wα) = 0 mod 2. (2.42)

2.6.2 Orbifold GSO Projectors

In the previous sections we found the expressions for the mass of left- and right-
moving string states. For the particular case when one takes the identity (1, 0) ∈ S
as constructing element, the mass equations are identical to those we found for the
heterotic string compactified on a torus. Thus, in principle, one arrives at the same
set of physical states, in which one has phenomenologically uninteresting N = 4
SUSY. As we previously pointed out, orbifolding prevents this catastrophe, but we
have not yet established the explicit mechanism responsible for breaking the extra
three unwanted supersymmetries. The fact that the point group has been already
modded out of the target space is consistent with requiring the physical states to
be invariant under the action of S. Each element h ∈ S has an associate projec-
tion operator ∆h which acts trivially on any physical state, the combined effect
of these operators will in the end provide a spectrum with the correct amount of
supersymmetry. Since they play a similar role as the GSO projectors one normally
introduces in 10D string theories, these operators are called Orbifold GSO projec-
tors [32].

In order to describe the actual structure of these projectors, we can look at the
transformations for the independent pieces: The states are composed of. In the
right moving sector, the presence of bosonic oscillators is forbidden in the massless
spectrum, so that the states can only be of the form |qsh〉. The corresponding
transformation rule is given by [33]

|qsh〉 h−→ e−2iπvg ·qsh |qsh〉 . (2.43)

In the untwisted sector, the only massless states we can find are the weights of
the representations 8v and 8s of SO(8), as pointed out in section 2.4. The break-
ing of this transverse component proceeds according to eq. (2.24), inducing the
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decompositions
8v → 11 ⊕ 60 ⊗ 1−1,

8s → 41/2 ⊕ 4−1/2 .

From the 4D perspective 11 and 41/2 are interpreted as a vector boson and four
fermions with positive helicity, respectively. The weights 1−1 and 4−1/2 correspond
to the CPT conjugates of the former ones. From 60 one gets three complex scalars
and their conjugates. We can now focus on the states of positive chirality to ex-
emplify the decomposition induced by eq. (2.43). Using the convention introduced
in eq. (2.28), one can immediately see that the weights

qv = (1, 0, 0, 0) and qs = (1
2
, 1

2
, 1

2
, 1

2
), (2.44)

are invariant under space group transformations. These states of positive chirality
transform in the vector and spinor representations of the 4D Lorentz group. Since
these states have the same phase transformation they combine to form the N = 1
SUSY vector multiplet. The three remaining weights of 41/2 and the scalars of 60

can be paired up in a similar way (see table 2.1), and lead to the three left chiral
multiplets of the untwisted sector.
For the twisted sectors we can immediately see that the presence of δc in eq. (2.31)

qv
1 = (0, 1, 0, 0) qs

1 = (1
2
, 1

2
,−1

2
,−1

2
)

qv
2 = (0, 0, 1, 0) qs

2 = (1
2
,−1

2
, 1

2
,−1

2
)

qv
3 = (0, 0, 0, 1) qs

3 = (1
2
,−1

2
,−1

2
, 1

2
)

Table 2.1: SO(8) weights for the three possible left chiral multiplets of the untwisted
sector. Under the action of a space group element h, the states qv

i and qs
i transform

with the same phase e−2πivi

.

only permits them to be populated by chiral matter (i.e. no 4D vector bosons).
Considering for instance some massless fermion qs

sh of positive chirality, it can be
shown that there is a massless boson

qv
sh = qs

sh + (−1
2
, 1

2
, 1

2
, 1

2
), (2.45)

in the same twisted sector which transforms under the space group in the same
way as qs

sh does.

Now we can consider the operators in the left moving sector which lead to massless
states. In what follows we specify their transformation under the space group. In
the untwisted sector one can make use of α̃µ

−1, µ = 1, 2 to generate the vector
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representation of the transverse 4D Lorentz group and α̃I
−1 to generate the Cartan

generators of the gauge symmetry. These states are all invariant under S.

For the twisted sectors the only bosonic oscillators which can lead to massless
states are of the form α̃i

−wi or α̃i∗
−wi∗ (wi∗ = −wi mod 1, 0 ≤ wi∗ ≤ 1). The

corresponding phase transformation is given by

α̃i
−wi

h−→ e+2πivi
h α̃i

−wi,

α̃i∗
−wi∗

h−→ e−2πivi
h α̃i∗

−w̄i∗.

Note that for the computation of the twisted massless spectrum one can use a
simpler expression for the number operator Ñ

Ñ = wiÑ i + wi∗Ñ i∗,

where Ñ i and Ñ i∗ are the occurrence numbers for α̃i
−wi and α̃i∗

−wi∗ respectively.

The gauge coordinates are subject to the following transformation rule

XI h−→ XI + πV I
h .

Given that the vertex operator for a twisted string contains a piece of the form
e2ipI

sh
XI

, any state |psh〉L acquires an extra phase under the action h

|psh〉L
h−→ e2πipsh·Vh |psh〉L .

Yet there is an extra piece we have to introduce when considering the physical
states in an orbifold model. This has to do with the fact that twisted strings are
associated to vacuum configurations which differ from the untwisted vacuum. This
situation will be more exhaustively stressed in section [string selection rules] but for
our current purposes we can simply notice that by tensoring left and right moving
states to generate a twisted string, we are missing the information regarding its
localization in compact space. To specify the string center of mass we can make use
of its constructing element g. Näıvely one could think of relating one Hilbert space
Hg to each space group element g, so that the physical states it contains are tensor
products of the left and right moving parts together with a piece |g〉 related to the
vacuum associated to such a space. However, the transformation h : |g〉 7→ |hgh−1〉
implies that Hg is not closed under the action of the space group, which is not
suprising beacuse all elements within the same conjugacy class lead to the same
fixed points (tori) on the orbifold. A more suitable Hilbert space we can construct
as

H[g] =
⊕

g′∈[g]

Hg′ . (2.46)
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Invoking all arguments introduced along this section, we can infer that any massless
physical states has the form

|phys〉 ∼ |qsh〉 ⊗
3
∏

i=1

(

α̃i
−ωi

)Ñ i (

α̃i∗
−ωi∗

)Ñ i∗

|psh〉 ⊗





∑

g′∈[g]

e2πiγ(g′) |g′〉



 , (2.47)

where the phases γ(g′) have been introduced in order to guarantee that under a
space group transformation the Hilbert space element gets invariant up to a phase:

γ(hgh−1) = γ[g](h) + γ(g) mod 1, ∀h, q ∈ S, (2.48)

where γ[g](h) is the so called gamma phase [34]. Some consistency checks permit
to derive the following properties

γ[g](h) = 0 mod 1, if [h, g] = 0 (2.49)

γ[g](h1h2) = γ[g](h1) + γ[g](h2) mod 1, (2.50)

Nhγ[g](h) = 0 mod 1, if hNh = (1, 0) (2.51)

Finally, we are in a position to describe the effect of the orbifold GSO projectors
on the massless spectrum

∆h |phys〉 = exp

{

2πi

[(

psh −
1

2
Vg

)

· Vh −
(

R− 1

2
vg

)

· vh + γ[g](h)

]}

|phys〉 ,
(2.52)

In which we have included an extra term exp{−πi(Vg · Vh − vg · vh)} required by
consistency of the projector with a modular invariant partition function [38]. Due
to its origin this term is referred to as the vacuum phase. The contribution of qsh
and the bosonic left moving oscillators have been conveniently written in terms of
the so-called R-charges

Ri = qi
sh − Ñ i + Ñ i∗. (2.53)

As was shown in ref. [33], one can take advantage of eq. (2.51) and choose γ[g](h)
to make |phys〉 invariant under ∆h, however, this is not the case if one can find
an element g′ ∈ [g] for which [h, g′] = 0, in that situation h is called a commuting
element of [g] and its gamma phase is trivial (see eq. (2.49)). From the above
arguments it follows that the only relevant projections which apply on the states
of H[g] are those induced by the commuting elements11 of [g].

11The projections induced by the commuting elements are not all inequivalent, one can take a
representative g′ of [g] and look for all the elements of S which commute with it, these elements
give rise to all inequivalent projection conditions on H[g].
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2.6.3 Massless Spectrum

So far we have discussed the operators we are allowed to use in order to generate
a massless state as well as the projection phases which determine whether such
state is physical or not, in contrast to the 10 dimensional theory, we have a wide
panorama of geometries and embeddings from which a diverse landscape of gauge
groups and matter fields is obtained. Since these properties are very model de-
pendent, it is very hard to describe how these spectra look in general. That is
the reason for which, instead of attempting any actual computation, this section
is intended more to describe some fields common to all models, and briefly sketch
the manner in which the chiral matter and the gauge group are obtained.

The identity element e = (1, 0) ∈ S is the constructing element for the massless
states of the untwisted sector. As we pointed out already, we obtain the untwisted
spectrum by looking at the states which survive the orbifold projection, among the
states found in the context of toroidal compactifications.

(i) |qv〉 ⊗ α̃µ
−1 |0〉L ⊗ |e〉, |qs〉 ⊗ α̃µ

−1 |0〉L ⊗ |e〉, µ = 2, 3 together with their CPT
conjugates, give rise to the supergravity multiplet and a chiral multiplet in
four dimensions, qv and qs have been defined in eq. (2.44). The decomposition
of the bosonic part leads to a real spin 2 particle which we identify as the 4D
graviton and a complex scalar corresponding to the axion-dilaton field. The
combinations of the |qs〉⊗ α̃µ

−1 |0〉L⊗|e〉 provide the gravitino and the dilatino
required by the condition of N = 1 supersymmetry.

(ii) The internal components of the 10D SUGRA multiplet which are not pro-
jected out we denote as

Nij̄ = |qv
i 〉 ⊗ α̃j∗

−1 |0〉L ⊗ |e〉 , Nij = |i〉 ⊗ α̃j
−1 |0〉L ⊗ |e〉 ,

with qv
i as defined in table 2.1. These moduli fields are related to geometric

variations of the internal manifold, Nij̄ are real states related to the Kähler
properties, whereas Nij are fields which account for the variations of the
complex structure. Note that the moduli N11̄, N22̄ and N33̄ are always part of
the spectrum. The presence of additional moduli depend exclusively on the
structure of the point group, however, their interpretation in terms of lattice
deformations requires the compactification lattice to be specified [35].

(iii) The states of the form |qv〉 ⊗ |p〉L ⊗ |e〉, which satisfy p ∈ Γ16, p
2 = 2 and

p ·V1 = 0 mod 1, p ·V2 = 0 mod 1, p ·Wα = 0 mod 1 ∀Wα, (2.54)

correspond to the gauge bosons of the four dimensional theory. Since the
emdedding is rank preserving, the Cartan elements |qv〉 ⊗ α̃I

−1 |0〉L ⊗ |e〉 are
all present in the spectrum.
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(iv) In many cases can also find some leftover gauge fields
∣

∣qb
i

〉

⊗ |p〉 ⊗ |e〉 of the
10D theory, which satisfy

p ·V1−vi
1 = 0 mod 1, p ·V2−vi

2 = 0 mod 1, p ·Wα = 0 mod 1 ∀Wα.
(2.55)

Such states, together with their fermion companions, give rise to chiral mul-
tiplets in the untwisted sector.

In the twisted sectors, one first has to look at all inequivalent fixed points and their
corresponding generators. Given the shift in the zero point energy, one has to look
at the massless right movers qsh which are permitted in each sector, then one can
choose a maximal set of inequivalent constructing elements and for each of them,
look for all massless solutions of eq. (2.32). Then one can tensor massless left
and right movers to attain states similar as those depicted in eq. (2.47). Finally
one looks for the effective GSO projectos associated to the constructing element,
and if the state under consideration survives, then it is incorporated to the twisted
spectrum. A more detailed description of this procedure is described in section 4.5
for the specific case of Z2 × Z4 on the lattice of SU(2)2 × SO(4)2.



Chapter 3

String Selection Rules

“Si el espacio es infinito estamos en cualquier punto del espacio.
Si el tiempo es infinito estamos en cualquier punto del tiempo”

Jorge Luis Borges, El libro de arena

In the previous section we discussed the set of constraints leading to the spectrum
of physical states for a given heterotic orbifold model. At this stage one could
also ask for the allowed interactions between such fields and look at the correlation
functions leading to the holomorphic terms in the superpotential.

Since orbifold compactifications correspond to free CFT´s, the string couplings
-among other quantities- can be exactly computed. However, instead of calculat-
ing the actual value of each possible coupling, we will follow the approach of the
previous literature [40, 41, 42] to look at the symmetries of the correlation functions
which set some couplings to vanish. The structure of this chapter is close to the
recent review by Kobayashi et. al. [32] with few extensions to non factorizable ZN

orbifolds and some special emphasis on the arguments conjecturing the presence of
R-symmetries [39] in the superpotential of the effective supergravity theory. The
results can be straightforwardly extended to orbifolds of the type ZN × ZM

In order to incorporate the non trivial boundary condition (2.29) we first shift
to complex world-sheet coordinates z = e2(τ+iσ)twisted fields σ̂[g](z, z̄) (g = (θk, λ))
are defined such that in the neighborhood of a twist field located at the origin, the
monodromy for the coordinate Z i:

∂Z i(e2πiz, e−2πiz̄) = e2πiwi

∂Z i(z, z̄),

(with wi as defined in section 2.6) is implemented [41]. The twist field σ̂[g] also serve
to create a twisted ground state out of an untwisted vacuum

∣

∣σ[g]

〉

= σ̂[g](0, 0) |0〉.

27
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Similarly as in section 2.6.2, we will think of such twist fields as appropriate linear
combinations of twists creating ground states at different fixed for which their
corresponding constructing elements belong all to [g]

σ̂[g] ∼
∑

g′∈[g]

e2πiγ(g′)σ̂g′ . (3.1)

The most singular parts in the operator product expansions for the free fields are
given by [32]

∂Z(z, z̄)σ̂[g](w, w̄) ∼ (z − w)−(1− k
N

)τ[g](w, w̄) + . . .

∂Z∗(z, z̄)σ̂[g](w, w̄) ∼ (z − w)−
k
N τ ′[g](w, w̄) + . . .

∂̄Z(z, z̄)σ̂[g](w, w̄) ∼ (z̄ − w̄)−
k
N τ̃ ′[g](w, w̄) + . . .

∂̄Z∗(z, z̄)σ̂[g](w, w̄) ∼ (z̄ − w̄)−(1− k
N

)τ̃[g](w, w̄) + . . . (3.2)

The above equations define four excited twisted fields τ[g], τ
′
[g] and their tilded com-

panions which are related to the former ones by conjugation on the world sheet [41].

Twisted fields also allow us to write vertex operators for twisted strings, for instance

V−1 = e−φ

(

3
∏

i=1

(∂Z i)Ñ i

(∂Z i∗)Ñ i∗

)

eiqv
sh

·HeipI
sh

XI

σ̂[g] (3.3)

corresponds to the emission vertex of a bosonic field, where φ is the superconformal
ghost, ∂Z i and ∂Z i∗ (i = 1, 2, 3) represent left moving bosonic oscillators with the
powers N i and N i∗ analogously as in section 2.6.2. H is a four dimensional vector
whose entries correspond to bosonized free fields representing the right moving
fermions and qv

sh are the shifted bosonic right moving momenta. XI (I = 1, ..., 16)
are the gauge coordinates and psh is the gauge momentum. The fermionic analog
of the above vertex is

V−1/2 = e−φ/2

(

3
∏

i=1

(∂Z i)Ñ i

(∂Z i∗)Ñ i∗

)

eiqs
sh

·HeipI
sh

XI

σ̂[g], (3.4)

where qs
sh is the shifted fermionic right moving momentum. States within the same

chiral multiplet are related by eq. (2.45). The subindices in the vertices denote
the conformal charge. It is also useful to define the summed H-momentum as the
sum of the internal components of qsh, note that in the case

∑

i vi = 0 the summed
H-momenta for V−1 and V−1/2 are equal to 1 and −1/2 respectively.
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It is important to recall that the vertices (3.3) and (3.4) are expressed in the
zero 4D momentum limit which is enough for the matters we are interested in. In
those expressions the cocycle factors [43] arising from consistency with fermionic
anti-commutation properties as well as the correct normalization factors [32] have
been omitted for simplicity.

The untwisted fermionic and bosonic vertex operators are identical to those pre-
sented before but with the shifted right movers replaced by the bosonic or fermionic
weights of SO(8) in the absence of the twist fields. The physical states in the Hilbert
space are equivalent to operators in the conformal field theory, by this reason tree
level correlation functions can be used to investigate the couplings between mass-
less fields. In particular, a vanishing correlation function for ψψφL−2 will imply
the absence of a coupling of the form ΦL in the superpotential.

The emission vertices have to be accomodated in the correlator in a way which
makes it possible to cancel the background charge of two on the sphere. This
makes it necessary to write some of them in a different ghost picture, such op-
eration can be done by using the internal part of the right-moving world sheet
supersymmetry current [28]

TF =
(

∂̄xµ
)

ψµ + ∂̄Z iψ̄i + ∂̄Z i∗ψi (3.5)

where ψj = exp{−iqv
j · H} with qv

j as in table 2.1. Note that the summed H-
momentum for qv

j is equal to 1. This picture changing operation allows to write
some bosonic vertices with zero conformal charge

V0 = eφV−1

3
∑

j=1

(eiq
v
j ·H ∂̄Zj + e−iqv

j ·H ∂̄Zj∗). (3.6)

at the price of introducing the right moving oscillators ∂̄Zj and ∂̄Zj∗. The corre-
lation function can then be expressed as

F =
〈

V−1/2(z1, z̄1)V−1/2(z2, z̄2)V−1(z3, z̄3)V0(z4, z̄4) . . . V0(zL, z̄L)
〉

(3.7)

In the following we study each of the components of this quantity to determine the
conditions that set it to vanish.

3.1 Space Group Selection Rule

Among the pieces which appear in the correlation function there is a product of
twist fields each labeled with a given conjugacy class of the space group. Note that
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after integrating out all the compounds of (3.7) we will be left with the expectation
value of such product in the presence of the background of the untwisted vacuum,
which will vanish except for the case

(1, 0) ∈
L
∏

α=1

[gα] (3.8)

which defines the space group selection rule. Given the structure of the space group
(gα = (θkα , λα)), it is possible to split the last condition into its twist and lattice
part. It implies that the product of twists must be equal to the identity i.e.

L
∑

α=1

kα = 0 mod N (3.9)

leading to the so called point group selection rule which can be seen as a discreteZN symmetry from the perspective of the effective field theory. For ZN ×ZM this
selection rule provides two discrete symmetries one per each factor. Equation (3.8)
also implies that there exists a set of lattice vectors τα ∈ Γ6 and some suitable
numbers jα ∈ Z which fulfill

L
∑

α=1

(

L
∏

β=α+1

θkβ

)

[θjαλα + (1− θkα)τα] = 0, (3.10)

which can be rewritten in terms of the fixed points as:

L
∑

α=1

(

L
∏

β=α+1

θkβ

)

(1− θkα)[θjαzfα
+ τα] = 0. (3.11)

This fixed point selectivity determines the configuration of fixed points in which
fields can sit in order to give a non vanishing coupling.

3.2 Gauge group invariance

Now we want to look at the gauge part of the correlation function. The gauge
coordinates XI are sixteen independent and arbitrary functions, for this reason
any non trivial dependence on such fields will set the correlator to vanish. Non
zero couplings are then characterized by

L
∑

α=1

pI
sh α = 0, (3.12)

which reproduces the requirement of invariance under gauge transformations for
each of the couplings present in the superpotential.
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3.3 Lorentz Invariance in Compact Space

A similar argument as the one used to show the invariance under gauge transfor-
mations, can be applied in this context: the arbitrariness of the bosonized fermions
leads to the conclusion that H-momentum must be conserved plane by plane [45].
Note first that for the bosonic fields in the zero picture (see eq. (3.6)) the term
arising from the supersymmetry current TF corresponds to a sum over the complex
coordinates in compact spac. Expanding such terms in the correlation function
(3.7), we can observe that for the coupling not to vanish, at least one of the fol-
lowing equations needs to be fulfilled

qs i
sh 1 + qs i

sh 2 + qv i
sh 3 +

L
∑

α=4

(qv i
sh α + (−1)nαqv i

j ) = 0, (3.13)

the sign (−1)nα depends on which term -either ∂̄Zjψ̄j or its conjugate- is present
in the piece under consideration. The occurrence numbers of such right movers we
note as N j and N j∗ respectively. The structure of TF . From these arguments it
follows

(L− 3) +
∑

j

N j −
∑

j

N j∗ = 0.

Since there are only L−3 bosonic fields in the zero picture, the only non vanishing
contributions to the correlation function arise from pieces which satisfy N j = 0,
j = 1, 2, 3. This result allows to write the H-momentum conservation condition as

L
∑

α=1

qv i
sh α = 1 +N i∗. (3.14)

For trilinear couplings there are no fields in the zero picture N i∗ = 0. Note that the
N i∗´s correspond to a specific property of the correlation function. They differ from
the left moving oscillator numbers Ñ i and Ñ i∗ in the sense that it does not have a
counterpart as quantum numbers for the physical states. All eqn. (3.14) tells us is
that for a nonzero amplitude, the sum of the H-momenta in each plane should give
positive integers. If we write qv i

sh α = qα + kαv
i, for some weight qα ∈ Γ(8v) with

positive chirality and kα labeling the twisted sector, the left hand side of (3.14)
becomes

L
∑

α=1

qv i
sh α =

L
∑

α=1

qi
α +

(

L
∑

α=1

kα

)

vi.

Consistency with eq. (3.9) sets this quantity to be always integer1 and hence all
what sets H-momentum conservation far from being trivial is the requirement of

1One might also worry about the fact that the summed H-momentum has to be equal to L,
but from our early assumption:

∑

i vi = 0, it is straightforward to show that this condition always
holds.
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positiveness:

L
∑

α=1

qv i
sh α ≥ 1. (3.15)

From table 3.1 we see that in all the models, the right movers with positive chirality
are characterized by weights with non negative entries. Any coupling made out of
left chiral superfields will have positive H-momentum. All what is left for us to
check is that the sum of the H-momentum is non zero in all of its components, and
this is not explicit for non prime orbifolds, because there one finds that weights
in certain twisted sector happen to have vanishing components in certain complex
planes. To exemplify this, we can look at Z6−II, a coupling of the form θ2θ2θ2 is
allowed by the point group, but the H momenta in the third plane sum up to 0, so
that it is forbidden by H-momentum. In the Z8−I orbifold, couplings of the form
θ2θ2θ4 are permitted, however in Z8−II such coupling is forbidden by H-momentum
in the third complex plane.

The above result shows that the effectiveness of H-momentum conservation as
a selection rule is very model dependent, but still imposes non-trivial conditions
in certain situations. In what follows we will see that H-momentum serves as a
powerful tool for writing further selection rules in terms of the quantum numbers
of the physical states in the Hilbert space formulation.

In a certain manner one can think of H-momentum conservation as a consequence
of the invariance of the couplings under some discrete remnant of the Lorentz group
which survives compactification and orbifolding of the internal dimensions. We ex-
pect symmetries of this kind, to leave all physical quantities of the 4D effective
theory invariant, so that allowed couplings should remain invariant under such dis-
crete transformations. In what follows we attempt to develop a procedure to find
the relevant discrete transformations of a given model and describe the constraints
that they impose on non vanishing correlators.

The selection rules we have presented so far simplify the correlation function (3.7)
to

F =

〈

L
∏

α=1

(

3
∏

i=1

(∂Z i)Ñ i
α(∂Z i∗)Ñ i∗

α (∂̄Z i∗)N i∗
α

)

σ̂[gα]

〉

, (3.16)

First we can focus on the space group part. Among the symmetries of the in-
ternal space, we consider those which leave the compactification lattice invariant.
By looking at the space group part of F we see that certain restrictions need to
be imposed in order to guarantee that the structure of the conjugacy classes is
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1 2 3 4 5 6Z3
1
3(0, 1, 1, 1)Z4
1
4(0, 1, 1, 2) 1

2(0, 1, 1, 0)Z6−I
1
6(0, 1, 1, 4) 1

3(0, 1, 1, 1) 1
2 (0, 1, 1, 0)Z6−II

1
6(0, 1, 2, 3) 1

3(0, 1, 2, 0) 1
2 (0, 1, 0, 1) 1

3(0, 2, 1, 0)Z7
1
7(0, 1, 2, 4) 1

7(0, 2, 4, 1) 1
7(0, 4, 1, 2)Z8−I

1
8(0, 2, 1, 5) 1

4(0, 2, 1, 1) 1
2(0, 0, 1, 1) 1

8(0, 2, 5, 1)Z8−II
1
8(0, 1, 3, 4) 1

4(0, 1, 3, 0) 1
8 (0, 3, 1, 4) 1

2(0, 1, 1, 0) 1
4 (0, 3, 1, 0)Z12−I

1
12 (0, 4, 1, 7) 1

6(0, 4, 1, 1) 1
4 (0, 0, 1, 3) 1

3(0, 1, 1, 1) 1
2 (0, 0, 1, 1)

−1
4(0, 0, 3, 1) − 1

12(0, 4, 7, 1)Z12−II
1
12 (0, 1, 5, 6) 1

6(0, 1, 5, 0) 1
4 (0, 1, 1, 2) 1

3(0, 1, 2, 0) 1
12 (0, 5, 1, 6) 1

2 (0, 1, 1, 0)

−1
6(0, 5, 1, 0) −1

3(0, 2, 1, 0)

Table 3.1: Massless right movers for some ZN orbifolds with positive chirality. The
CPT conjugates of the negative weights in the second rows of Z12−I and Z12−II

correspond to states with positive chirality in the inverse twisted sector.

preserved. But despite of that, we can look to a more reduced class

W = {̺ ∈ Aut(Γ6)| ̺(h) = (̺θ̺−1, ̺λ) ∈ [h], ∀h = (θ, λ) ∈ S},

where h = (θ, λ), θ ∈ P and λ ∈ Γ6, such that ̺ commutes with the orbifold action
ensuring that it maps fixed points to fixed points with the same network of iden-
tifications. For instance consider two fixed points z1 and z2 with the identification
θkz1 = z2 +λ′, this condition also holds for ̺z1 and ̺z2. This property also implies
that ̺ maps fixed points to fixed points, from which it follows that all conjugacy
classes are recovered after applying such transformation given that ̺ ∈ O(6) has
full rank.

We can study now the simplest case in which the conjugacy classes of S are all
invariant under ̺ i.e. ̺zf = θkzf +λ, ∀zf and for some k ∈ Z and some λ ∈ Γ6 and
consider the situation in which ̺ can be expressed in terms of the Cartan genera-
tors2 of SO(6): ̺ = diag(ρ1, ρ2, ρ3) with ρk = e2πiςk

. The group generated for such

2These Cartan generators correspond to the same which were used to write the elements of
the point group P of the orbifold.
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symmetries we denote from now on as Gu. The action of ̺ on the derivatives reads

∂Z i ̺−→ e2πiςi

∂Z i, ∂Z i∗ ̺−→ e−2πiςi

∂Z i∗,

∂̄Z i ̺−→ e2πiςi

∂̄Z i, ∂̄Z i∗ ̺−→ e−2πiςi

∂̄Z i∗. (3.17)

Since ̺ arises from the Lorentz group, it treats bosons and fermions in a different
way, so that the supersymmetry generator is not an invariant quantity. This cannot
be the case for the worldsheet supersymmetry current [44] and that is why the above

set of equations forces the action on the bosonized fermions to be H i ̺−→ H i +2πiς i.
The correlation function must also be an invariant quantity. By looking at the
transformation of (3.16) we see from the extra phase one obtains that it is only
non-trivial for the case

∑

i

ς i

[

L
∑

α=1

(−Ñ i
α + Ñ i∗

α +N i∗
α )

]

= 0 mod 1, (3.18)

which with the help of eq. (3.14) can be rewritten as:

L
∑

α=1

(

∑

i

ς iRi
α

)

=
∑

i

ς i mod 1, (3.19)

where Ri
α is the R-charge of a physical state α in the i-th complex plane (see eq.

(2.53)). Note that the orbifold action is a symmetry which happens to fulfill the
conditions which lead us to eq. (3.19), thus we find the relation

L
∑

α=1

(

∑

i

vi
hR

i
α

)

= 0 mod 1. (3.20)

Note that this leads to a non-R discrete symmetry which in general is not equiva-
lent to the one we found in the context of the point group selection rule.

In order to investigate the possible discrete symmetries that can be present in a cer-
tain model and their corresponding effects, we have constructed the automorphism
group for the lattices listed in tables 3.2 and 3.3. First we present our findings
for the lattices which factorize along the complex coordinates, which are the most
broadly studied in the literature and then we specialize to the non-factorizable
ones.

3.3.1 Factorizable Lattices

In factorizable lattices one can decompose the orbifold action θ = θ1θ2θ3 into three
twists θi acting independently on each of the complex planes (see section 2.5).
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These independent twists have the convenient feature of being lattice automor-
phisms which commute with the orbifold action. All we need to incorporate these
independent twists as R-symmetries of the theory is to guarantee that all fixed
points are left invariant up to identifications3. Factorizable lattices also make it
possible to write the fixed points as a direct sum of the fixed points in three com-
plex planes: zf = (z1, z2, z3), so that (θi)

kzi = zi + λi.

A twist θi is said to be prime if its order is a prime number; from the number
of prime twists present in a given orbifold we can distinguish among the following
situations:

(i) Assume one of the twists θj is prime. This implies that any zj of T2
j which is

a fixed point of (θj)
k is also fixed point of θj . This result makes θjzf = zf +λ;

since the fixed points are invariant, θj corresponds to an R-symmetry of the
supergravity theory.

(ii) If there is only one prime twist θj , from the above argument it follows that

θ(θj)
−1zf = θzf + λ,

for some λ ∈ Γ6, so that the fixed points are left invariant by the the simul-
taneous action of the non prime orbifold twists. No general conclusions can
be drawn for the cases when the twists act independently.

(iii) If the orbifold action is composed only of one non-prime twist θq, then one
can write θqzf = θ(θqθ

−1zf). From our assumption θqθ
−1 is the product of

two prime twists, so that θqθ
−1zf = zf + λ′ and hence

θqzf = θzf + θλ′,

which implies that θqzf and zf are identified under the orbifold action. In
this case each independent twist composing the orbifold can be incorporated
as an R-symmetry.

Note that in a model for which one of the above conditions is satisfied, the R-
symmetries reproduce the invariance condition (3.20). A comprehensive classi-
fication of ZN orbifolds can be found in ref. [47] from which we examined the
factorizable examples listed in table 3.2. One can see that any of these models
belongs to one of the categories listed before. Conditions (i)-(ii) are very helpful
in order to get some general intuitions on the expected panorama of R-symmetries
present in a given model, but we can also go to the basic geometric features of

3This is equivalent to ask the conjugacy classes of S to remain unaffected under the action of
θi.
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Lattice Shift N. F. PointsZ3 SU(3)⊗SU(3)⊗SU(3) 1
3
(1, 1,−2) 27 27Z4 SO(4)⊗SO(4)⊗SU(2)2 1

4
(1, 1,−2) 16 10Z6−I G2 ⊗G2⊗SU(3) 1

6
(1, 1,−2) 3 15 6Z6−II G2⊗SU(3)⊗SO(4) 1

6
(1, 2,−3) 12 6 8

Table 3.2: Factorizable ZN orbifolds under our consideration, the lattice, the shift
and the number of inequivalent fixed points for each twisted sector are given.

the compactification lattice to construct the subgroup W of automorphisms which
commute with the point group and then look at the set Gu of symmetries preserving
the fixed points; our findings are described in the proceeding paragraph.

(i) Z3 has three prime twists composing the orbifold action, the constraints they
impose on the L point couplings [48] are of the form:

L
∑

α=1

Ri
α = 1 mod3; i = 1, 2, 3,

these twists are enough to generate the group Gu of the lattice.

(ii) Z4 contains only one prime twist so that only θ1θ2 and θ3 leave the fixed
points invariant. From the side of the automorphism group one can find that
the symmetry (θ2)

2 also fulfill this property, such that one has the following
selection rules

L
∑

α=1

(R1
α +R2

α) = 2 mod4,

L
∑

α=1

R2
α = 1 mod2,

L
∑

α=1

R3
α = 1 mod2 . (3.21)

(iii) Z6−I also contains only one twist which is prime, but there only the R-
symmetries deduced in (ii) are present:

L
∑

α=1

(R1
α +R2

α) = 2 mod6,
L
∑

α=1

R3
α = 1 mod6 . (3.22)

(iv) For the Z6−II orbifold the presence of two prime twists permit to recover the
independent action of all the three twists leading to the symmetries found in
ref. [39]

L
∑

α=1

R1
α = 1 mod6,

L
∑

α=1

R2
α = 1 mod3,

L
∑

α=1

R3
α = 1 mod2 . (3.23)
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This corresponds to the only set of independent constraints one can impose
from the automorphism group of G2⊗SU(3)⊗SO(4).

3.3.2 R-symmetries and discrete Wilson Lines

Previously we saw that the equivalence relations for the space group elements are
preserved under transformations which commute with the orbifold action. This
fact raises the relevance of the symmetries which map between inequivalent fixed
points with the same physical states. It can very well be that such symmetries
allow for consistent maps between the states of the model and in some special
cases, they can even be able to restrict some couplings in the superpotential. We
attempt to look at the set of inequivalent transformations which commute with
the orbifold action but map between some conjugacy classes of S. In ensuring the
matter content at two different points to be the same, the Wilson lines play a key
role. A more explicit example of the effects of the symmetries we just mentioned
can be found in section 4.6 for the case of Z2 × Z4.

3.3.3 Non Factorizable Lattices

Lattice Shift N. F. PointsZ4 SU(4)⊗SU(4) 1
4
(1, 1,−2) 16 4Z6−II SU(6)⊗SU(2) 1

6
(1, 2,−3) 12 3 4Z7 SU(7) 1

7
(1, 2,−3) 7 7 7 7Z8−I SO(5)⊗SO(9) 1

8
(2, 1,−3) 4 10 4 6Z8−II SO(8)⊗SO(4) 1

8
(1, 3,−4) 8 3 8 6Z12−I SU(3)⊗F4

1
12

(4, 1,−5) 3 3 2 9 3 4Z12−II F4⊗SO(4) 1
12

(1, 5,−6) 4 1 8 3 4 4

Table 3.3: Some basic information concerning the non-factorizable ZN orbifolds we
investigated [46].

Contrary to the approach we followed in sect. 3.3.1, we will study some non-
factorizable orbifolds (see table 3.3) in a more model dependent fashion4.

4Given that in such cases the set of fixed points do not factorize along the complex planes, it is
hard to tell wether or not the twists of the orbifold can be incorporated as global R-symmetries.
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(i) In the case of Z4, the automorphism group for the lattice of SU(4)⊗SU(4)
is generated by considering all inequivalent products of automorphisms each
factor with the operator which exchanges between them. From this group
only 128 elements commute with the orbifold action and only 16 preserve
the structure of the conjugacy classes. Any element of the former group can
be written as a product of the point group elements with powers of (θ1)

2.
Invariance of the couplings under this element implies

L
∑

α=1

R1
α = 1 mod2 . (3.24)

This is the only global R-symmetry one has in this model.

(ii) As found in ref. [37] the automorphism group of SU(6)⊗SU(2) does not give
rise to any R-symmetry for the non-factorizable Z6−II.

(iii) This also the case of Z7 where only 14 elements were found to commute with
the point group, among those, the only transformations leaving the fixed
points untouched are found to belong to the point group.

(iv) For the Z8−I orbifold one finds that there is only one constraint:

L
∑

α=1

R1
α = 1 mod2 . (3.25)

(v) While in Z8−II the twist θ3 leaves the fixed points invariant, so that the
following constraint is present:

L
∑

α=1

R3
α = 1 mod2 . (3.26)

This is the only symmetry we found in addition to the orbifold action whose
corresponding constraint is given by eq. (3.20).

(vi) A similar situation is observed for Z12−I, where all R-symmetries are equiva-
lent to impose (3.20) and

L
∑

α=1

R1
α = 1 mod3 . (3.27)

(vii) In Z12−II the only constraint one has is given by

L
∑

α=1

R3
α = 1 mod2 . (3.28)

This is due to the Z2 symmetry of the sublattice in the third complex plane.



Chapter 4

MSSM Searches in the Z2 × Z4

Orbifold Model

“You’ve got to jump off the cliff all the time and build your wings on the way
down.”

Kurt Vonnegut, Hocus Pocus

In this chapter we study a particular orbifold example. Provided the machinery
we developed in chapter 3, we attempt to construct the physical models which
characterize the geometry of Z2 × Z4 in the lattice of SU(2)2 × SO(4)2. First we
describe some geometrical properties, then we search for all translational embed-
dings which are permitted by modular invariance and the breaking patterns they
induce. Among those gauge structures, we will focus on those which, upon the
introduction of Wilson Lines, incorporate the gauge group of the standard model
as a factor. We choose the lattice of E8×E8 to compactify the gauge coordinates,
due to its nice phenomenological features [33, 37]

A suitable breaking will be our first filter in the search for model with realistic
properties. Then we specialize to those containing SO(10) as a unifying gauge
group, a model in which three effective families can be achieved is our final goal.

4.1 Generalities

test
The Z2 × Z4 orbifold of our interest is characterized by the following properties:
we consider a factorizable lattice Γ6 as the tensor product of the root lattices of
SU(2)2 and SO(4)2. Note that the first lattice is basically arbitrary and is invariant
under rotations by 180 degrees whereas the two SO(4) factors are invariant under

39
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Figure 4.1: Inequivalent fixed points for each twisted of the Z2 × Z4 orbifold,
comments on the fixed point structure.

rotations by 90 degrees, so that one is permitted to construct a point group out of
the following twist vectors

v2 = (0,
1

2
,−1

2
, 0), v4 = (0, 0,

1

4
,−1

4
),

which clearly satisfy the N = 1 SUSY condition. The fixed points in each twisted
sector T(k1,k2) are constructed in the following manner: For each complex plane we
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take the set of all lattice elements λ(i) ∈ Γ6 so that the vector f (i) = λ(i)/q is inside
the fundamental domain, with q being the order of the element θk1ωk2. We combine
such vectors to a six dimensional one z = f (1) ⊗ f (2) ⊗ f (3) and check whether z is
a fixed point or not.

This algorithm provides the fixed points within the fundamental domain. In order
to look for the equivalence relations between them, one can consider all possible
pairs of fixed points zf1, zf2 within the same twisted sector, and for each of those
pairs check wether there is any element ϑ ∈ P , for which zf1 − ϑzf2 ∈ Γ6. The
inequivalent fixed points are depicted in fig 4.4.

4.2 Gauge Group Diversity

A näıve look at eq. (2.36) might suggest that there are infinitely many possibilities
to realize the gauge embedding. Fortunately, among all those possibilities there is
only a finite set which actually leads to models which are physically inequivalent.
Two models are called physically equivalent if they have the same physical spec-
trum, i.e. they share the same gauge group and the same matter content1.

In order to construct the machinery required to derive all physical possibilities
permitted in a certain model, we can first focus on the case in which all Wilson
lines are switched off, so that we only need to specify the embedding for the gener-
ators of the point group. We first discuss the general case of a ZN × ZN orbifold,
and then Draw some conclusions for the model of our interest. Consider a certain
embedding which we denote by [VN ;VM ], meaning that VN and VM reproduce the
effects of the point group generators on the gauge space. The role this embedding
plays on the spectrum can be seen from the mass equation (2.32). Assume that for
the T(k1,k2) twisted sector one can find a weight p ∈ Γ16, such that up to a certain
oscillator combination; psh = p+ k1VN + k2VM permits constructing a massless left
moving state. As an immediate consequence one can find that for the embedding
[VN + λN ;VM + λM ] with λN , λM ∈ Γ16, the weight psh is also a solution for the
massless equation, with the same oscillator configuration as before. On the other
hand, the embedding [σVN ; σVM ] for σ ∈ O(16) is only consistent if σ is an au-
tomorphism of Γ16. In such a case σ(p + k1VN + k2VM) also gives a left moving
massless state. From these simple arguments it follows that the embeddings which
differ by lattice vectors as well as those which are related via automorphisms acting

1This definition of equivalence requires of course that each physical state in one model, has a
counterpart in the other with the same quantum numbers.
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simultaneously on both VN and VM contain the same massless left moving states2.

The fact that two models have the same left moving massless states is, however,
not sufficient to guarantee that these models will have the same physical states.
For that one also has to ensure that the orbifold projectors have the same effects in
both models. Assume now that, for some fixed point zf of T(k1,k2), the space group
element h = (θn1ωn2, λ) commutes with its generating element. The gauge part of
the phase projection induced by h we denote by

δ(k1,k1)(n2, n2) = exp
{

2πi
[

psh − 1
2
(k1VN + k2VM)

]

· (n1VN + n2VM)
}

, (4.1)

for some weight psh which, combined with a certain oscillator configuration, leads
to some massless left moving state, consider [σ(VN + λM); σ(VM + ΛM)] to be an
embedding, for some σ ∈ Aut(Γ) and for some λN , λM ∈ Γ16. Previously we
noticed that under this choice, σpsh also leads to a left moving state with the same
properties as the one in the previous case. It can be shown that its corresponding
phase transformation under h is given by

δ′(k1,k1)(n2, n2) = exp{2πi(k1n2 − k2n1)Φ}δ(k1,k1)(n2, n2), (4.2)

with

Φ =
1

2
(VM · λN − VM · λN + λN · λM) . (4.3)

Note that the above equation is actually independent of the automorphism σ. This
is a very powerful result since we can now mod the automorphism group out of
the set of all possible embeddings. Nevertheless, for the case in which one shifts
the embedding by lattice vectors, one only arrives at an equivalent model when
the brother phase Φ [31] is an integer number. Note also that from eqs. (2.54)
and (2.55) and from the fact that Γ is integral, gauge embeddings which differ by
lattice vectors have the same untwisted matter content. This is the reason why
we left the effects of lattice shifts to be studied at the point where we discuss the
construction of the twisted spectra.

Now we specify to the particular case of Z2 × Z4. Given that we decided to
compactify the gauge coordinates on the lattice of E8 ×E8, we can decompose the
embedding vectors as

V4 = A4 ⊕B4, V2 = A2 ⊕ B2, (4.4)

2When comparing the weights psh and σpsh which lead to massless left movers under the
embeddings [VN ; VM ] and [σVN ; σVM ] respectively, one can observe that σ also maps between the
simple roots of the gauge groups induced by these embeddings, meaning that psh and σpsh have
the same Dynkin label.
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where 4A4, 4B4, 2A2 and 2B2 are vectors from the lattice of one single E8. The
decomposition takes advantage of the fact that the isometries of Γ16 which are
of physical interest, can all be written as the direct product of inner automor-
phisms of each E8 root lattice3. This implies the equivalence of the embeddings
[A4 ⊕B4;A2 ⊕ B2] and [σ1A4 ⊕ σ2B4; σ1A2 ⊕ σ2B2], where σ1, σ2 ∈ Aut(e8).

The above arguments permit us to consider just one E8 factor. At this stage,
we are not interested in the complete spectrum, but only in models which share
the same untwisted fields. Because of that, we can focus on the vectors from the
following minimal set

A4 =
1

4

8
∑

k=1

akαk, ak = 0, 1, 2, 3, (4.5)

A2 =
1

2

8
∑

k=1

bkαk, bk = 0, 1, (4.6)

to construct all combinations (A4, A2) and apply all E8 automorphisms to find all
those which are inequivalent. After that we can construct all possible embeddings
as pairs of such combinations which fulfill the modular invariance conditions (2.38),
(2.39) and (2.40).

Though this procedure seems relatively straightforward, one faces some technical
difficulties, as the Weyl group of E8 is composed of 696.729.600 elements. Such a
big number makes its construction unfeasible with current computer resources. We
can still follow a more reliable approach by considering the inequivalent E8 vectors
found for the Z4 orbifold [50]. These correspond to the A4 vectors (see appendix
??), so that one only needs to look for the equivalence relations of the Z2 vectors A2.

By completely modding all isometries and lattice shifts out of the Z4 vectors, we
have to modify the the equivalence relations for their Z2 companions. For a given
A4, two combinations (A4, A2) and (A4, A

′
2) are equivalent only if one can find an

element σ, from the subgroup

Aut(e8|A4) = {σ ∈ Aut(e8) | σA4 = A4} , (4.7)

such that σA2 = A′
2.

Still, generating the subgroups Aut(e8|A4) is far from feasible. To avoid such

3There is an outer automorphism which maps the E8 factors to each other. However, it is not
of physical interest since it will just lead to the same group structure in a different order.
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exhaustive construction we can appeal to the fact that any element in a Weyl Cox-
eter group can be written as a product of Weyl reflections. For each inequivalent
A4 vector we will look at the set of Weyl reflections which leave it invariant

W(A4) =

{

σα = 1− ααT

〈α, α〉 | α ∈ e8, σαA4 = A4

}

. (4.8)

In order to maximize the number of equivalence relations one can obtain by using
this set of transformations, we exploit the spherical symmetry which characterizes
the isometries and consider all the vectors A2 = λ/2 where λ is a vector in the
lattice of E8 which fulfills λ2 ≤ 8. This set is clearly non-minimal in comparison to
that introduced in eq. (4.6). For this reason one has to take care of possible lattice
translations which may arise. The equivalence is checked in the following manner:
for each vector A2 we consider all the transformations induced by W(A4). For each
of them we check whether there is another vector A′

2 which satisfies

(σαA2 −A′
2) ∈ Γ(e8) . (4.9)

If this is the case, then A2 and A′
2 are equivalent. The algorithm implemented4

for this purposes permits checking for the equivalence relations induced by all
Weyl Coxeter elements which can be written as products of the Weyl reflections of
W(A4). Under some circumstances, some automorphisms which can not be writ-
ten as a product of elements in W(A4) act trivially on A4, so that the equivalence
relations induced by them are not considered by the program. Still, the output
is manageable enough so than one just needs to take special care of those com-
binations (A4, A2) and (A4, A

′
2) which lead to the same gauge structure. At the

point in which we generate the complete spectrum we can decide whether they are
equivalent or not.

The untwisted sector will be studied in more detail in the proceeding section.
Clearly, at the stage when one has all inequivalent combinations (A4, A2) it is pos-
sible to determine the group decomposition of the corresponding E8 factor as well
as its contribution to the untwisted matter. Here we focus only on the gauge group
we obtain when considering a certain combination, The roots α of E8 which satisfy

α · A4 = 0 mod 1, α · A2 = 0 mod 1 (4.10)

correspond to the roots of the decomposition. To find the non abelian factors we
split the roots in sets which are orthogonal to each other and from each set we
look for the positive roots. Then we compute the Cartan matrix to identify the
semisimple Lie algebra associated to it. The amount of U(1) factors is determined

4The detailed construction of this algorithm is given in ref. [49]
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from the mismatch between the rank of E8 and the summed rank of the non abelian
structures.

The final results are presented in appendix A, The combinations which are equiv-
alent up to automorphisms which cannot be reached by our program are not pre-
sented. The gauge groups associated to each combination are also shown. All pos-
sible breaking structures expected from point groups of order eight are obtained
[36]. From them we can actually see the diversity of this model and how rich it
is in terms of GUT structures. Among the relevant decompositions one can find
E6 ×U(1)2, E6 × SU(2) ×U(1), SO(10)× SU(4), SO(10)× SU(2)× SU(2) ×U(1),
SO(10) × U(1)3 and SU(5) × SU(3) × U(1)2 which seem to be fertile grounds for
phenomenology5 when the accompanying non Abelian factors are broken by suit-
able configurations of Wilson lines.

The combinations we previously found have to be paired in order to define the
actual embedding. Not all pairings are allowed by modular invariance, notice first
that in some cases these pairs can only be consistent upon addition of some lattice
vectors. Consider two vectors λ4, λ2 ∈ Γ16 and the embedding [V4 + λ4;V2 + λ2],
induced by pairing (A4, A2) and (A′

4, A
′
2), such that V4 = A4⊗A′

4 and V2 = A2⊗A′
2

and V4 = A4 ⊗ A′
4. This embedding is only valid if the following conditions hold

2

(

V 2
2 − 1

2

)

= 0 mod 2, (4.11)

4

(

V 2
4 − 1

8

)

= 0 mod 2, (4.12)

2

(

V2 · V4 + V4 · λ2 + V2 · λ4 +
1

8

)

= 0 mod 2. (4.13)

The above equations are the version of (2.38), (2.39) and (2.40) for the case ofZ2 ×Z4. Note that the first two equations, in contrast to the third, do not receive
any contribution from the lattice shifts. These conditions are called strong since
they can be used to decide which combinations (A4, A2) and (A′

4, A
′
2) can be paired

together in a consistent way. In many cases one can satisfy the third modularity
condition by introducing some lattice vectors. Nevertheless, the properties of Γ16

only make this possible if

4

(

V2 · V4 +
1

8

)

= 0 mod 1. (4.14)

5Decompositions such as SU(4)
2 × SU(2) × U(1) and SU(4) × SU(2)

2 × U(1) are also found,
which are suitable to accommodate Pati-Salam GUT schemes.
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This weak condition permits us to avoid the search for lattice vectors, especially
at this stage in which we are only interested in the gauge group decomposition in-
troduced by each embedding. Clearly there is not only one single choice of lattice
vectors for which the consistency conditions for modular invariance are satisfied.
In order to determine all models we can obtain just by adding different lattice
vectors, we have to look at all possible brother phases which modify the projectors
in a non-trivial manner. One can deduce from eqs. (4.3) and (4.13), that for each
valid embedding it is possible to achieve two inequivalent models by introducing
lattice vectors.

The 144 valid embedding we found to satisfy eqs. (4.11), (4.12) and (4.14), as
well as the corresponding brother phases required to fulfill (4.13), can be found in
appendix B.

4.3 Massless States

Now we are equipped with all possible rank preserving embeddings for the Z2 ×Z4

orbifold. The next step involves the computation of the spectrum of physical states
allowed by each such embedding while considering all Wilson lines to be swtiched
off. In this section we discuss the algorithms implemented for such calculations
with special emphasis on the construction of the twisted states.

The 4D SUGRA multiplet arises in the untwisted sector as described in section
2.6.3. There we also pointed out that, depending on the point group, one will finds
some moduli fields accounting for variations of the torus geometry. For our model
we find the three standard Kähler moduli

Nīi = |qv
i 〉 ⊗ α̃i∗

−1 |0〉L ⊗ |e〉 , i = 1, 2, 3 , (4.15)

which are related to variations of the volume of each two dimensional torus T2. In
addition one has the modulus

N11 = |qv
1〉 ⊗ α̃1

−1 |0〉L ⊗ |e〉 , (4.16)

related to the freedom one has to choose the complex structure since it is always
consistent with the Z2 symmetry we modded out of the torus in the first complex
plane.

The untwisted matter we compute in a similar fashion as for the case of the gauge
fields, by combining the roots p of E8 ×E8 with each of the three left chiral multi-
plets q = qv

i , q
s
i i = 1, 2, 3 available from the right mover´s side. Those combinations
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which survive the projections

p · V2 + q · v2 = 0 mod 1, p · V4 + q · v4 = 0 mod 1, (4.17)

are the physical states of the untwisted sector which are charged under the sur-
viving gauge group of the model. We use the simple roots of the gauge group to
compute the Dynkin label of each state and then we look for those Dnykin labels
with non-negative entries. From them we can deduce the representations under
which the matter fields transform [2].

For obtaining the matter content in the untwisted sector we start by construct-
ing the massless right movers. Note first that the mass equation (2.31) contains
a modification δc in the normal ordering constant in comparison to the untwisted
sector. This modification was computed using eq. (2.30). One can now consider the
corresponding mass equations for each twisted sector and compute the solutions
with positive chirality6. This is done by bounding a region in the vector and spino-
rial lattices of E8 where all possible solutions are included. Consider for instance
the T(k1,k2) twisted sector and assume that that there is some lattice vector q for
which

q2
sh = (q + k1v2 + k2v4)

2 = 1 − 2δc . (4.18)

This means that each component qi has to satisfy

− k1v2 − k2v4 −
√

1 − 2δc ≤ qi ≤ −k1v2 − k2v4 +
√

1 − 2δc . (4.19)

Since q is a lattice vector, qi can only attain half integer values. This property
together with the above equation serves to reduce our search to a finite number of
possibilities. The massless right movers of our model are shown in table 4.1. Note

(k1, k2) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

δc
3
16

1
4

3
16

1
4

5
16

1
4

5
16

qv
sh

1
4 (0, 0, 1, 3) 1

2 (0, 0, 1, 1) 1
4 (0, 0, 3, 1) 1

2 (0, 1, 1, 0) 1
2 (0, 1, 0, 1) 1

4 (0, 2, 1, 1)

Table 4.1: Modifications to the normal ordering constant and massless right movers
of positive chirality for each twisted sector of Z2 × Z4.

from the table that T(1,1) is empty of right moving states. This means that this
twisted sector does not contain physical states with positive chirality7.

6Negative chirality states serve to construct CPT conjugates from states with positive chirality
in the inverse twisted sector. This makes their computation redundant for our purposes.

7Note however, that the CPT conjugates of T(1,3) are present in T(1,1).
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In the left moving sector one has more alternatives to construct massless states.
The condition:

p2
sh

2
+ Ñ − 1 + δc = 0, (4.20)

involves combinations of oscillators as well as vectors from the gauge lattice. Note
that we are equipped with at most8 six oscillators α̃i

−wi, α̃i∗
−wi∗ i = 1, 2, 3, which we

can combine according to

O(N i, N i∗) =

3
∏

i=1

(

α̃i
−ωi

)N i (

α̃i∗
−ωi∗

)N i∗

, (4.21)

where N i and N i∗ are properly chosen so that the corresponding Ñ does not exceed
the value of 1 − δc. From these combinations we can achieve certain oscillator
numbers Ñ1,..., Ñp, which we can split in sets with the same Ñ

Ck =
{

O(N i, N i∗) | wiN i + wi∗N i∗ = Ñk ≤ 1 − δc

}

, k = 1, ..., p . (4.22)

Now we consider the contribution of each Ñk to the mass equation in order to find
all possible gauge momenta leading to massless states. Note that in the absence of
background fields, all fixed points within the same twisted sector are degenerate,
in the sense that all of them possess the same massless left movers

psh = p+ k1V1 + k2V2.

Note also that we have avoided to add lattice vectors to our gauge embeddings in
order to make them completely modular invariant. As discussed in the previous
section, adding lattice vectors does not affect the spectrum of left moving states
since such lattice vectors can be reabsorbed in p. This means that the vectors
shown in appendix B can be used to construct the massless left movers. Similar
to the case of the right movers, we can restrict to a finite set of possibilities by
considering all vectors p ∈ Γ16 whose entries satisfy

− k1V
α
2 − k2V

α
4 −√

mk ≤ pα ≤ −k1V
α
2 − k2V

α
4 +

√
mk, α = 1, ..., 16 , (4.23)

where mk = 2(1 − Ñk − δc). For each psh obtained by considering a given oscilla-
tor number Ñk, we can construct massless left movers acting with any oscillator
product O(N i, N i∗) from Ck on |psh〉L. These left movers we can tensor with the
massless right mover of the twisted sector and the constructing element g of a cer-
tain fixed point. In order for this state to be physical we have to guarantee that

8In the case of a twisted sector with a torus along the i-th complex plane, the oscillators α̃i
−1,

α̃i∗
−1 cannot be used to construct massless states.
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the orbifold GSO projectors act trivially on it. These projectors are induced by the
space group elements which commute with g. Since many of our embeddings are not
completely modular invariant we need to modify the phase transformation (2.52)
in order to account for the brother phase. A commuting element h = (θn1ωn2, λ)
projects out all states9 which do not satisfy the condition

(

psh −
1

2
Vg

)

· Vh −
(

R− 1

2
vg

)

· vh + (k1n2 − k2n1)Φ = 0 mod 1. (4.24)

The commuting elements for each twisted sector can be found in appendix ...
From there we note that in all twisted sectors each generating element commutes
with at least one member of the space group whose point group part is given by
the Z2 generator. This is not the case for the Z4 generator, since in the twisted
sectors T(0,2), T(1,0) and T(1,0) there are some special fixed points whose generators
commute only with space group elements of the form (ϑ, λ) where ϑ is of order two.

The previous projection conditions are the only inequivalent ones one can find
for the case in which all Wilson lines are switched off. The fact that within the
same twisted sector we have different projection conditions on states sitting at
different fixed points, implies that the point group breaks the degeneracy of the
fixed points as it is depicted in table 4.2. These degeneracies are very useful to
determine the amount of chiral fields one obtains in a certain model.

So far we have not made clear how we are going to proceed in our quest for

(k1, k2) (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

N 4 4 4 8 16 8 16

Ns 6 4 4

Table 4.2: Splitting in the fixed point degeneracies by the orbifold GSO projectors
in the absence of Wilson Lines, here N labels the number of fixed points where one
can apply projections by using both Z2 and Z4 generators. Ns is the number of
fixed points where only projections induced by point group elements of order two
can be applied.

models with a realistic phenomenology, this will become more transparent in the
following section. Just for now, let us remark that we will be interested in a frame-
work in which the families of the standard model arise from representations of a
higher grand unifying group. That is the reason why we only explore the models
which already contain a suitable GUT structure in the gauge group. We computed

9Clearly this projection only applies for states of the T(k1,k2) twisted sector which have g as
generating element.
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the complete spectra for models which incorporate10 E6, SO(10) and SU(5). The
results for SO(10) can be found in appendix C.

4.4 Wilson Lines and Local GUT Scenarios

The models we found in the previous section will be the starting point of our het-
erotic road. Given that in GUT schemes one has the fields of the standard model
in more compact representations, the search for realistic models in such scenarios is
less tedious than just trying to complete families out of states distributed all over
the twisted sectors. Still, such GUT structures should only be manifest at certain
fixed points while globally, the gauge topography looks like that of the standard
model11. This is the idea of local grand unification [51] and we can already see how
it works just by looking at the spectra we found previously. Recall that there we
found some special fixed points in the T(0,2), T(1,0) and T(1,2).For these fixed points
the generators do not commute with any space group element whose point group
part is of order four, meaning that there are no projection conditions induced by
V4 but only by 2V4. This projection is less strict than that one imposes on the
twisted states sitting at ordinary fixed points. For this reason the gauge group at
the special fixed points looks enhanced in comparison to that we see in the bulk.
As an example, consider the model 67 of appendix B. The gauge group we found
for this model is SO(10) × U(1)3|SO(10) × SU(4) (the bar is used to separate the
subgroups of each E8 factor). It can be shown that at the special fixed points
the matter fields come in irreducible representations of E6 × U(1)2|SO(16). This
distribution of gauge structures all over the orbifold will be even more accentuated
when introducing Wilson lines, since these quantities will introduce a bigger vari-
ety of projection conditions and contributions to the left-moving mass equations
depending on the fixed point under consideration.

The gauge groups we have achieved by embedding the point group into the gauge
space are still at an intermediate stage in the sense that none of them contains
a factor which looks like that of the standard model. In the previous section we
focused especially on those for which the gauge group contains a factor which can
be thought of as a grand unifying structure. This brings some systematics onto
our exploration since we attempt to use the freedom we have to introduce Wilson

10Models with Pati-Salam symmetry are not considered since in those situations it is very hard
to control the spectrum in order to achieve a certain family structure. Such Pati-Salam models
are somehow, more easy to deal with when they arise from an underlying SO(10) GUT.

11The standard model gauge group is normally accompanied of some U(1) factors and possibly
some other non-abelian gauge groups. This is not problematic for phenomenology as long as
those extra factors are not manifest at low energy.
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lines in order to break such factor down to some group which looks like that of the
standard model. The nice advantage of choosing Γ16 as the lattice spanned by the
simple roots of E8 × E8 is precisely the direct product structure. Given that most
of the matter states are charged under one E8 only, the E8 factor from which the
GUT group is originated, is interpreted as an observable sector where we expect to
find the fields of the standard model, while the fields charged under the other E8

belong to some hidden sector which provide a fruitful scenario for SUSY breaking
in the low energy regime. In some cases one can find matter states charged under
both E8 factors. Such fields will mediate interactions between observable and hid-
den sector fields [52, 53]. In order for them not to spoil the phenomenology one
has to make them massive enough. The mass of those messenger fields will set the
scale at which the hidden sector dynamics becomes observable and in the case of
gauge mediation [54] it will also provide the scale for supersymmetry breaking.

Our approach in the quest for realistic models will be based on many of the model
building strategies implemented for the Z6-II mini-landscape [14]. At this stage we
are equipped with the spectra of models with suitable group factors. These spectra
can be used to engineer configurations of Wilson lines which break the GUT factor
in a proper manner and lead to three families.

First we have to look for all inequivalent Wilson lines permitted for the Z2 × Z4

orbifold, so that we need to look at the identifications induced by the point group.

(i) In the first complex plane one has two Wilson lines W1 and W2, because the
orbifold action does not relate the lattice vectors e1 and e2. These lines are
of order two since

ωeα + eα = 0, α = 1, 2.

(ii) In the second an third planes we have the identifications:

θe3 = e4, θ3e5 = e6, (4.25)

so that we only have one inequivalent Wilson line per complex plane. These
we denote by W3 and W4. Due to the conditions

θ2e3 + e3 = 0, and θ2e5 + e5 = 0, (4.26)

these Wilson lines are of order two as well.

In addition to the previous constraints one has to satisfy the following requirements
in order to ensure a modular invariant vacuum-to-vacuum amplitude:

2Vi ·Wα = 0 mod 2, i = 1, 2, α = 1, 2, 3, 4 , (4.27)

2Wα ·Wβ = 0 mod 2, α, β = 1, 2, 3, 4 . (4.28)



52 CHAPTER 4. MSSM SEARCHES IN THE Z2 × Z4 ORBIFOLD MODEL

Now we want to explore the role these Wilson lines play with regards to the spec-
trum. Previously we saw that within the same twisted sector there is one copy of
the fields sitting at each fixed points except for those sectors where one has special
fixed points. Two fixed points which have the same content we call degenerate.
Note that in the sectors T(0,2), T(1,0) and T(1,2) the degeneracies have been already
broken due to the presence of the special fixed points. These degeneracies are bro-
ken even further when we switch on the Wilson lines. Note first that in the mass
equation for the left-movers, the gauge momentum is shifted by the embedding of
the generating element under consideration. On the other hand, the orbifold GSO
projectors are induced by centralizers of the generating element, so that these op-
erators are also sensitive to the effects of the Wilson lines. We want to find out
how these Wilson lines split the degeneracy of the fixed points within the same
twisted sector, in order to get the correct multiplicities for all matter fields in our
model. The results of our analysis are depicted in figure 4.2. There we consider all
configurations of Wilson lines one can have. There are sixteen possibilities ranging
from the case in which there are none to that in which all four are switched on.
For each of these situations we compute the embedding of the generators and their
centralizers. Then we look at all those fixed points with the same corrections to the
mass equation which share the same projectors. Those points will be degenerated.
Each fixed point corresponds to a box in the figure and degenerate fixed points
(within the same twisted sector) are represented by boxes with the same color.
From our previous study we can now focus on those fixed points whose matter

Figure 4.2: Constraints for the physical states for different configurations of Wilson
lines in Z2 × Z4. Within the same twisted sector, boxes with the same color share
the same shift in the left-moving mass equation and the same set or GSO projectors
apply. This means that these points share the same set of physical states. For the
case of T(0,2), T(1,0) and T(1,2) we have split between ordinary and special fixed
points.
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content is unaffected by the Wilson line configuration. Basically we are interested
in those fixed points where the Wilson lines keep the GUT structure unbroken.
In those points, the representations we obtained in the previous section survive
completely. Such protected fixed points are depicted in in figure 4.3.
Now we can look back to the spectra we found in the previous section. We will

Figure 4.3: Protected fixed points under different Wilson line configurations, the
boxes colored in green represent those fixed points which are unaffected under the
action of the Wilson lines, for any of the 144 embeddings discussed in the previous
section. The matter representations we found in the absence of Wilson lines will
completely survive, when sitting at those fixed points.

mainly focus on those models where an E6 or SO(10) GUT scheme seems possible.
The reason for not considering SU(5) or Pati-Salam structures comes from the fact
that there the families arise from more than one representation, for instance, in
SU(5) one will have to control not only the number of 10-plets but also the number
of 5-plets in the model. In addition we find that SU(5) stuctures are normally ac-
companied by SU(3) factors which we will have to break. The search for promising
candidates is performed in the following manner: taking into account the matter in
the untwisted sector we will go over the sixteen possible configurations of Wilson
lines and count the number of 27 (27) for the case of E6 or the number of 16 (16)
for SO(10). Considering the multiplicities of each configuration we will search for
those situations in which the effective number of protected 27´s or 16´s is equal
to three. We will also have to require that the number of Wilson lines is enough
to break the observable sector down to SU(3) × SU(2) × U(1)5.
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4.5 An Explicit Example

From the promising candidates obtained in the previous section we see that the
simplest case is that of model 671 when the brother phase is taken to be Φ = 0
mod 1, the gauge group of this model, at the stage when all Wilson lines are off
is SO(10) × U(1)3|SO(10) × SU(4). The SO(10) factor of our interest is that orig-
inated from the first E8. There we only need to switch on two Wilson lines in
order to accommodate tree complete families coming from twisted 16-plets sitting
at the protected fixed points in T(1,0). This model has the nice feature that the
number of Wilson lines is the minimum required to break the observable sector
down to SU(3) × SU(2) × U(1)5. We specialize to those particular cases in which
the hypercharge generator is the one would obtain from SU(5) grand unification.

The previous arguments permit us to focus on all Wilson lines for which the fol-
lowing breaking is obtained:

SO(10)
W1−−→ SU(5) × U(1)

W2−−→ SU(3) × SU(2) × U(1)2.

Firstly we want to find an embedding for the point group which is fully modular
invariant and leads to the brother model of our interest. This is done by adding
lattice vectors to the original embedding and it can be shown that

V2 =
1

2
(−11, 2, 27, 22, 8, 12, 18,−6)⊕ 1

2
(1,−3, 3,−9, 5,−1,−1,−1),

V4 =
1

4
(4,−5,−9, 14,−6, 2,−10,−2)⊕ 1

2
(1,−3, 9,−8, 6,−2, 6,−2),

is an allowed solution. Using these vectors we now have to look for the Wilson
lines. Note that we can follow an approach similar to the one we used to compute
the embedding vectors for the point group. We can concentrate in one E8 factor
and look for all possible lattice vectors which are of order two pu to lattice vectors:

W k =
1

2

8
∑

m=1

nk
mαm, 0 ≤ nk

m ≤ 1 , (4.29)

with αm being a simple root. There are 256 possibilities. Since weights for gener-
ators of SO(10) are only non zero in the components of the first E8, its breaking
is determined only by the vector W k. Thus we can look at all those vectors for
which the breaking to SU(5) is achieved and one finds 120 of them for which this
condition is satisfied. We denote them as W k

1 . For each such vectors we now have
to look for all W jk

2 which break the SU(5) to SU(3) × SU(2) × U(1). For each W k
1

we have 128 alternatives.
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We can then construct the Wilson lines by tensoring these vectors with the candi-
dates shown in equation (4.29)

W1 = W k
1 ⊕W p,

W2 = W jk

1 ⊕W q. (4.30)

Given that we still have the freedom to introduce lattice vectors, the modular
invariance conditions can be relaxed to:

4Wα · V4 = 0 mod 1, 2Wα · V2 = 0 mod 1; α = 1, 2 , (4.31)

W 2
α = 0 mod 1, 2Wα ·Wβ = 0 mod 1; α 6= β, α, β = 1, 2. (4.32)

Following this procedure one finds 8365 different alternatives. All configurations
which are not modular invariant require of introducing brother phases in order
to compute the spectrum. It can be shown that each configuration leads to only
one inequivalent model. Instead of looking at the brother phases associated to
the Wilson lines, we can focus on those configurations which are fully modular
invariant: one of such candidates is

W1 =
1

4
(17,−17,−15,−19,−15,−15, 5, 7)⊕ 1

4
(1, 1,−3, 1,−1,−3,−1, 1), (4.33)

W2 =
1

2
(2,−2,−2,−2,−2,−1, 0, 1) ⊕ 1

2
(0, 1,−1, 1, 0,−1, 1, 1). (4.34)

This choice for the Wilson lines induces the breaking

SO(10)×U(1)3|SO(10)×SU(4)
W1,W2−−−−→ SU(3)×SU(2)×U(1)5|SU(4)×SU(2)×U(1)4.

The matter spectrum is computed in a similar manner as in section 4.3, with the

Figure 4.4: Localization of the families in the T(1,0) twisted sector.

only subtlety that now one has to consider the breaking of the degeneracies due to
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the Wilson lines and the appropriate projection conditions within degenerate fixed
points. This permits to compute the actual multplicity of states. The complete
spectrum of states is presented in table 4.3. Let us simply remind that in the
twisted sector of our interest there are two fixed points where the local gauge
group is SO(10) from where one gets two 16-plets there is also one special fixed
point which is protected where the local gauge group is E6. There one has a 27
which decomposes under SO(10) as 16⊕ 10⊕ 1. The 16 gives us the third family
whereas the 10 can be probably used to get the Higgses. Note that, as expected
from modular invariance, all non-Abelian factors are anomaly free.

Untwisted (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

4(3,1) 16(1,1) 16(1,1) 8(1,1) 4(3,1) 3(3,2) (3,1) 8(1,1)

2(3,1) 2(3,1) 6(3,1) (3,1)

8(1,1) 8(1,2) 3(1,2) 2(1,2)

40(1,1) 3(1,1) 33(1,1)

(4,2) 4(1,2) 4(4,1) 7(4,1) 4(1,2)

(6,1) 5(4,1)

4(1,2)

Table 4.3: Matter spectrum for the embedding under consideration. The states in
blue arise from the three protected 16 and the 10 in the T(1,0) sector. The states
in red are exotics arising from other points on the orbifold. For the fields in the
observable sector we give their corresponding representations under SU(3)×SU(2)
and for the hidden matter the representations under SU(4) × SU(2)

4.5.1 Brief Comments on the Hypercharge Generator

So far we have not discussed the charges of the matter states under the U(1)
factors. This will be a matter of further research and is out of the scope of this
work. Nevertheless, we want to sketch briefly the procedure to follow in order to
obtain these charges. On the one hand it is known that among all those U(1) factors
there is at most one which is anomalous [55]. At our stage, the most important
U(1) is that which gives the correct hypercharge for the families of the standard
model, Our aim is to relate this hypercharge generator to the one obtained in the
context of SU(5) GUTs. In order to achieve a satisfactory phenomenology one has
to guarantee that the following requirements hold

(i) The U(1)Y generator has to be non-anomalous.
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(ii) Since our model contains exotics, we have to require that for each (3, 1)
state one has, there has to be a (3, 1) with the opposite hypercharge and
similarly for the (1, 2) states. This is so, because one will be interested in
generating mass terms for such fields in order to decouple them from the
spectrum without breaking U(1)Y .

It is not guaranteed that this is possible in our model. In such circumstances we
have to explore some other alternatives which lead to the right charge assignment
for the SM fields and satisfies the previous two conditions. In that case one has to
guarantee that such U(1) factor leads to a realistic Weinberg angle.

If there is no way in which a realistic U(1) generator is achieved, one has to look
for a different embedding for the Wilson lines. As discussed previously one has
8365 alternatives to play with, so that a systematic search can be performed. In
the ultimate case when this search is completely unsuccessful, we are still left with
another 8 promising models with SO(10) GUT structures and 10 with E6

4.6 R-symmetries for Z2 × Z4

Finally we would like to discuss the possible R-symmetries one can find for the
orbifold of our interest. Based upon the general results we found in section 3.3,
this is a very exciting example because the point group has two generators, where
only one contains prime twists.

The automorphism group of the lattice under consideration consists 1024 elements
out of which only 128 commute with the orbifold generators, from this subgroup
only 64 belong to SO(6).

By looking at the symmetries which also leave the conjugacy classes invariant,
we found that they form an abelian group Gu of order 16 which can be generated
by powers and products of the Z4 orbifold twist and two Z2 symmetries acting
independently in the first and second planes. Invariance of the L point correlator
under such transformations imposes the following constraints

L
∑

α=1

R1
α = 1 mod 2,

L
∑

α=1

R2
α = 1 mod 2,

L
∑

α=1

(R2
α −R3

α) = 0 mod 4. (4.35)

To study the effects of the remaining 48 elements which are left in SO(6), we
first divide it by Gu. Then we find that the only inequivalent symmetries which
exchange some conjugacy classes are two Z4 twists acting in the first and third
planes as well as the combined action of them. Since the first two symmetries do
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not have common unprotected conjugacy classes all the constraints that the third
imposes on the couplings can be inferred from the others.

The rotation ̺1 = diag(1, 1, e2πi/4) leaves invariant all conjugacy classes but those
related to the fixed tori

1

2
(e4 + e5) ⊗T2

1 ↔
1

2
(e4 + e6) ⊗T2

1, (4.36)

of the (0, 2) twisted sector. Since this twist does not affect the gauge embedding
of the model it will not be broken by the Wilson lines. Under the action of ̺1,
any state φ1 wrapping around one of the unprotected tori will get mapped to
its counterpart φ2 in the other. Note also that couplings which involve invariant
physical states (up to phases) must be invariant under ̺1:

L
∑

α=1

R3
α = 1 mod 4, (4.37)

while couplings containing fields such as φ1 or φ2 get interchanged with some others.
Consider some fields ζα, α = 2, ..., L which sit at invariant fixed points and assume
that a term y1φ1ζ2...ζL is present in the superpotential, with y1 being the Yukawa
coupling. Since ̺1 commutes with the orbifold action it can be shown that the
space group selection rule also allows for the presence of a term y2φ2ζ2...ζL. Under
̺1 these terms transform as:

y1φ1ζ2...ζL
̺1−→ eiϕy1φ2ζ2...ζL, (4.38)

y2φ2ζ2...ζL
̺1−→ e−iϕy2φ1ζ2...ζL, (4.39)

where ϕ is a phase arising from the transformation of the space group part and
the oscillators under ̺1. The superpotential has to transform trivial under this
symmetry. The Yukawa couplings y1 and y2 are related by:

y1 = eiϕy2,

Although, this is an interesting result which relates some Yukawa couplings and
henceforth reduced the number of correlators which need to be calculated, we will
be more interested in the cases where such symmetry can be used to forbid certain
couplings. As we saw ̺1 resembles an R-symmetry for couplings containing only
fields sitting at invariant fixed points. Nevertheless the chance of implementing
̺1 as a symmetry of the physical states depends on the possibility of having the
same spectrum sitting at the fixed points which get mapped onto each other under
such transformation. In order to implement a given local R-symmetry one has
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to guarantee that the gauge embedding is not affected by the action of ̺1: given
two space group elements h and g related by h = ̺1(g) it must hold Vh ∼ Vg so
that [g] and [h] contain states which share the same mass equations and projection
conditions so that a one-to-one mapping between them can be stablished. Note
that ̺1e5 = e6 but since e5 and e6 are identified under the orbifold, they share
the same Wilson line (W4). This means that ̺1 can be incorporated as a partial
R-symmetry which is independent of the choice of the Wilson lines.

Figure 4.5: The action of ̺1 on the fixed points. The arrow illustrates the transfor-
mation and the boxes in white represent invariant fixed points.Note that the points
which get mapped onto each other share the same set of fields, this is independent
of the Wilson line configuration, (see fig. 4.2).



Chapter 5

Conclusions

“And there is no trade or employment but the young man following it may become
a hero,

And there is no object so soft but it makes a hub for the wheel´d universe.”

Walt Whitman, Leaves of Grass

Our exploration of possible R-symmetries, was based on the construction of the
automorphism groups for the lattices of ZN orbifolds. For those which were fac-
torizable, we could follow a more general approach, by looking at the independent
twists which compose the point group generator. If any of those twists leave the
fixed points invariant, then there is an R-symmetry associated to it. For the case
of non-factorizable orbifolds, we look for the lattice automorphisms which preserve
the group structure in order to describe the R-symmetries of the model. For some
orbifolds such as the Z7 and the non-factorizable Z6-II there is no Lorentz symmetry
which can provide any selection rule. Those models seem to be promising grounds
to study the effects of instanton selection rules, such as rule 4 and the recently
discovered rule 5 [32].

The Z2 × Z4 orbifold was considered with the aim of obtaining grand unified
schemes in which a three family structure can be realized. We used the prop-
erties of the E8 ×E8 root lattice to obtain all possible inequivalent embeddings for
the point group generators, which are permitted by modular invariance of the one
loop partition function. 144 models were found, among which 35 lead to gauge
groups which contain an SO(10) factor, 26 contain an E6 and 25 an SU(5).

Since we considered all inequivalent embeddings up to lattice shifts, we are left
with two brother phases per embedding. Each such brother phase was used to
compute the complete spectrum of each model at the stage when no Wilson lines
are switched on. We were interested in those models in which local GUT schemes
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can be implemented, and the spectra we previously described were of great help:
The GUT factors need to be broken to some group structure which looks like the
standard model up to some U(1) factors. This can be achieved by introducing
Wilson lines. In our model we have the possibility to switch on four independent
Wilson lines. We looked at all possible Wilson line configurations in order to ac-
commodate three families at fixed points where the GUT group remains unbroken.

The simplest model we found requires two Wilson lines to give a three family model.
The gauge group in the observable sector is broken down to SU(3)×SU(2)×U(1)5.
Three SO(10) complete families were found to sit at fixed points in the T(1,0) twisted
sector.

In addition to the model described previously there are 9 further feasible mod-
els for SO(10) local GUTs and 9 for E6 in which three net families can be obtained.
This makes the Z2 × Z4 orbifold a very promising scenario for phenomenology.

There is still a long way in this heterotic road down to the MSSM. First we have
to look for the generators of the U(1) factors. Among them, there is one which
is anomalous. This U(1) introduces a Fayet Iliopoulos term [55] which has to be
canceled by assigning VEVs to some singlet fields while preserving supersymmetry.
Such configurations have to be choosen in such a way that the hypercharge gener-
ator remains unbroken, all exotics are decoupled and all Yukawa couplings for the
MSSM fields are generated.



Appendix A

Inequivalent Vectors for One E8

Embedding

4·A4 2·A2 Group Decomposition

(0,0,0,0,0,0,0,0)

(0, 0, 0, 0, 0, 0, 0, 0) E8

(−1, 0, 0, 0, 0, 0, 1, 0) E7×SU(2)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(16)

(2,2,0,0,0,0,0,0)

(0, 0, 0, 0, 0, 0, 0, 0) E7×SU(2)

(−1, 1, 0, 0, 0, 0, 0, 0) E7×SU(2)

(−1, 0, 0, 0, 0, 0, 1, 0) E6×U(1)2

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)2

(−1,−1,−1, 0, 0, 0, 0, 1) SO(12)×SU(2)2

(−1, 0,−1,−1, 0, 0, 0, 1) SU(8)×U(1)

(1,1,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) E7×U(1)

(−1, 1, 0, 0, 0, 0, 0, 0) E7×U(1)

(−1, 0, 0, 0, 0, 0, 1, 0) E6×U(1)2

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(12)×SU(2)×U(1)

(−1, 0,−1,−1, 0, 0, 0, 1) SU(8)×U(1))

(2,1,1,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) E6×SU(2)×U(1)

(−1, 0, 1, 0, 0, 0, 0, 0) E6×U(1)2

(−1, 0, 0, 0, 0, 0, 1, 0) SO(10)×SU(2)×U(1)2

(−1, 0, 1, 0, 0, 0, 0, 0) SO(10)×U(1)3

(0, 0, 0,−1, 0, 0, 1, 0) SU(6)×SU(2)2×U(1)

62
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4·A4 2·A2 Group Decomposition

(2,1,1,0,0,0,0,0) (0,−1, 1, 0, 0, 0, 0, 0) E6×SU(2)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(10)×SU(2)×U(1)2

(−1,−1, 0,−1, 0, 0, 0, 1) SU(6)×SU(2)×U(1)2

(−1, 0, 0,−1,−1, 0, 0, 1) SU(6)×SU(2)2)×U(1)

(4,0,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(16)

(−1, 0, 0, 0, 0, 0, 1, 0) SO(12)×SU(2)2

−1
2
(1, 1, 1, 1, 1, 1,−1,−1) SU(8)×U(1)

(0, 0, 0, 0, 0,−2, 0, 0) SO(16)
1
2
(−3,−1,−1, 1, 1, 1, 1, 1) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)2

(2,0,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(14)×U(1)

(−1, 0, 0, 0, 0, 0, 1, 0) SO(12)×U(1)2

−1
2
(1, 1, 1, 1, 1, 1,−1,−1) SU(7)×U(1)2

(0,−1, 0, 0, 0, 0, 1, 0) SO(10)×SU(2)2×U(1)

(0, 0, 0, 0, 0,−2, 0, 0) SO(14)×U(1)
1
2
(−3,−1,−1, 1, 1, 1, 1, 1) SU(7)×U(1)2

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)×SO(8)×U(1)

(3,1,0,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

(−1, 0, 0, 0, 0, 0, 1, 0) SO(10)×U(1)3

(−1, 1, 0, 0, 0, 0, 0, 0) SO(12)×SU(2)×U(1)

−1
2
(1, 1, 1, 1, 1, 1,−1,−1) SU(6)×U(1)3

−1
2
(1,−1, 1, 1, 1, 1, 1,−1) SU(6)×SU(2)×U(1)2

(0, 0,−1, 0, 0, 0, 1, 0) SO(8)×SU(2)3×U(1)

(0, 0, 0, 0, 0,−2, 0, 0) SO(12)×SU(2)×U(1)
1
2
(−3,−1,−1, 1, 1, 1, 1, 1) SU(6)×SU(2)×U(1)2

1
2
(−3, 1,−1,−1, 1, 1, 1, 1) SU(6)×U(1)3

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)×SU(2)3 ×U(1)

(−1, 0,−1,−1, 0, 0, 0, 1) SU(4)2×U(1)2



64 APPENDIX A. INEQUIVALENT VECTORS FOR ONE E8 EMBEDDING

4·VZ4 2·VZ4 Group Decomposition

(2,2,2,0,0,0,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SO(10)×SU(4)

(−1,−1, 0, 0, 0, 0, 0, 0) SO(10)×SU(2)2×U(1)

(−1, 0, 0, 0, 0, 0, 1, 0) SO(8)×SU(2)2×U(1)2

−1
2
(1, 1, 1, 1, 1, 1,−1,−1) SU(5)×SU(3)×U(1)2

(0, 0, 0,−1, 0, 0, 1, 0) SU(4)2×SU(2)2

(0, 0, 0, 0, 0,−2, 0, 0) SO(10)×SU(4)
1
2
(−3,−1,−1, 1, 1, 1, 1, 1) SU(5)×SU(3)×U(1)2

(−1,−1,−1, 0, 0, 0, 0, 1) SO(8)×SU(4)×U(1)

(−1,−1, 0,−1, 0, 0, 0, 1) SU(4)×SU(2)4×U(1)

(3,1,1,1,1,1,0,0) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×SU(2)

(−1,−1, 0, 0, 0, 0, 0, 0) SU(6)×SU(2)2×U(1)

(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2

(−1, 0, 0, 0, 0, 1, 0, 0) SU(4)2×SU(2)×U(1)

(0, 0, 0, 0, 0, 0,−1, 1) SU(8)×SU(2)

(−1, 0, 0, 1,−1, 1, 0, 0) SU(6)×SU(2)2)×U(1)
1
2
(−1,−3, 1, 1, 1, 1,−1, 1) SU(8)×U(1)

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2

(0,−1,−1, 0, 0, 0,−1, 1) SU(4)2×SU(2)×U(1)

(1,1,1,1,1,1,1,-1) (0, 0, 0, 0, 0, 0, 0, 0) SU(8)×U(1)

(0, 0, 0, 0,−1,−1, 0, 0) SU(6)×SU(2)×U(1)2

(−1, 0, 0, 0, 0, 0, 1, 0) SU(6)×SU(2)×U(1)2

−1
2
(1, 1, 1, 1, 1, 1,−1,−1) SU(7)×U(1)2

1
2
(−1,−1,−1,−1, 1, 1, 1, 1) SU(5)×SU(3)×U(1)2

(0, 0, 0, 0, 0,−2, 0, 0) SU(8)×U(1)
1
2
(−1, 1, 1, 1, 1,−3, 1,−1) SU(7)×U(1)2

−1
2
(1, 1, 1, 1,−1, 3,−1,−1) SU(5)×SU(3)×U(1)2

(−1,−1,−1, 0, 0, 0, 0, 1) SU(4)2×U(1)2



Appendix B

Inequivalent Embeddings forZ2 × Z4

The brother phases Φ allowed by modular invariance are also presented.
2 · V2 Φ Group Decomposition

4 · V4 = (0, 0, 0, 0, 0, 0, 0, 0) ⊕ (1, 1, 0, 0, 0, 0, 0, 0)

1 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1
2

E8|E6×U(1)2

2 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) 0, 1
2

E7×SU(2)|SU(8)×U(1)

3 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1
2

SO(16)|E6×U(1)2

4 · V4 = (0, 0, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 0, 0, 0, 0, 0, 0)

4 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3

8
E8|SO(10)×U(1)3

5 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) 0, 1

2
E8|SU(6)×SU(2)×U(1)2

6 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

4
, 1

4
E7×SU(2)|SU(6)×SU(2)×U(1)2

7 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1
8
, 3

8
E7×SU(2)|SU(4)2×U(1)2

8 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3

8
SO(16)|SO(10)×U(1)3

9 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) 0, 1

2
SO(16)|SU(6)×SU(2)×U(1)2

4 · V4 = (2, 2, 0, 0, 0, 0, 0, 0) ⊕ (1, 1, 0, 0, 0, 0, 0, 0)

10 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1
2

E7×SU(2)|E6×U(1)2

11 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1
4
, 1

4
E7×SU(2)|SU(8)×U(1)

12 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1
8
, 3

8
E6×U(1)2|SU(8)×U(1)

13 (−1, 1, 0, 0, 0, 0, 0, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) 0, 1
2

SO(12)×SU(2)2 |SU(8)×U(1)

14 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1

4
SO(12)×SU(2)2 |E6×U(1)2

15 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3

8
SU(8)×U(1)|E6×U(1)2

4 · V4 = (2, 2, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 0, 0, 0, 0, 0, 0)

16 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3

8
E7×SU(2)|SO(10)×U(1)3

17 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) 0, 1

2
E7×SU(2)|SU(6)×SU(2)×U(1)2

18 (−1,−1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) 0, 1

2
E7×SU(2)|SU(6)×SU(2)×U(1)2

19 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 3
8
, 1

8
E7×SU(2)|SU(4)2×U(1)2

65



66 APPENDIX B. INEQUIVALENT EMBEDDINGS FOR Z2 × Z4

2 · V2 Φ Group Decomposition

4 · V4 = (2, 2, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 0, 0, 0, 0, 0, 0)

20 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 3

8
, 1

8
E6×U(1)2|SU(6)×SU(2)×U(1)2

21 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1
4
, 1

4
E6×U(1)2|SU(4)2×U(1)2

22 (−1, 1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

4
, 1

4
SO(12)×SU(2)2 |SU(6)×SU(2)×U(1)2

4 · V4 = (2, 2, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 0, 0, 0, 0, 0, 0)

23 (−1, 1, 0, 0, 0, 0, 0, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1
8
, 3

8
SO(12)×SU(2)2 |SU(4)2×U(1)2

24 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 3
8
, 1

8
SO(12)×SU(2)2 |SO(10)×U(1)3

25 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) − 1

4
, 1

4
SO(12)×SU(2)2 |SU(6)×SU(2)×U(1)2

26 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1

4
SU(8)×U(1)|SO(10)×U(1)3

27 (−1, 0,−1,−1, 0, 0, 0, 1)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) − 1

8
, 3

8
SU(8)×U(1)|SU(6)×SU(2)×U(1)2

4 · V4 = (1, 1, 0, 0, 0, 0, 0, 0) ⊕ (4, 0, 0, 0, 0, 0, 0, 0)

28 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1
2

E6×U(1)2|SO(16)

29 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) 0, 1
2

E6×U(1)2|SO(16)

30 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 3

8
, 1

8
E6×U(1)2|SU(8)×U(1)

31 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
4
, 1

4
E6×U(1)2|SO(8)×SO(8)

32 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1

4
SU(8)×U(1)|SO(12)×SU(2)2

33 (−1, 0,−1,−1, 0, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3

8
SU(8)×U(1)|SU(8)×U(1)

4 · V4 = (1, 1, 0, 0, 0, 0, 0, 0) ⊕ (1, 1, 1, 1, 1, 1, 1,−1)

34 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3

8
E7×U(1)|SU(7)×U(1)2

35 (0, 0, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1,−1,−1,−1, 1, 1, 1, 1) 0, 1

2
E7×U(1)|SU(5)×SU(3)×U(1)2

36 (−1,−1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1, 1, 1, 1, 1,−3, 1,−1) 0, 1

2
E7×U(1)|SU(7)×U(1)2

37 (−1,−1, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1,−1, 3,−1,−1) − 1

4
, 1

4
E7×U(1)|SU(5)×SU(3)×U(1)2

38 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1
2

E6×U(1)2|SU(8)×U(1)

39 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) − 1
8
, 3

8
E6×U(1)2|SU(8)×U(1)

40 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
4
, 1

4
E6×U(1)|SU(4)2×U(1)2

41 (−1, 1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1, 1, 1, 1, 1,−3, 1,−1) − 3

8
, 1

8
SO(12)×SU(2)×U(1)|SU(7)×U(1)2

42 (−1, 1, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1,−1, 3,−1,−1) − 1

8
, 3

8
SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

43 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

4
, 1

4
SO(12)×SU(2)×U(1)|SU(7)×U(1)2

44 (−1,−1,−1, 0, 0, 0, 0, 1)⊕ 1
2
(−1,−1,−1,−1, 1, 1, 1, 1) − 1

8
, 3

8
SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

45 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(0, 0, 0, 0,−1,−1, 0, 0) − 1
8
, 3

8
SU(8)×U(1)|SU(6)×SU(2)×U(1)2

46 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1
2

SU(8)×U(1)|SU(6)×SU(2)×U(1)2

4 · V4 = (2, 1, 1, 0, 0, 0, 0, 0) ⊕ (2, 0, 0, 0, 0, 0, 0, 0)

47 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) 0, 1

2
E6×SU(2)×U(1)|SU(7)×U(1)2

48 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) − 1
8
, 3

8
E6×U(1)2|SO(14)×U(1)

49 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) − 1
8
, 3

8
E6×U(1)2|SO(14)×U(1)

50 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
4
, 1

4
E6×U(1)2|SO(8)×SU(4)×U(1)

51 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

4
, 1

4
SO(10)×SU(2)×U(1)2 |SU(7)×U(1)2

52 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1
2

SO(10)×U(1)3 |SO(14)×U(1)

53 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) 0, 1
2

SO(10)×U(1)3 |SO(14)×U(1)

54 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
8
, 3

8
SO(10)×U(1)3 |SO(8)×SU(4)×U(1)

55 (0, 0, 0,−1, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

8
, 3

8
SU(6)×SU(2)2×U(1)|SU(7)×U(1)2

56 (0,−1, 1, 0, 0, 0, 0, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

8
, 3

8
E6×SU(2)×U(1)|SU(7)×U(1)2

57 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

4
, 1

4
SO(10)×SU(2)×U(1)2 |SU(7)×U(1)2

58 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1

4
SU(6)×SU(2)×U(1)2 |SO(12)×U(1)2

59 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(0,−1, 0, 0, 0, 0, 1, 0) − 1
8
, 3

8
SU(6)×SU(2)2×U(1)|SO(10)×SU(2)2×U(1)

60 (−1, 0, 0,−1,−1, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3

8
SU(6)×SU(2)2×U(1)|SU(7)×U(1)2
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2 · V2 Φ Group Decomposition

4 · V4 = (2, 1, 1, 0, 0, 0, 0, 0) ⊕ (2, 2, 2, 0, 0, 0, 0, 0)

61 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3
8

E6×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

62 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) − 1
8
, 3
8

E6×U(1)2|SO(10)×SU(4)

63 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) − 1
8
, 3
8

E6×U(1)2|SO(10)×SU(4)

64 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) 0, 1
2

E6×U(1)2|SO(8)×SU(4)×U(1)

65 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1,−1, 0,−1, 0, 0, 0, 1) − 3
8
, 1
8

E6×U(1)2|SU(4)×SU(2)4×U(1)

66 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 3

8
, 1
8

SO(10)×SU(2)×U(1)2 |SU(5)×SU(3)×U(1)2

67 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1
2

SO(10)×U(1)3 |SO(10)×SU(4)

68 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) 0, 1
2

SO(10)×U(1)3 |SO(10)×SU(4)

69 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
8
, 3
8

SO(10)×U(1)3 |SO(8)×SU(4)×U(1)

70 (−1, 0, 1, 0, 0, 0, 0, 0)⊕(−1,−1, 0,−1, 0, 0, 0, 1) − 3
8
, 1
8

SO(10)×U(1)3 |SU(4)×SU(2)4×U(1)

71 (0, 0, 0,−1, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

4
, 1
4

SU(6)×SU(2)2×U(1)|SU(5)×SU(3)×U(1)2

72 (0,−1, 1, 0, 0, 0, 0, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) − 1

4
, 1
4

E6×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

73 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 3

8
, 1
8

SO(10)×SU(2)×U(1)2 |SU(5)×SU(3)×U(1)2

74 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(−1,−1, 0, 0, 0, 0, 0, 0) − 3
8
, 1
8

SU(6)×SU(2)×U(1)2 |SO(10)×SU(2)2×U(1)

75 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1
4

SU(6)×SU(2)×U(1)2 |SO(8)×SU(2)2×U(1)2

76 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(0, 0, 0,−1, 0, 0, 1, 0) − 1
8
, 3
8

SU(6)×SU(2)×U(1)2 |SU(4)2×SU(2)2

77 (−1, 0, 0,−1,−1, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

4
, 1
4

SU(6)×SU(2)2×U(1)|SU(5)×SU(3)×U(1)2

4 · V4 = (4, 0, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 0, 0, 0, 0, 0, 0)

78 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(16)|SO(10)×U(1)3

79 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) 0, 1

2
SO(16)|SU(6)×SU(2)×U(1)2

80 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−3,−1,−1, 1, 1, 1, 1, 1) 0, 1

2
SO(12)×SU(2)2 |SU(6)×SU(2)×U(1)2

81 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 3
8
, 1
8

SO(12)×SU(2)2 |SU(4)2×U(1)2

82 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕ 1

2
(−3,−1,−1, 1, 1, 1, 1, 1) − 3

8
, 1
8

SU(8)×U(1)|SU(6)×SU(2)×U(1)2

83 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(−1, 0,−1,−1, 0, 0, 0, 1) − 1

4
, 1
4

SU(8)×U(1)|SU(4)2×U(1)2

84 (0, 0, 0, 0, 0,−2, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(14)×U(1)|SO(10)×U(1)3

85 (0, 0, 0, 0, 0,−2, 0, 0)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) 0, 1

2
SO(14)×U(1)|SU(6)×SU(2)×U(1)2

86 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1

2
SU(7)×U(1)2 |SO(10)×U(1)3

87 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕− 1

2
(1,−1, 1, 1, 1, 1, 1,−1) − 3

8
, 1
8

SU(7)×U(1)2 |SU(6)×SU(2)×U(1)2

88 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 3
8
, 1
8

SO(8)×SU(4)×U(1)|SO(10)×U(1)3

89 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1,−1, 1, 1, 1, 1, 1,−1) − 1

4
, 1
4

SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2

4 · V4 = (2, 0, 0, 0, 0, 0, 0, 0) ⊕ (3, 1, 1, 1, 1, 1, 0, 0)

90 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(14)×U(1)|SU(6)×SU(2)×U(1)2

91 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−1,−3, 1, 1, 1, 1,−1, 1) − 1

8
, 3
8

SO(12)×U(1)2 |SU(8)×U(1)

92 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 3
8
, 1
8

SO(12)×U(1)2 |SU(4)2×U(1)2

93 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1

2
SU(7)×U(1)2 |SU(8)×SU(2)

94 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(−1, 0, 0, 1,−1, 1, 0, 0) − 1

8
, 3
8

SU(7)×U(1)2 |SU(6)×SU(2)2×U(1)

95 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(0,−1,−1, 0, 0, 0,−1, 1) − 1

8
, 3
8

SU(7)×U(1)2 |SU(4)2×SU(2)×U(1)

96 (0,−1, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−1,−3, 1, 1, 1, 1,−1, 1) 0, 1

2
SO(10)×SU(2)2×U(1)|SU(8)×U(1)

97 (0,−1, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
4
, 1
4

SO(10)×SU(2)2×U(1)|SU(4)2×U(1)2

98 (0, 0, 0, 0, 0,−2, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(14)×U(1)|SU(6)×SU(2)×U(1)2

99 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1,−1, 0, 0, 0, 0, 0, 0) − 3

8
, 1
8

SU(7)×U(1)2 |SU(6)×SU(2)2×U(1)

100 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1, 0, 0, 0, 0, 1, 0, 0) − 1

4
, 1
4

SU(7)×U(1)2 |SU(4)2×SU(2)×U(1)

101 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(0, 0, 0, 0, 0, 0,−1, 1) − 1

8
, 3
8

SU(7)×U(1)2 |SU(8)×SU(2)

102 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
4
, 1
4

SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2



68 APPENDIX B. INEQUIVALENT EMBEDDINGS FOR Z2 × Z4

2 · V2 Φ Group Decomposition

4 · V4 = (3, 1, 0, 0, 0, 0, 0, 0) ⊕ (1, 1, 1, 1, 1, 1, 1,−1)

103 (0, 0, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3
8

SO(12)×SU(2)×U(1)|SU(7)×U(1)2

104 (0, 0, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1,−1,−1,−1, 1, 1, 1, 1) 0, 1

2
SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

105 (−1,−1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1, 1, 1, 1, 1,−3, 1,−1) − 1

8
, 3
8

SO(12)×SU(2)×U(1)|SU(7)×U(1)2

106 (−1,−1, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1,−1, 3,−1,−1) − 3

8
, 1
8

SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

107 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0, 0, 0, 0) − 1
8
, 3
8

SO(10)×U(1)3 |SU(8)×U(1)

108 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(0, 0, 0, 0, 0,−2, 0, 0) − 1
4
, 1
4

SO(10)×U(1)3 |SU(8)×U(1)

109 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 3
8
, 1
8

SO(10)×U(1)3 |SU(4)2×U(1)2

110 (−1, 1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1, 1, 1, 1, 1,−3, 1,−1) 0, 1

2
SO(12)×SU(2)×U(1)|SU(7)×U(1)2

111 (−1, 1, 0, 0, 0, 0, 0, 0)⊕− 1
2
(1, 1, 1, 1,−1, 3,−1,−1) − 1

4
, 1
4

SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

112 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕ 1

2
(−1, 1, 1, 1, 1,−3, 1,−1) 0, 1

2
SU(6)×U(1)3 |SU(7)×U(1)2

113 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕− 1

2
(1, 1, 1, 1,−1, 3,−1,−1) − 1

4
, 1
4

SU(6)×U(1)3|SU(5)×SU(3)×U(1)2

114 − 1
2
(1,−1, 1, 1, 1, 1, 1,−1)⊕(0, 0, 0, 0, 0, 0, 0, 0) 0, 1

2
SU(6)×SU(2)×U(1)2 |SU(8)×U(1)

115 − 1
2
(1,−1, 1, 1, 1, 1, 1,−1)⊕(0, 0, 0, 0, 0,−2, 0, 0) − 1

8
, 3
8

SU(6)×SU(2)×U(1)2 |SU(8)×U(1)

116 − 1
2
(1,−1, 1, 1, 1, 1, 1,−1)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1

4
, 1
4

SU(6)×SU(2)×U(1)2 |SU(4)2×U(1)2

117 (0, 0,−1, 0, 0, 0, 1, 0)⊕ 1
2
(−1, 1, 1, 1, 1,−3, 1,−1) − 3

8
, 1
8

SO(8)×SU(2)3×U(1)|SU(7)×U(1)2

118 (0, 0,−1, 0, 0, 0, 1, 0)⊕− 1
2
(1, 1, 1, 1,−1, 3,−1,−1) − 1

8
, 3
8

SO(8)×SU(2)3×U(1)|SU(5)×SU(3)×U(1)2

119 (0, 0, 0, 0, 0,−2, 0, 0)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 1

8
, 3
8

SO(12)×SU(2)×U(1)|SU(7)×U(1)2

120 (0, 0, 0, 0, 0,−2, 0, 0)⊕ 1
2
(−1,−1,−1,−1, 1, 1, 1, 1) 0, 1

2
SO(12)×SU(2)×U(1)|SU(5)×SU(3)×U(1)2

121 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(0, 0, 0, 0,−1,−1, 0, 0) − 3

8
, 1
8

SU(6)×SU(2)×U(1)2 |SU(6)×SU(2)×U(1)2

122 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1

4
, 1
4

SU(6)×SU(2)×U(1)2 |SU(6)×SU(2)×U(1)2

123 1
2
(−3, 1,−1,−1, 1, 1, 1, 1)⊕− 1

2
(1, 1, 1, 1, 1, 1,−1,−1) − 3

8
, 1
8

SU(6)×U(1)3 |SU(7)×U(1)2

124 1
2
(−3, 1,−1,−1, 1, 1, 1, 1)⊕ 1

2
(−1,−1,−1,−1, 1, 1, 1, 1) − 1

4
, 1
4

SU(6)×U(1)3|SU(5)×SU(3)×U(1)2

125 (−1,−1,−1, 0, 0, 0, 0, 1)⊕− 1
2
(1, 1, 1, 1, 1, 1,−1,−1) − 3

8
, 1
8

SO(8)×SU(2)3×U(1)|SU(7)×U(1)2

126 (−1,−1,−1, 0, 0, 0, 0, 1)⊕ 1
2
(−1,−1,−1,−1, 1, 1, 1, 1) − 1

4
, 1
4

SO(8)×SU(2)3×U(1)|SU(5)×SU(3)×U(1)2

127 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(0, 0, 0, 0,−1,−1, 0, 0) − 1
4
, 1
4

SU(4)2×U(1)2|SU(6)×SU(2)×U(1)2

128 (−1, 0,−1,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SU(4)2×U(1)2|SU(6)×SU(2)×U(1)2

4 · V4 = (2, 2, 2, 0, 0, 0, 0, 0) ⊕ (3, 1, 1, 1, 1, 1, 0, 0)

129 (0, 0, 0, 0, 0, 0, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(10)×SU(4)|SU(6)×SU(2)×U(1)2

130 (−1,−1, 0, 0, 0, 0, 0, 0)⊕ 1
2
(−1,−3, 1, 1, 1, 1,−1, 1) − 1

4
, 1
4

SO(10)×SU(2)2×U(1)|SU(8)×U(1)

131 (−1,−1, 0, 0, 0, 0, 0, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) 0, 1
2

SO(10)×SU(2)2×U(1)|SU(4)2×U(1)2

132 (−1, 0, 0, 0, 0, 0, 1, 0)⊕ 1
2
(−1,−3, 1, 1, 1, 1,−1, 1) − 1

8
, 3
8

SO(8)×SU(2)2×U(1)2|SU(8)×U(1)

133 (−1, 0, 0, 0, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 3
8
, 1
8

SO(8)×SU(2)2×U(1)2|SU(4)2×U(1)2

134 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(0, 0, 0, 0, 0, 0, 0, 0) − 1

8
, 3
8

SU(5)×SU(3)×U(1)2 |SU(8)×SU(2)

135 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(−1, 0, 0, 1,−1, 1, 0, 0) − 1

4
, 1
4

SU(5)×SU(3)×U(1)2 |SU(8)×SU(2)

136 − 1
2
(1, 1, 1, 1, 1, 1,−1,−1)⊕(0,−1,−1, 0, 0, 0,−1, 1) − 1

4
, 1
4

SU(5)×SU(3)×U(1)2 |SU(4)2×SU(2)×U(1)

137 (0, 0, 0,−1, 0, 0, 1, 0)⊕ 1
2
(−1,−3, 1, 1, 1, 1,−1, 1) 0, 1

2
SU(4)2×SU(2)2|SU(8)×U(1)

138 (0, 0, 0,−1, 0, 0, 1, 0)⊕(−1,−1,−1, 0, 0, 0, 0, 1) − 1
4
, 1
4

SU(4)2×SU(2)2|SU(4)2×U(1)2

139 (0, 0, 0, 0, 0,−2, 0, 0)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 1
8
, 3
8

SO(10)×SU(4)|SU(6)×SU(2)×U(1)2

140 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1,−1, 0, 0, 0, 0, 0, 0) 0, 1

2
SU(5)×SU(3)×U(1)2 |SU(6)×SU(2)2×U(1)

141 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(−1, 0, 0, 0, 0, 1, 0, 0) − 3

8
, 1
8

SU(5)×SU(3)×U(1)2 |SU(4)2×SU(2)×U(1)

142 1
2
(−3,−1,−1, 1, 1, 1, 1, 1)⊕(0, 0, 0, 0, 0, 0,−1, 1) − 1

4
, 1
4

SU(5)×SU(3)×U(1)2 |SU(8)×SU(2)

143 (−1,−1,−1, 0, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) 0, 1
2

SO(8)×SU(4)×U(1)|SU(6)×SU(2)×U(1)2

144 (−1,−1, 0,−1, 0, 0, 0, 1)⊕(−1, 0, 0, 0, 0, 0, 1, 0) − 3
8
, 1
8

SU(4)×SU(2)4×U(1)|SU(6)×SU(2)×U(1)2



Appendix C

Matter Content for Models with
an SO(10) Factor

In the above table only the chiral fields which are charged under SO(10) are shown.

Model Untwisted (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

4 4(10), 2(16)
10,16 10 10,16 10,16 16 10,16 16 10,16 10

10,16 10 10,16 10,16 10 10,16 10 10,16 16

8 4(10), 2(16)
10,16 10 10,16 10,16

10,16 10 10,16 10,16

16 4(10), 2(16)
16 10,16 10 16 10,16 10 10,16

10 16 10,16 10 10,16 16 10,16

24 4(10), 2(16)
16 10,16 10

10 16 10,16

26 4(10), 2(16) 10 16 10,16 10

51
(1, 16), (1, 16), (1, 10) (1, 16) (1, 10)

(2, 10), (2, 16) (1, 16) (1, 10) (1, 10) (1, 10)

52
2(10), 2(16), 16 10 16 10,16 10

2(16) 10 16 10 10,16

53
2(10), 2(16), 16 10 10 10,16

2(16) 10 16 16 10,16 10

54
2(10), 2(16), 16 10

2(16) 10 16

57
(1, 16), (1, 16), (1, 10) (1, 16) (1, 10) (1, 10)

(2, 10), (2, 16) (1, 16) (1, 10) (1, 10)

59
(2, 2, 10),(1, 2, 16), (1, 1, 10) (1, 1, 10)

(2, 1, 16) (1, 1, 10) (1, 1, 10)

62 (4, 16)
(1, 16) (1, 10) (1, 10) (1, 10)

(1, 10) (1, 10) (1, 16) (1, 10) (1, 10) (1, 16)

63 (4, 16)
(1, 10) (1, 10) (1, 16) (1, 10)

(1, 16) (1, 10) (1, 10) (1, 10) (1, 10) (1, 16)

66
(1, 16), (1, 16), (1, 10) (1, 10)

(2, 10), (2, 16) (1, 10)

69
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Model Untwisted (0,1) (0,2) (0,3) (1,0) (1,1) (1,2) (1,3)

671

2(10), 2(16), 16 10,16

2(16) 10 10,16

672 (4, 16)
(1, 16) (1, 10) (1, 10) (1, 10) (1, 10)

(1, 10) (1, 10) (1, 16) (1, 10)

681

2(10), 2(16), 16 10,16

2(16) 10 10,16

682 (4, 16)
(1, 10) (1, 10) (1, 16) (1, 10) (1, 10)

(1, 16) (1, 10) (1, 10) (1, 10)

69
2(10), 2(16),

2(16) 10

70
2(10), 2(16),

2(16)

73
(1, 16), (1, 16), (1, 10)

(2, 10), (2, 16) (1, 10) (1, 10)

74
(2, 1, 16) (1, 1, 10) (1, 1, 10) (1, 1, 16)

(1, 2, 16) (1, 1, 16) (1, 1, 10) (1, 1, 10)

78 4(10), 2(16)
10 10,16 16 10,16 16 10,16

10 10,16 10 10,16 10 10,16

84 4(10), 2(16)
10 10,16 16

10 10,16 10

86 4(10), 2(16)
10 10,16

10 10,16

88 4(10), 2(16)
10 10,16

10 10,16

96
(2, 2, 10),(1, 2, 16), (1, 1, 10) (1, 1, 10)

(2, 1, 16) (1, 1, 10) (1, 1, 10) (1, 1, 16)

97
(2, 2, 10),(1, 2, 16), (1, 1, 10) (1, 1, 10)

(2, 1, 16) (1, 1, 10) (1, 1, 10)

107 4(10), 2(16)
10 16 10,16

10 10 10,16

108 4(10), 2(16)
10 10 10,16

10 16 10,16

109 4(10), 2(16)
10

10

129 (4, 16)
(1, 10) (1, 10) (1, 10)

(1, 10) (1, 10)

130
(2, 1, 16) (1, 1, 10) (1, 1, 10)

(1, 2, 16) (1, 1, 10)

131
(2, 1, 16) (1, 1, 10)

(1, 2, 16) (1, 1, 10)

139 (4, 16)
(1, 10) (1, 10)

(1, 10) (1, 10) (1, 10)
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[52] J. P. Derendinger, L.E. Ibáñez, H.P. Nilles, On the Low Energy d = 4, N = 1
Supergravity Theory Extracted from the d = 10, N = 1 Superstring, Phys.
Lett. B155 (1985) 65.

[53] O. Lebedev, H. P. Nilles, S. Raby, S. Ramos-Sánchez, M. Ratz, P. K. S. Vau-
drevange, and A. Wingerter, Low Energy Supersymmetry from the Heterotic
String Landscape, Phys. Rev. Lett. 98 (2007) 181602.

[54] G. F. Giudice, R. Rattazzi, Theories with Gauge-Mediated Supersymmetry
Breaking, Phys. Rep. 322 (1999) 419.

[55] M. Dine, N. Seiberg, E. Witten, Fayet-Ilopoulous Terms in String Theory,
Nucl. Phys. B289 (1987) 589.



I hereby certify that the work presented here was accomplished by myself and
without the use of illegitimate means or support, and that no sources and tools
were used other than those cited.

Bonn,
Date Signature


	Introduction
	Heterotic String Theory on Orbifold Backgrounds
	Lattices
	Orbifolds and further useful constructions
	Lattice Deformations

	The Heterotic String
	Light Cone Quantization

	Toroidal Compactifications
	Six Dimensional Orbifolds
	The Orbifolded Superstring
	Space Group Action on Gauge Coordinates
	Orbifold GSO Projectors
	Massless Spectrum


	String Selection Rules
	Space Group Selection Rule
	Gauge group invariance
	Lorentz Invariance in Compact Space
	Factorizable Lattices
	R-symmetries and discrete Wilson Lines
	Non Factorizable Lattices


	MSSM Searches in the Z2Z4 Orbifold Model
	Generalities
	Gauge Group Diversity
	Massless States
	Wilson Lines and Local GUT Scenarios
	An Explicit Example
	Brief Comments on the Hypercharge Generator

	R-symmetries for Z2Z4

	Conclusions
	Inequivalent Vectors for One E8 Embedding
	Inequivalent Embeddings for Z2Z4
	Matter Content for Models with an SO(10) Factor

