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Chapter 1

Introduction

For more than half a century physicists have tried to unify the four fundamental forces of

nature in a single framework. The first successful step in this direction was the emergence of

the Salam–Weinberg theory of electroweak interactions. Since then, the Standard Model (SM)

of particle physics has been proposed to describe the electromagnetic, weak, and strong in-

teraction in a single gauge theory with gauge group SU(3)C × SU(2)L × U(1)Y . However,

the SM is only tested up to the scale of electroweak symmetry breaking, Mew ∼ 100 GeV.

In addition, gravity is not included in the SM. To unify the aforementioned interactions with

gravity, described by Einstein’s theory of general relativity at a scale of MP ∼ 1019 GeV, an

ultraviolet extension of the SM is needed.

One possible ingredient of such an extension is supersymmetry. In its simplest form, it pre-

dicts the existence of one superpartner for each SM particle which differs in spin by 1
2 . Among

other things, supersymmetry removes quadratic divergences from scalar mass terms, provides

a natural WIMP dark matter candidate, and makes gauge coupling unification possible. The

idea to unify the three SM gauge groups into a single bigger one is well motivated, since in the

minimal supersymmetric extension of the Standard Model (MSSM) the three gauge couplings

seem to unify at a scaleMGUT ∼ 1016GeV. Phenomenologically appealing candidates for gauge

groups of such a grand unified theory (GUT) are SU(5) and SO(10) [1].

The probably best-developed theory to describe an ultraviolet completion of the SM cou-

pled to gravity is string theory. In this framework, point-like particles are replaced by one-

dimensional strings whose typical length is fixed by the so-called string scale, which is of a

similar order as the GUT and Planck scales. In this thesis, we are particularly interested in

heterotic string theory [2, 3], which only contains closed strings. It automatically provides su-

pergravity in ten dimensions with an E8 ×E8 or SO(32) gauge theory in its low energy limit.

In order to obtain four-dimensional theories with N = 1 supersymmetry, e.g. the MSSM, six

of these dimensions have to be compactified on a smooth Calabi–Yau manifold or an orbifold.

1



2 Chapter 1. Introduction

On top of being free of ultraviolet divergences, string theory has an elegant way of yielding

anomaly-free and thus consistent theories. It incorporates anomaly cancellation via the Green–

Schwarz mechanism [4], which imposes strong constraints on the gauge group, in particular,

only E8 × E8 and SO(32) are possible.

In this thesis, we deal with four-dimensional theories obtained by compactifying the het-

erotic string on orbifolds [5–7] and their smooth Calabi–Yau counterparts, obtained via a

blow-up procedure (cf. [8–11], and [12, 13] for a gauged linear sigma model approach). The

discussion of anomalies differs in these two cases. In orbifold constructions, imposing modular

invariance of the string partition function is sufficient to guarantee consistency of the theory

via the Green–Schwarz mechanism [14], where the axion dual to the Kalb–Ramond two-form

cancels the anomalies. Since there is only one axion but many different possible anomalies,

anomaly freedom requires that all anomalies are related such that the different anomalies can

be canceled with one universal axion. In smooth Calabi–Yau compactifications, however, the

picture is different. Anomalies are again canceled via the Green–Schwarz mechanism [15–17].

But, in contrast to the orbifold case, there can be more than one axion and the axionic cou-

plings are in general non-universal, even if there is only one axion. This is true because in

the blow-up phase, the additional axions arise from internal cohomology two-forms and their

couplings are determined by the choice of the gauge bundle used for blowing-up the orbifold.

This anomaly cancellation mechanism becomes important when considering vector bundles or

line bundles over Calabi–Yau manifolds (see e.g. [18–20] for recent applications).

Both of the above mentioned compactification schemes are plagued by a number of phe-

nomenological problems, like too fast proton decay and the so-called µ problem. One of the

prevailing methods to circumvent these issues are (discrete) R symmetries. Since R symmetries

act differently on fermions and bosons one might conclude that in string theory, R symmetries

emerge as remnants of the local Lorentz symmetry. However, the exact origin of R symmetries

both in orbifold and smooth Calabi–Yau compactifications is far from understood.

Thesis Outline and Summary

This thesis is organized as follows: In Chapter 2 we briefly review the heterotic string and

its compactification on orbifold spaces. As a simple example we discuss the T 6/Z3 orbifold.

The following chapter is devoted to anomalies and their cancellation. Here, we comment on

the existence of an anomalous U(1) on orbifolds and give expressions for the relevant anomaly

coefficients. In addition, we review the Green–Schwarz mechanism and the concept of anomaly

polynomials. In Chapter 4 we discuss the blow-up procedure for heterotic orbifolds. To this

end, we introduce the necessary tools from toric geometry and employ them to resolve curvature

singularities in compact and non-compact orbifolds. Afterwards, in Chapter 5 we discuss an
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explicit blow-up model of the Z3 orbifold in standard embedding. We use three Abelian

vector bundles to arrive at a model with gauge group SO(8)× SU(3) × U(1)A × U(1)B × E8.

Subsequently, we analyze arising anomalies of both U(1) symmetries to provide an example of

non-universal Green–Schwarz anomaly cancellation. This result agrees with our discussion in

Chapter 3 in which we argue that non-universal axion couplings are indeed the general case

for smooth Calabi–Yau compactifications, thus clarifying some confusion in recent literature.

Furthermore, we comment on the consequences of anomaly non-universality for bottom-up

GUT models and give an example of a Z6 (non-R) symmetry which commutes with SU(5)

grand unification and satisfies all important phenomenological requirements. In the remainder

of the chapter we discuss remnant discrete symmetries of the exemplary string model, using

a gauged linear sigma model description. We focus especially on R symmetries and conclude

that the Z3 orbifold exhibits a ZR
6 symmetry which is completely broken by the blow-up

procedure. We also attempt to clarify some notational confusion regarding the order of discrete

R symmetries on orbifolds. The results presented in this chapter have been published in [21].

In Chapter 6 we give an outlook on future research directions, especially the investigation of

superpotential couplings with regard to their charge under R symmetries. We try to find a

connection between R symmetries in orbifold and smooth Calabi–Yau models and attempt

to understand how they are broken during blow-up procedures. Afterwards, we give a short

conclusion.



4 Chapter 1. Introduction



Chapter 2

Heterotic Strings on Orbifolds

Among all string theories, the heterotic string [2,3] provides the most interesting phenomeno-

logical applications. In ten-dimensional space-time it supports N = 1 super Yang–Mills theory

coupled to supergravity with gauge group E8 × E8 or SO(32). As mentioned before, to re-

late this to four-dimensional theories with N = 1 supersymmetry, six dimensions have to be

compactified. Heterotic orbifolds [5–7] constitute simple geometrical compactification spaces.

Orbifolds are flat everywhere except for isolated curvature singularities at the so-called fixed

points. It turns out that these singularities do not pose an obstruction to performing exact

string computations. Thus, a very large number [22, 23] of viable and phenomenologically

interesting string compactifications on orbifolds are known.

2.1 The Heterotic String

We start with a brief review of the heterotic string following the description in [24,25], in order

to set the notation and introduce some of the underlying concepts which are relevant to the

following chapters.

Heterotic string theory is the only string theory which contains closed strings only. One

of the key aspects of this theory is to exploit the fact that left- and right-moving excitations

of these closed strings decouple. This results in left-moving bosonic strings living in d = 26

dimensions and right-moving superstrings in d = 10 dimensions. The string is described by

maps Xµ(τ, σ) which embed the two-dimensional world-sheet (with coordinates τ and σ) into

the ten-dimensional target space. Left- and right-movers are then treated separately in the

following way,

Xµ(τ, σ) = Xµ
L(σ

+) +Xµ
R(σ

−) , (2.1)

where we have introduced the so-called light-cone coordinates σ± = τ ± σ.

5



6 Chapter 2. Heterotic Strings on Orbifolds

World-sheet action and mode expansion

The world-sheet action for the ten-dimensional fields of the heterotic string is of the form

S10d =
1

π

∫
d2σ

(
2∂+X

µ∂−Xµ + iψµ
R∂−ψR,µ

)
, (2.2)

where µ = 0 . . . 9 and ∂± denotes the derivative with respect to σ±. Thus, the right-moving

superstring is described by ten-dimensional bosons Xµ
R(σ

−) and Majorana–Weyl fermions

ψµ
R(σ

−) which are related by world-sheet supersymmetry. The left-moving string is described

by Xµ
L(σ

+) and 16 additional bosonic degrees of freedom XI
L(σ

+), where I = 1 . . . 16.

As a step towards quantization of the theory we perform a mode expansion of the bosonic

and fermionic degrees of freedom. Respecting the periodic boundary conditions on the cylindric

world-sheet, i.e.

Xµ(τ, σ + π) = Xµ(τ, σ) , (2.3)

one finds for the right-moving bosons

Xµ
R(σ

−) = xµR + pµR · σ
− +

i

2

∑

n∈Z
n 6=0

1

n
αµ
ne

−2inσ−

. (2.4)

The fermions allow for either periodic (Ramond) or anti-periodic (Neveu–Schwarz) boundary

conditions: ψµ
R(σ

−+π) = ±ψµ
R(σ

−). These two sectors have to be treated separately and have

the following mode expansions

ψµ
R(σ

−) =
∑

n∈Z dµne−2inσ−

, (R) (2.5a)

ψµ
R(σ

−) =
∑

r∈Z+ 1
2

bµr e
−2irσ−

. (NS) (2.5b)

Let us now turn to the left-movers. The ten-dimensional bosonic degrees of freedom have a

mode expansion similar to the right-moving ones, i.e.

Xµ
L(σ

+) = xµL + pµL · σ
+ +

i

2

∑

n∈Z
n 6=0

1

n
α̃µ
ne

−2inσ+
. (2.6)

In order to preserve modular invariance, the 16 additional bosonic degrees of freedom XI have

to be compactified on a 16-dimensional torus T 16, described by a lattice

Γ16 =
{
2π
∑

niei|ni ∈ Z} . (2.7)

Γ16 is spanned by 16 linearly independent vectors ei ∈ R16 and is required to be even and

self-dual. With 16 dimensions being compactified on T 16 = R16/Γ16, the X
I can be thought
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of as strings which are closed after encircling the torus a certain number of times:

XI(σ+ + π) = XI(σ+) + 2π
16∑

i=1

wie
I
i , (2.8)

where wi are called winding numbers. It turns out that Γ16 can only be the root lattice of

E8 × E8 or Spin(32)/Z2. This corresponds to the well-known result from ten-dimensional

anomaly cancellation [4] that the only gauge groups which support a consistent heterotic

string theory are E8×E8 and SO(32). Since the gauge group descends in this way from the 16

compactified dimensions, the XI are frequently called gauge degrees of freedom. Their mode

expansion is given by

XI
L(σ

+) = xIL + pIL · σ
+ +

i

2

∑

n∈Z
n 6=0

1

n
α̃I
ne

−2inσ+
, (2.9)

where pL ∈ Γ16 is the internal momentum of the string.

Quantization and massless spectrum

In order to quantize the theory, the expansion modes encountered in the previous paragraph

are taken to be operator-valued. They act on a Hilbert space H and obey the commutation

relations

[αµ
m, α̃

ν
n] = 0 , (2.10a)

[α̃µ
m, α̃

ν
n] = [αµ

m, α
ν
n] = nδn+m,0η

µν , (2.10b)

[α̃I
m, α̃

J
n] = nδn+m,0δ

IJ . (2.10c)

The fermionic modes are elements of a Grassmann algebra and thus fulfill the anticommutation

relations

{bµr , b
ν
s} = δr+s,0η

µν , (2.11a)

{dµm, d
ν
n} = δn+m,0η

µν . (2.11b)

Demanding reality of X and the Majorana property of ψ then amounts to the following con-

ditions on the modes,

αn = α†
−n , α̃n = α̃†

−n , dn = d†−n , br = b†−r . (2.12)

Hence we observe that some of the modes act as creation operators and some as annihilation

operators on H. However, negative- or zero-norm states can appear in the spectrum alongside

the physical positive-norm states. In order to remove these unphysical states from the theory,
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we impose a number of constraints on the world-sheet energy-momentum tensor Tαβ and the

world-sheet supercurrent Jα:

T++ = T−− = J− = 0 . (2.13)

The above quantities can be expressed in terms of the fields as follows

T++ = −∂+X
µ
L∂+XL,µ − ∂+X

I
L∂+XL,I , (2.14a)

T−− = −∂−X
µ
R∂−XR,µ −

i

2
ψµ
R∂−ψR,µ , (2.14b)

J− = ψµ
R∂−XR,µ . (2.14c)

The mode expansions for these operators, i.e.

T++ =
∑

n∈Z L̃ne
−2inσ+

, T−− =
∑

n∈ZLne
−2inσ−

, (2.15a)

J
(R)
− =

∑

n∈ZFne
−2inσ−

, J
(NS)
− =

∑

s∈Z+ 1
2

Gse
−2isσ−

, (2.15b)

define the generators of the super-Virasoro algebra. Using these we can define a physical state

|φ〉 ∈ H by demanding

(L0 − aR)|φ〉 = (L̃0 − aL)|φ〉 = 0 , (2.16a)

Ln|φ〉 = L̃n|φ〉 = 0 , ∀n > 0 , (2.16b)

Fn|φ〉 = 0 , ∀n ≥ 0 , (2.16c)

Gs|φ〉 = 0 , ∀s ≥ 0 . (2.16d)

Note that the zero-mode equations contain shifts aL = 1 and aR = 0 or 1
2 – depending on the

boundary conditions (Ramond or Neveu–Schwarz) – which arise from the normal-ordering of

the oscillators.

We are now in a position to discuss mass operators of the theory. In light-cone gauge the

mass-squared operator reads

M2 =M2
L +M2

R , (2.17)

with level matching condition M2
L =M2

R. The operators in eq. (2.17) are given by

M2
L

8
= −

pL,µp
µ
L

8
=
pIp

I

2
+ Ñ − 1 , (2.18a)

M2
R

8
= −

pR,µp
µ
R

8
=
q2

2
+N − aR , (2.18b)

where q is the right-moving momentum taken from the weight lattice of SO(8), which is the

little group of the Lorentz group SO(1, 9). We have implicitly bosonized the theory, hence in
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this formulation two world-sheet Majorana–Weyl fermions play the role of one holomorphic

boson. For the sake of completeness we give the explicit form of the oscillator number operators

N and Ñ :

Ñ :=

∞∑

n=1

α̃µ
−nα̃n,µ + α̃I

−nα̃n,I , (2.19a)

N :=

∞∑

n=1

αµ
−nαn,µ . (2.19b)

Let us now proceed to the determination of the massless spectrum. The massive modes

are of no particular interest to string phenomenology, since the masses are of the order of the

string scale MS ∼ 1017 GeV [26]. Thus, in a low energy effective theory massive states are not

present.

In the right-moving sector we deduce from demanding (2.18b) to be zero that massless

modes have N = 0 (since N has integral eigenvalues, N > 0 leads to massive states) and

q2 = 1, which is satisfied by

• qv = (±1, 0, 0, 0), which are the weights of the 8v representation of SO(8). The underline

denotes permutations of the entries.

• qs = (±1
2 ,±

1
2 ,±

1
2 ,±

1
2) with an even number of plus signs, which correspond to the

weights of the 8s representation of SO(8).

In the left-moving sector the picture is slightly different. From eq. (2.18a) with M2
L = 0 we

conclude that massless left-moving states must have either p2 = 2 and Ñ = 0, or p2 = 0 and

Ñ = 1. In the first case, the internal momenta p are the 480 roots of E8 × E8 or SO(32). In

the second case, the massless states are found to be the oscillator states α̃µ
−1|0〉L and α̃I

−1|0〉L.

The full spectrum of the heterotic string is then obtained by computing the tensor product of

the previously discussed states:

|q〉R ⊗ α̃
µ
−1|0〉L N = 1, d = 10 SUGRA multiplet , (2.20a)

|q〉R ⊗ α̃
I
−1|0〉L 16 Cartan generators of E8 × E8 or SO(32) , (2.20b)

|q〉R⊗|p〉L 480 generators of E8 × E8 or SO(32) . (2.20c)

The 496 states in (2.20b) and (2.20c) transform in the adjoint representation 248 + 248 of

E8×E8 or the 496 of SO(32). It is also straightforward to verify that the gauge singlet states

in (2.20a) indeed constitute an N = 1 SUGRA multiplet:

While the oscillators αI
−1 transform trivially under SO(8), the α̃µ

−1 transform in the 8v

vector representation of SO(8). Thus for the case of bosonic q, (2.20a) yields the tensor

product

8v × 8v = 1+ 28+ 35v , (2.21)
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which can, by merely counting degrees of freedom, be identified with the dilaton Φ, the an-

tisymmetric two-form Bµν , and the graviton gµν , respectively. A similar procedure for the

fermionic part of q leaves us with

8s × 8v = 8c + 56c , (2.22)

which corresponds to the dilatino ψ and the gravitino ψµ, respectively.

2.2 Orbifold Compactifications

As mentioned before, in order to reproduce the MSSM or the Standard Model of particle

physics from string theory, six of the ten stringy dimensions have to be compactified. This is

done by choosing the ten-dimensional target space M10 to be of the form

M10 =M1,3 ×M6 , (2.23)

where M1,3 is four-dimensional Minkowski space and M6 denotes the six-dimensional internal

space. Perhaps the most important restriction on the compactification space M6 is the re-

quirement of N = 1 supersymmetry in four dimensions. Demanding one remnant covariantly

constant spinor after breakdown of the ten-dimensional Lorentz group restricts the holonomy

group of M6 to be SU(3). This constraint is satisfied by Calabi–Yau manifolds and orbifolds.

This section is devoted to orbifold geometry and topology, as well as the propagation of

heterotic strings on orbifolds. We discuss the most important concepts by means of a simple

example, the T 6/Z3 orbifold. Compactifications on smooth Calabi–Yau manifolds, especially

blow-ups of heterotic orbifolds, will be discussed in Chapter 4.

2.2.1 Orbifold Geometry

By definition, an orbifold is a manifold with a discrete symmetry modded out. To construct a

toroidal orbifold O suitable for string compactification, we start with a six-dimensional torus

T 6 and divide out a symmetry of the underlying torus lattice Γ, also known as point group:

O = T 6/P . (2.24)

Note that P has to act crystallographically on Γ, hence the number of possible point groups

is finite. P acts on the three complex coordinates zi of the torus according to

θ : zi −→ θzi = e2πivizi , (2.25)

where v = (v1, v2, v3) is called twist vector. Note that in this thesis we only consider orbifolds

with P = ZN whose torus lattices can be factorized into three two-dimensional tori. The
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condition of N = 1 supersymmetry in four dimensions amounts to requiring the point group,

which is identified with the orbifold holonomy group, to be a subgroup of SU(3). This implies

3∑

i=1

vi = 0 mod 1 . (2.26)

Furthermore, since the point group is of order N the twist vector has to satisfy Nvi = 0 mod 1.

Before we start discussing the propagation of strings on orbifolds, let us briefly comment on

a different way to construct orbifolds, namely via the so-called space group. The space group S

is defined by an equivalence relation for the complex torus coordinates,

z ∼ (θk, n)z := θkz + n , k ∈ {1, 2, . . . , N − 1} , (2.27)

where n = niei are lattice translations and θ is the generating element of the point group

introduced in (2.25). Two elements g1, g2 ∈ S obey the multiplication law

g1 ◦ g2 = (θk, n) ◦ (θl,m) = (θk+l, θkm+ n) . (2.28)

The orbifold O is then constructed as the quotient space

O = C3/S . (2.29)

Note that P and S do not act freely on C3: There is a finite number of fixed points f which

satisfy f = (θk, n)f and are thus invariant under S. Due to the non-trivial holonomy these fixed

points constitute curvature singularities on O. If one of the complex coordinates is invariant

under a twist θk, i.e. θkzi = zi, there exists a fixed subspace of complex dimension two, which

for orbifolds on factorizable tori is always a fixed torus.

2.2.2 Strings on Orbifolds

Our next step is to consider the compactification of six bosonic coordinates Xµ, µ = 4 . . . 9

on the orbifold O. It is convenient to express these real coordinates in terms of three complex

coordinates

Za = X2a+2 + iX2a+3 , a = 1 . . . 3 . (2.30)

Due to the orbifold geometry, i.e. the space group action, the boundary conditions (2.3) for

the string coordinates change:

Z(τ, σ + 2π)
!
= θkZ(τ, σ) + niei , (2.31a)

ψ(τ, σ + 2π)
!
= ±θkψ . (2.31b)

To give a similar expression for the coordinates XI , we have to specify how the space group is

embedded into the gauge degrees of freedom. A convenient choice is to assign to every twist θi
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a shift vector V I
i and to every lattice translation by ei a Wilson line Wi. The new boundary

condition for the gauge degrees of freedom then reads

XI(σ+ + 2π)
!
= XI(σ+) + V I

g , (2.32)

where

V I
g = kV I +

6∑

i=1

niW
I
i (2.33)

denotes the so-called local shift vector, associated with a space group element g ∈ S at a

particular fixed point. Note that from now on we will drop the index I = 1 . . . 16 whenever the

notation is clear without ambiguity. The full group, which acts on both the three complex-

dimensional space and the gauge degrees of freedom, we call orbifold group O.

An important distinction in terms of physical states is made between the untwisted sector

(k = 0) and the twisted sectors (k 6= 0). In the following, we discuss both cases separately.

Twisted sector

Strings in the twisted sector are subject to the modified boundary conditions (2.31). Thus,

massless twisted strings are localized at fixed points corresponding to some constructing element

g = (θk, niei) of S. Similar to the way we introduced the local shift Vg it is now useful to

define the local twist

vg = kv , (2.34)

which denotes the twist acting on any string localized at the fixed point with constructing

element g. As a consequence of the twisted boundary conditions the right- and left-moving

momenta are shifted by vg and Vg, respectively. The new masslessness conditions can then be

written as

M2
R

8
!
= 0 =

q2sh
2

+ δc−
1

2
, (2.35a)

M2
L

8

!
= 0 =

p2sh
2

+ Ñ + δc − 1 , (2.35b)

where we have defined the shifted momenta as

qsh := q + vg , psh := p+ Vg . (2.36)

Note another important difference to the untwisted mass operators (2.18): The presence of

twisted oscillators in the mode expansions of twisted strings leads to a shift in the zero-point

energies of both right- and left-moving sector, given by

δc =
3∑

i=1

vig
(
1− vig

)
, (2.37)
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for 0 ≤ vig < 1.

In order to determine the Hilbert space of physical states we have to consider how a closed

string state |qsh〉R ⊗ α̃|psh〉L with constructing element g ∈ S transforms under some element

h ∈ S. It turns out that in case of commuting space group elements, which is given throughout

this thesis, the state transforms with a phase, i.e.

|qsh〉R ⊗ α̃|psh〉L
h
−→ e2πi(p

I
shV

I
h
−Rivi

h)|qsh〉R ⊗ α̃|psh〉L , (2.38)

where we have introduced the so-called R charge

Ri = qish − Ñ
i + Ñ∗ i . (2.39)

The combination of oscillators and shifted momenta is chosen in such a way that Ri is invariant

under picture changing [27]. Since physical states have to transform trivially under h, it follows

from (2.38) the projection condition

pIshV
I
h −R

ivih
!
= 0 mod 1 . (2.40)

One can show that the twisted sector cannot contribute gauge group factors to the compactified

spectrum. In fact, the only states which survive (2.40) form matter representations in the form

of four-dimensional N = 1 chiral multiplets.

Untwisted sector

Strings in the untwisted sector fulfill the trivial boundary conditions (2.3). Hence the solutions

to the masslessness conditions (2.18) are simply given by the ten-dimensional spectrum of the

heterotic string. However, to obtain the correct massless physical spectrum on the orbifold we

still have to project out those states which are not invariant under the orbifold action.

From the transformation behavior of the operators and states under the twist θ, given by

|q〉 −→ e−2πiqivi |q〉 , (2.41a)

α̃i
n −→ e2πiviα̃i

n, (2.41b)

|p〉 −→ e2πip
IVI |p〉 , (2.41c)

and knowing that physical states must transform trivially, we draw a number of conclusions.

First, from the ten-dimensional supergravity multiplet (2.20a), only an N = 1, d = 4 super-

gravity multiplet and untwisted moduli like the Kähler and complex structure moduli survive.

Second, from the 16 Cartan generators (2.20b) we get 16 four-dimensional vector multiplets.

Thus, the rank of the gauge group has not been reduced. Last but not least, the 480 generators

of E8 × E8 from (2.20c) transform under g ∈ S as follows,

|q〉R ⊗ |p〉L
g
−→ e2πi(pIV

I
g −qiv

i
g)|q〉R ⊗ |p〉L . (2.42)
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Thus, if qiv
i
g = 0, the left-moving momentum must satisfy

pIV
I
g

!
= 0 mod 1 . (2.43)

The surviving p are the roots of the four-dimensional gauge group. As stated in our previous

discussion of the twisted sector, these are in fact the only states contributing to the gauge

group. In the case qiv
i
g 6= 0, the condition reads

pIV
I
g − qiv

i
g

!
= 0 mod 1 , (2.44)

in analogy to (2.40). The set of invariant states arising from (2.44) give rise to untwisted

matter transforming in representations specified by their weights p.

Modular invariance and other constraints

The gauge embedding of the twist, i.e. the shift V and Wilson linesWi, has to satisfy a number

of consistency conditions.

For a ZN orbifold, acting N times with an orbifold group element on the gauge degrees of

freedom and demanding that θN = 1 leads to a constraint on the shift vector,

NV ∈ Γ16 . (2.45)

Thus, a twist of order N is translated into a shift of the same order in the gauge sector. A

similar rule can be derived for Wilson lines. If Ni denotes the order of the orbifold action in

the i-th subtorus, acting Ni times on the coordinates Za and XI
L with g = (θ, ei;V,Wi) ∈ O

results in the condition that Wi has to be of order Ni, i.e.

NiWi ∈ Γ16 . (2.46)

A number of additional constraints are imposed by modular invariance of one-loop string

amplitudes. One-loop diagrams for closed strings are simply tori, parameterized by a modu-

lus τ . The torus modulus is invariant under PSL(2,Z) transformations of the form

τ −→
aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z) , (2.47)

generated by τ → τ +1 and τ → − 1
τ
. Therefore, the string amplitude itself has to be invariant

under (2.47), which for ZN orbifolds leads to the consistency conditions

N(V 2 − v2) = 0 mod 2 , (2.48a)

Ni(Wi · V ) = 0 mod 2 , (2.48b)

Ni(Wi ·Wi) = 0 mod 2 , (2.48c)

where as before Ni denotes the order of Wi.
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e1

e2

e3

e4

e5

e6

Figure 2.1: The factorized SU(3)3 torus lattice of the Z3 orbifold, spanned by the basis vectors

e1 = e3 = e5 = (1, 0) and e2 = e4 = e6 =
(
− 1

2
,
√

3

2

)
. The black dots mark the 33 = 27 fixed points.

2.2.3 Example: The T 6/Z3 Orbifold

Equipped with the previously discussed techniques we can now proceed to study the simplest

example of an orbifold which admits N = 1 supersymmetry in four dimensions, T 6/Z3. The

geometry of the Z3 orbifold has been discussed in great detail in various works [5–7,28]1. Hence,

we merely summarize the most important results for the simple case of standard embedding in

absence of Wilson lines. We will use exactly this orbifold compactification as starting point

for a blow-up model with non-universal anomalies in Chapter 5.

Let us first specify what is meant by standard embedding. We choose the six-dimensional

torus lattice to be factorized as

Γ = ΓSU(3) × ΓSU(3) × ΓSU(3) , (2.49)

where ΓSU(3) denotes the root lattice of SU(3). Each sublattice lies in one of the three complex

planes of the tori. This is schematically depicted in Figure 2.1. In this case the orbifold twist θ

is realized by the twist vector

v =
1

3
(1, 1,−2) . (2.50)

The term standard embedding in this context means that the twist is embedded into the gauge

group in the simplest non-trivial way,

V =
1

3

(
1, 1,−2, 05

) (
08
)
. (2.51)

Following the procedure discussed in the previous sections one can now verify that the shift

breaks the gauge group as

E8 × E8 −→ E6 × SU(3)× E8. (2.52)

We remark that in E8 × E8 heterotic string theory there are in fact five inequivalent shift

vectors which satisfy the modular invariance conditions (2.48) [22]. Thus, in the absence of

Wilson lines there are five different Z3 orbifolds whose gauge groups are listed in Table 2.1.

1For a detailed account of the SO(32) heterotic string on Z3 orbifolds, see [29].
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Shift vector Gauge group

(
08
) (

08
)

E8 × E8

1
3

(
1, 1,−2, 05

) (
08
)

E6 × SU(3)× E8

1
3

(
1, 1,−2, 05

) (
1, 1,−2, 05

)
E6 × SU(3)× E6 × SU(3)

1
3

(
12, 06

) (
−2, 07

)
E7 × SO(14)× U(1)2

1
3

(
−2, 14, 03

) (
−2, 07

)
SU(9) × SO(14)× U(1)

Table 2.1: All modular invariant inequivalent shift vectors for the Z3 orbifold with resulting gauge

group.

Returning to the simple case of the standard embedding, we perform the analysis outlined

in Section 2.2.2 to determine the massless chiral spectrum in the remaining four-dimensional

theory. It turns out that in the untwisted sector, the only matter representations which survive

the projection conditions are three copies of
(
27,3,1

)
. A similar analysis in the twisted sector

reveals that at each of the 27 fixed points there are localized matter representations (27,1,1)

and 3 · (1,3,1). Thus, the full massless chiral spectrum reads

3
(
27,3,1

)
+ 27

[
(27,1,1) + 3 (1,3,1)

]
. (2.53)

This completes our discussion of the Z3 orbifold for now. However, as already mentioned we

will come back to this particular example in Chapter 5.



Chapter 3

Anomaly Cancellation

Anomalies arise when a classical symmetry is not preserved in the process of quantization. If

the anomalous symmetry is a gauge symmetry, the theory is rendered inconsistent. Therefore,

anomaly cancellation is of crucial importance in the construction of consistent string mod-

els. The conditions for omalous1 theories in ten dimensions have been studied by Green and

Schwarz [4] for the first time. Criteria for discrete symmetries have been investigated in [30,31].

The computation of anomaly coefficients can be performed in various ways: Using a simple

Feynman diagram approach, calculating the anomalous variation of the path integral measure

via a method developed in [32, 33], or via the anomaly polynomial [34, 35]. In this chapter

we comment on these different methods and discuss the concept of anomaly polynomials in

detail. Afterwards, we explore the presence and consequences of an anomalous U(1) symmetry,

commonly denoted by U(1)anom, on heterotic orbifolds.

3.1 Field Theory Picture

In a d-dimensional field theory, anomalies are represented by non-vanishing (d2 +1)-sided poly-

gon graphs, see Figure 3.1 for examples in four and ten dimensions. Since only diagrams with

chiral fermions in the loop give non-vanishing contributions, anomalies only exist in even di-

mensions. Concretely, let us consider a theory with a gauge group which is a product of a

non-Abelian part, denoted by G, and a number of U(1) symmetries. We also include a number

of chiral fermions f which transform in the representation rf of G and carry U(1)i charge q
i
f .

Now one can simply try to calculate the triangle diagram in Figure 3.1a. Considering only

U(1) gauge fields coupled to two other U(1) gauge fields, two gravitons or two non-Abelian

1We use this term coined by Donagi for anomaly-free theories. We also remark that anomalous, stemming

from the greek word homalos (= even, smooth) is in no way related to abnormal (= against the rule).

17
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(a) (b)

Figure 3.1: Anomaly graphs in four (a) and ten (b) dimensions.

gauge fields, we obtain for the U(1) current Ji

∂µJ
µ
i ∼ AG2−U(1)i trFµν F̃

µν +
1

sijk
AU(1)3

ijk
Fj,µνF̃

µν
k +

1

24
Agrav2−U(1)i trRµνR̃

µν . (3.1)

Here, Fµν , Fi,µν , and Rµν denote the field strengths of G, U(1)i, and the Lorentz group,

respectively. The symmetry factor sijk satisfies

siii = 3! , siij = 2! , sijk = 1! , (3.2)

and takes into account permutations of the legs in the triangle diagram. The anomaly coeffi-

cients A are found to be

AG2−U(1) =
∑

f

qfℓ(rf ) , Agrav2−U(1) =
∑

m

qm , AU(1)3
ijk

=
∑

m

qimq
j
mq

k
m , (3.3)

where the first sum runs over all fermions f in rf and ℓ(rf ) denotes the Dynkin index of rf .

All these anomaly coefficients have to vanish for the theory to be omalous.

For discrete symmetries, especially ZN symmetries, instead of U(1)’s the anomaly coef-

ficients are of the same form as (3.3) but only have to vanish mod N (or mod N
2 if N is

even) [30, 31]. Furthermore, it has been argued in various places [31, 36] that quadratic and

cubic discrete anomalies are not relevant for the discussion.

3.2 Anomaly Polynomial and Green–Schwarz Mechanism

A more convenient way to discuss anomalies and their cancellation is via the so-called anomaly

polynomial. Whenever a current like (3.1) is not conserved, the path integral measure trans-

forms non-trivially, i.e.
∫
DΨeiS −→

∫
DΨeiAeiS . (3.4)
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Thus, the effective action ΓS appears non-invariant under the considered gauge or local Lorentz

transformation with parameter λ or Θ, respectively:

ΓS −→ ΓS +A(λ,Θ) . (3.5)

As discussed before, the anomaly A only arises in the quantum theory and could be calculated

using Feynman diagrams or a regularization method developed by Fujikawa [32, 33]. In a

d-dimensional theory the anomaly can be expressed as an integral of a d-form,

A =

∫
I
(1)
d . (3.6)

It has been argued [37,38] that the non-trivial information about the anomaly can be succinctly

given in terms of a (formal) closed and gauge-invariant (d + 2)-form Id+2, which is related to

Id via the Stora–Zumino descent equations

Id+2 = dI
(0)
d+1 , δλI

(0)
d+1 = dI

(1)
d . (3.7)

Id+2 is called anomaly polynomial and I
(0)
d+1 is the Chern–Simons form.

Let us now specialize to the case of interest, which is ten-dimensional N = 1 supergravity

coupled to super Yang–Mills theory, as a low energy effective theory of the E8 × E8 heterotic

string. Green and Schwarz discovered [4, 39] that only reducible anomalies can be canceled,

i.e. I12 has to factorize into an eight-form and a four-form according to

I12 = Y8X4 . (3.8)

Taking anomalous contributions from the gravitino, the dilatino, and the gauginos into account,

one obtains for Y8 and X4,

Y8 =
1

8
trR4 +

1

32

(
trR2

)2
−

1

8
trR2 trF2 +

1

24
trF4 −

1

8

(
trF2

)2
, (3.9)

X4 = trR2 − trF2 , (3.10)

where R and F denote the ten-dimensional Riemann and field strength tensors, respectively2.

The field strength tensors are constrained to be the ones of E8×E8 or SO(32). In the case at

hand, the anomaly is canceled by the non-trivial variation of the antisymmetric two-form B2

from the supergravity multiplet (2.21), given by

δB2 = trΘdW− trλdA , (3.11)

where W and A denote spin and gauge connection, respectively. In particular, the anomalous

variation (3.5) of the supergravity action is now canceled by the Green–Schwarz action for B2,

which is of the form

SGS =

∫
1

2
H3 ∧ ∗H3 + cB2X4 , (3.12)

2Note that we usually omit wedge products between forms for convenience.



20 Chapter 3. Anomaly Cancellation

+ = 0

B2

Figure 3.2: Anomalous hexagon diagram and tree level diagramwith the exchange ofB2. The anomalous

variation of B2 exactly cancels the ten-dimensional gauge anomaly.

where the field strength of B2 is given by

H3 = dB2 +
1

c
(ωYM

3 − ωL
3 ) . (3.13)

Here c is a free parameter and ωYM
3 and ωL

3 denote the Chern–Simons three-forms

ωYM
3 = tr

[
AF−

2i

3
A3

]
, (3.14a)

ωL
3 = tr

[
WR−

2i

3
W3

]
. (3.14b)

This cancellation process is schematically depicted in Figure 3.2. Note that I12 can also contain

more than one anomalous contribution, i.e.

I12 =
∑

a

Y a
8 X

a
4 , (3.15)

in general. In this case, each of the contributions to (3.15) has to be canceled separately by

variations of appropriate two-forms Ca
2 .

Four-dimensional anomaly cancellation

Let us now focus on four-dimensional theories. Here, reducible anomalies factorize as

I6 =
∑

a Y
a
2 X

a
4 , and can thus again be canceled by two-forms. However, in four dimensions

two-forms are dual to zero-forms (scalar fields, in particular axions) in the sense that their field

strengths satisfy ∗H3 = H1. Thus, we can phrase the following discussion in terms of scalars

only, which is much more convenient. The two-form Y2 can only be a field strength of a U(1)

gauge group factor, Y2 = dA1, and the U(1) is anomalous if X4 6= 0. Then X4 contains either
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two more U(1)’s or a square of a non-Abelian group (again including gravity), and by an abuse

of notation we denote these as Abelian, non-Abelian and gravitational anomalies, respectively.

For heterotic string compactifications we have to distinguish between two fairly different

cases: Compactifications on orbifolds and on smooth Calabi–Yau manifolds with vector bun-

dles, including orbifold blow-ups.

In the orbifold case, the only field taking part in the cancellation process is the antisym-

metric two-form b2 which survives the dimensional reduction of B2. Its dual, denoted by a, is

known as the model independent axion. Since there is only one possible field we can write

I6 = Y2X4 = Y2

(
trR2 −

∑

a

ca trF
2
a

)
. (3.16)

Notice that we have chosen a notation where the ten-dimensional field strengths split into

internal background flux and four-dimensional field strength as F = F + F and R = R + R,

assuming that four-dimensional backgrounds and massless internal fluctuations are absent.

The sum in (3.16) runs over all unbroken gauge group factors. The anomaly is then canceled

by the four-dimensional Green–Schwarz action (3.12),

S4d
GS ∼

∫
aX4 . (3.17)

We observe that a couples universally to all four-dimensional gauge group factors, apart from

the somewhat trivial coefficients ca which can be determined by group theory arguments only.

In Section 3.3 we will discuss how this universal coupling is related to the existence of an

anomalous U(1) in certain orbifold constructions. In particular, the anomalous U(1) manifests

itself as a shift of a.

Let us now proceed to the second case, compactification on smooth Calabi–Yau manifolds

as blow-ups of heterotic orbifolds. The most important difference is given by the fact that a

number of additional axions βr enter the theory during the blow-up procedure. Specifically, we

resolve the orbifold singularities by gluing in a number of exceptional divisors Er. The details

of this procedure are discussed in Chapter 4 and an explicit example is given in Chapter 5.

For now, it suffices to argue that the Kalb–Ramond two-form B2 can be expanded as

B2 = b2 + αiRi − βrEr , (3.18)

where Ri denote so-called inherited divisors which will not play a role in our example model.

The transformation of the βr under the anomalous symmetry follows from dimensional re-

duction of (3.11) after expansion of the internal flux F . We will work this out explicitly in

Section 5.1 during the discussion of gauge boson masses of anomalous U(1)’s. From the above
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discussion we conclude that these axions will in general not couple universally to all gauge

group factors.

Let us now work out a way to determine the four-dimensional anomaly coefficients via the

anomaly polynomial. Keeping in mind the Bianchi identity for the six-dimensional backgrounds

(see also Section 4.3),

dH = trR2 − trF2 = 0 , (3.19)

where the second equality holds only in cohomology, we can insert the decomposition of F and

R into the ten-dimensional polynomial given by (3.8) and (3.9) and keep the relevant terms,

i.e. the ones cubic in F and R. The result reads

I6 =
1

(2π)6

∫

X

[
1

6
tr
(
F ′F ′

)2
+

1

4

(
trF ′2 −

1

2
trR2

)
trF ′2

−
1

8

(
trF ′2 −

5

12
trR2

)
trR2

]
tr
(
F ′F ′

)
+
(
F ′,F ′ ↔ F ′′,F ′′

)
.

(3.20)

The field strengths of the first and the second E8 are denoted by F ′ and F ′′, respectively.

Apparently, each E8 factor contributes three different terms:

•
∫
X
tr(F ′F ′)2 · tr(F ′F ′) gives rise to Abelian anomalies only. This is also true for bundles

with non-Abelian structure group H because the generators of H, for which the trace

gives a nonvanishing contribution, are broken by the bundle.

•
∫
X

(
trF ′2 − 1

2 trR
2
)
trF ′2 · tr(F ′F ′) gives Abelian and non-Abelian anomalies, and

•
∫
X

(
trF ′2 − 5

12 trR
2
)
trR2 · tr(F ′F ′) contributes purely gravitational anomalies.

We observe some partial anomaly universality: The non-Abelian anomalies arising from the

first E8 are captured by one anomalous U(1) factor with universal coefficients, and similar for

the second E8. Furthermore, if one E8 is unbroken, i.e. F ′′ = 0, the Bianchi identity (3.19)

implies that the non-Abelian and gravitational anomalies are captured by the same U(1), and

their coefficients are proportional to each other.

This completes our discussion of anomaly polynomials. However, we make excessive use

of the described methods in order to determine the anomaly coefficients of a T 6/Z3 orbifold

blow-up model in Section 5.1.

3.3 Anomalous U(1) on Orbifolds

In generic orbifold compactifications the four-dimensional gauge group can contain many U(1)

factors. In this section we briefly discuss what has been established in the literature [40–42]

for some time: Although many of the U(1)’s may appear anomalous, one can always perform a
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basis change to rotate the generators in a way that only one U(1) is truly anomalous, which is

then denoted by U(1)anom. We investigate how exactly this can be realized, before we discuss

the four-dimensional version of the Green–Schwarz mechanism which cancels these anomalies.

At the end of this section, we comment on the conditions for an anomalous U(1) to be present

in the first place.

Uniqueness of U(1)anom

As mentioned above, for a set of apparently anomalous U(1) factors we can always rotate the

charges in such a way that only one anomalous U(1) remains. Starting from a number of gauge

group factors U(1)i and a state |psh〉L with charges qi given by

qi|psh〉L = tIiH
I |psh〉L = tIi p

I
sh|psh〉L , (3.21)

where HI denote the 16 Cartan generators of E8 × E8, we have from (3.3) potentially non-

vanishing anomaly coefficients

Ai =
∑

f

qfi =
∑

f

tIi p
I,f
sh . (3.22)

In [43] it has been worked out that a unique anomalous generator in a proper normalization

can be constructed by

tanom =
∑

i

Ai

tIi ti,I
ti =

1

12

∑

f

pfsh , (3.23)

where we have used (3.21) as well as the fact that the generators ti are chosen to be orthogonal.

Using (3.22) one can prove that U(1)anom is indeed anomalous and all other U(1)’s, whose

generators satisfy t̃Ii t
I
anom = 0, are not.

Furthermore, the authors of [43] have shown that there is an anomalous space group element

corresponding to tanom, given by ganom = (θkanom , nianome
i). This is in fact related to discrete

anomalies arising from stringy symmetries like the space group selection rule or H-momentum

conservation. In particular, tanom can be expressed as a superposition of the shift vector V

and the Wilson lines W i of the orbifold model,

tanom = kanomV +
∑

i

nianomW
i , (3.24)

which holds up to lattice vectors of ΓE8×E8 .

Anomaly cancellation and universality

Since U(1)anom is a gauge symmetry, all anomalies have to be absent or canceled by a Green–

Schwarz mechanism for the theory to be consistent. As we have seen in Section 3.2, ten-

dimensional anomalies are canceled by the variation of a counterterm
∫
B2 ∧ X8. In four

dimensions the cancellation proceeds via a shift of an axion a descending from B2 [43]:
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Consider a chiral superfield Ψ and a vector superfield V transforming under U(1)anom as

Ψ −→ eiqanomΛΨ , V −→ V + i(Λ− Λ†) , (3.25)

where Λ is a chiral superfield. This transformation is canceled by the variation of a complex

dilaton field S = s+ ia of the form

S −→ S + iδGSΛ . (3.26)

δGS can be shown to be proportional to AH2−U(1)anom , where H denotes Abelian, non-Abelian

and gravitational gauge group factors. The exact relation between those three types of anoma-

lies has been worked out in [42,44] and reads

δGS ∼ AG2−U(1)anom =
1

24
Agrav2−U(1)anom =

1

6|tanom|2
AU(1)3anom

=
1

2|ti|2
AU(1)2i−U(1)anom .

(3.27)

This universality condition follows from the fact that several kinds of anomalies have to be can-

celed by only one axion a, frequently called the model independent axion. Therefore, anomaly

universality only holds for orbifold constructions. As we will see, for example in Chapter 5, on

smooth Calabi–Yau manifolds there can generically be many axions, so that anomaly univer-

sality is neither required nor fulfilled in general.

Another important point which follows from (3.27) is that the Kähler potential for the

dilaton S, which is generically of the form KS = − ln(S + S†), has to be modified to be

invariant under U(1)anom:

KS −→ K ′
S = − ln

(
S + S† −

1

2
δGSV

)
, (3.28)

where V denotes the vector multiplet of U(1)anom. The modified Kähler potential (3.28)

contains a D-term of the schematic form

[KS ]D ∼ tr qanom ∼ Agrav2−U(1)anom , (3.29)

where tr qanom =
∑

f q
f
anom. With (3.27) it follows that the presence of an anomalous U(1)

symmetry automatically induces a non-vanishing Fayet–Iliopoulos (FI) D-term. The interpre-

tation of this FI term and its connection to supersymmetry breaking have been discussed in

various places in the literature [41,43].

Presence of U(1)anom

In the literature, many models with an anomalous U(1) have been known for some time.

However, until the authors of [40] were able to derive general conditions on the appearance

of U(1)anom the detailed spectrum and U(1) charges of each model had to be analyzed to

determine whether an anomalous U(1) was present or not. These conditions can be summarized

as follows.
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• Any orbifold compactification with an unbroken E8 gauge group factor has no anomalous

U(1). This is true for the following reason: From the universality condition (3.27) it

follows that if a U(1) symmetry has no mixed U(1) − G2 anomaly for a certain G, it

has no anomaly of any kind. Thus, it suffices to check for those anomalies which are

easiest to calculate, namely the mixed anomaly with the largest gauge group. Since the

masslessness conditions (2.35) forbid E8 matter fields, mixed U(1)−E2
8 anomalies always

vanish.

• Even for models with two broken E8 factors – labeled E′
8 and E′′

8 – which contain U(1)

symmetries, the presence of U(1)anom is not guaranteed. In particular, if there is no

mixing between E′
8 and E′′

8 for massless twisted matter there is no anomalous U(1).

In this context, absence of mixing means that no massless field transforming under an

unbroken subgroup of E′′
8 is charged under any U(1) descending from E′

8 and vice versa.

• Another condition is related to the presence of Wilson lines and is therefore of less

importance to the remainder of this thesis: An omalous U(1) which survives the breaking

of E8 by a shift V will not become anomalous when switching on Wilson lines orthogonal

to V . This is due to the fact that in case of orthogonal shift and Wilson lines there exists

a certain discrete symmetry which cancels potential anomalies of the U(1).

Apparently, these rules impose strong restrictions on the presence of U(1)anom. Again, we

stress the fact that these rules only hold for orbifold compactifications. On smooth Calabi–Yau

manifolds some of the contributing assumptions – such as anomaly universality – have to be

dropped so that other methods have to be invoked to classify models with anomalous U(1)

symmetries.
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Chapter 4

Blow-Up of Heterotic Orbifolds

In Chapter 2 it was argued that apart from orbifolds also smooth Calabi–Yau manifolds pro-

vide viable compactification spaces. We also realized that orbifolds, while providing a useful

background for explicit string computations, exhibit curvature singularities. The blow-up pro-

cedure described in this chapter resolves those singularities, and hence provides a conceptual

bridge between orbifolds and smooth Calabi–Yau spaces. This idea is schematically depicted

in Figure 4.1.

We start this chapter by reviewing the most important properties of generic Calabi–Yau

manifolds. To that end, we introduce important quantities like the Kähler form and concepts

like intersection numbers of codimension-one submanifolds. We then very briefly discuss toric

geometry1 as a useful tool to investigate blow-ups of heterotic orbifolds, and subsequently

describe the resolution procedure itself. Since in this thesis we only use the blow-up procedure

as a means to investigate anomalies on smooth Calabi–Yau manifolds, we do not cover the full

depth of this mechanism. The interested reader is referred to [8–11, 47–49] which discuss this

topic in some detail.

There is another point worth stressing: While toric geometry provides helpful mathemat-

ical tools to study blow-ups, there is a perhaps more intuitive picture in field theory: From

Chapter 3 we know that the existence of an anomalous U(1) on the orbifold implies the ap-

pearance of certain Fayet–Iliopoulos terms. In order to preserve N = 1 supersymmetry these

terms have to be canceled. Thus, certain twisted fields charged under U(1)anom have to attain

a vev. When giving a vev to these so-called blow-up modes the corresponding fixed points are

smoothed out and the curvature singularities are resolved. It turns out that the bundle vectors

which characterize the gauge flux are the weight vectors of the blow-up modes. In Chapter 5

we will use both toric geometry and the above field theory picture to describe a blow-up model

of the Z3 orbifold.

1For a thorough treatment, see [45,46].

27
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Figure 4.1: To obtain a blown-up orbifold, we cut out the neighborhoods around curvature singularities

and replace them with smooth hypersurfaces.

4.1 Smooth Calabi–Yau Manifolds

As mentioned earlier, in order to arrive at a four-dimensional theory with N = 1 supersym-

metry via compactification on a compact, six-dimensional smooth manifold X, there must be

exactly one covariantly constant spinor on X. One can show that this leads to the condition

that X must admit a metric of SU(3) holonomy. It was conjectured by Calabi [50] and later

proved by Yau [51] that any Kähler manifold2 with vanishing first Chern class c1 := 1
2π trR,

where

R = Ridz
idz (4.1)

is the curvature two-form, admits such a metric. Compact Kähler manifolds with c1(X) = 0

are thus called Calabi–Yau manifolds. Note that the requirement of vanishing first Chern class

is equivalent to the following statements:

1. The Ricci tensor on X vanishes.

2. The metric on X has holonomy group SU(3).

3. X admits a globally defined and nowhere vanishing holomorphic three-form.

4. X has a trivial canonical bundle.

Let us briefly comment on some of the equivalences of these statements. The equivalence of

c1(X) = 0 to the first statement is highly non-trivial and was covered in Yau’s proof. The

equivalence of the first two statements can be proved by arguing that for any Kähler metric

the holonomy group must be contained in U(3) (see, for example [52]), and that the condition

of vanishing Ricci-form eliminates a U(1) factor within this U(3). Thus, the holonomy group

must be contained in SU(3). The converse can be proved in a similar fashion. Furthermore, the

2A Kähler manifold is a complex Hermitian manifold whose Kähler form J is closed, i.e. dJ = 0.
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equivalence of the last two statements can be shown by interpreting forms on complex manifolds

as sections of certain vector bundles: The canonical bundle KM of a complex manifold M of

real dimension 2n is a complex vector bundle, sections of which are (n, 0)-forms. Since KM is

a holomorphic line bundle, triviality implies KM =M×C. Thus, there is a nowhere vanishing

(m, 0)-form corresponding to the unit section M ×{1}, namely the unique constant function 1.

Again, the converse of this statement can be proved analogously.

The investigation of Calabi–Yau manifolds and their application as string compactification

spaces has been a highly discussed subject for many years. However, a thorough treatment of

this incredibly rich topic is beyond the scope of this thesis. We restrict ourselves to reviewing

the most important properties and quantities describing Calabi–Yau manifolds. For details,

we recommend [52–55].

Hodge diamond and Euler characteristic

Let us denote the covariantly constant spinor on X by η. Being covariantly constant, it satisfies

Diη = 0, which implies that

RijklΓ
klη = 0 ⇒ ΓkRikη = 0 , (4.2)

where Rijkl and Rik denote Riemann and Ricci tensor, respectively3. From (4.2) it follows

that Rik = 0, and hence X is Ricci-flat. Using the fact that any tensor field constructed from

products of η with itself is again covariantly constant, we can now introduce a number of basic

forms on X: The Kähler form Jij = ηΓijη, which is closed since any Calabi–Yau manifold

is also a Kähler manifold, the complex structure Iij = gikJkj, and finally the aforementioned

holomorphic three-form

Ωijk = ηTΓijkη . (4.3)

As mentioned before, it can be shown that a Kähler manifold has c1 = 0 if and only if there

is a unique and nowhere vanishing holomorphic (3,0)-form Ω, thus h(3,0) = 1. In addition, it

is easy to verify that for any Calabi–Yau manifold hp,0 = h3−p,0 and thus h0,0 = 1. Using

this and a number of other properties the Hodge numbers of any Calabi–Yau manifold can be

3This result can be obtained using curvature and gamma matrix identities.
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written as a Hodge diamond,

h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

. (4.4)

We observe that the Dolbeault cohomology of X is completely determined by h1,1 and h2,1,

which give the number of Kähler moduli and complex structure moduli, respectively. Using

this result, we can express the Euler characteristic of X as

χ =
∑

p,q

(−1)p+qhp,q = 2(h1,1 − h2,1) . (4.5)

Note that for compactifications with standard embedding, i.e. in cases where the spin connec-

tion is identified with the gauge connection, the number of chiral families in four dimensions

is given by χ
2 .

Divisors and intersections

In the following chapters we will frequently make use of special complex codimension-one

submanifolds of X called divisors, denoted by Si. These divisors are homology four-cycles,

which by Poincaré duality correspond to cohomolgy (1,1)-forms. The number of independent

Si is therefore given by h1,1. By abuse of notation we denote the form and cycle by the same

symbol Si. Divisors and their intersections encode important topological information of the

Calabi–Yau manifold, which can be accessed by rather simple means. The intersection number

of three divisors is defined as

Int(SiSjSk) =

∫

X

Si ∧ Sj ∧ Sk =

∫

SiSjSk

1 . (4.6)

Notice that Poincaré duality was used in the second equality. As will become clear in Chapter 5,

eq. (4.6) will be of great importance when investigating blow-ups of orbifolds. We will use

intersection numbers to calculate the volumes of X, divisors S and cycles C, given by

vol(X) =
1

3!

∫

X

J ∧ J ∧ J , vol(S) =
1

2

∫

S

J ∧ J , vol(C) =

∫

C

J . (4.7)
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Since dJ = 0 as discussed before, the Kähler form defines a non-trivial equivalence class inH1,1.

We can therefore choose a basis of divisors and expand J as follows,

J =

h1,1∑

i

tiSi , (4.8)

where ti denote the Kähler moduli. They correspond to scalar fields in the four-dimensional

low energy effective theory.

4.2 Toric Geometry and Resolution of Orbifold Singularities

Toric geometry provides useful concepts to study blow-ups of orbifolds. The principle idea

is to employ a new set of coordinates on so-called toric varieties which allow us to describe

a singularity of the type Cn/ZN and replace it with smooth hypersurfaces. These smooth

spaces turn out to be the divisors introduced in Section 4.1. Hence, it is necessary to look

at each orbifold fixed point separately and then glue the resulting spaces together in order to

obtain blow-ups of compact orbifolds like T 2n/ZN . Note that we do not wish to explore the

mathematical details in great depth. We follow the description in [11,46,47].

Toric varieties and toric diagrams

A toric variety can be thought of as a generalization of a complex projective space. It consists

of a set of homogeneous coordinates z1, . . . , zn as well as a set of k projective relations of the

form

(z1, . . . , zn) ∼
(
λα1
j z1, . . . , λ

αn

j zn

)
, for j = 1 . . . k , (4.9)

where λj ∈ C∗. Since the aim is to mod out a discrete symmetry we need to specify collections

of coordinates which are not allowed to vanish simultaneously, specified by the exclusion set Z.

One then defines a toric variety T of dimension d = n− k as

T =
Cn − Z

(C∗)k
. (4.10)

Notice the similarity to the definition of the complex projective space CPn, in which case the

exclusion set is simply given by the origin of Cn+1:CPn =
Cn+1 − {(0, . . . , 0)}C∗

. (4.11)

A very useful geometrical tool in toric geometry is the toric diagram. It is given by an

n-dimensional lattice isomorphic to Zn which is triangulated into a set of cones. Each of
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0

D2

E

D1 D1 D2

D3

E

Figure 4.2: Toric diagram of Res(C2/Z2) and the two-dimensional projection of the toric diagram of

Res(C3/Z3). There is one ordinary divisor for each complex plane and one exceptional divisor for each

fixed point. Note that the diagram of Res(C3/Z3) depicts the only possible triangulation.

the lattice vectors is associated with one of the homogeneous coordinates zi. The projective

relations (4.9) then translate to a set of k linear relations

∑

i

αivi = 0 , (4.12)

where vi denote the lattice vectors and αi ∈ Rk are linearly independent vectors. As an

example, the toric diagrams for the resolved singularities Res(C2/Z2) and Res(C3/Z3) are

depicted in Figure 4.2. A very instructive derivation can be found in [11,47].

Divisors and intersections: A second glance

We have already encountered divisors as complex codimension-one submanifolds of generic

Calabi–Yau manifolds. Let us now investigate their connection to toric geometry. We start

by defining ordinary divisors, labeled Di, as the zero loci of the homogeneous coordinates of a

toric variety,

Di = {zi = 0} . (4.13)

As explained before, they are n−2 cycles which, by Poincaré duality, correspond to (1,1)-forms.

Each ordinary divisor Dj is associated with one vector vj in the toric diagram. However,

in many cases the set of ordinary divisors is not sufficient to resolve a given singularity. One

therefore needs another class of divisors, called exceptional divisors Er, which are associated

with new homogeneous coordinates xr. Exceptional and ordinary divisors can then be brought

together in the toric diagram, which can in turn be used to determine the intersection num-

bers (4.6) after choosing a particular triangulation. Note that the case of C3/Z3 is in this sense

particularly simple, since there exists only one triangulation. Details are given in Appendix A.
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Resolutions of compact orbifolds are more complicated to describe than the previously

discussed non-compact case. The non-compact resolutions have to be glued together in an

appropriate way to form the correct compact resolution space. For example, we need 27 copies

of the variety Res(C3/Z3) to describe a blow-up of the T 6/Z3 orbifold. In this process another

class of divisors is introduced, called inherited divisors Rk. They extend the toric diagram to

so-called auxiliary polyhedra. The exact form of the gluing is encoded in certain equivalence

relations between ordinary, exceptional, and inherited divisors. The most important aspects

of this gluing procedure are summarized in Appendix A.2. However, for details we refer to

the literature mentioned above. Furthermore, one can show that on the resolved orbifold the

inherited and exceptional divisors form a basis of (1,1)-forms. Thus, the expansion of the

Kähler form (4.8) becomes

J =
∑

k

akRk −
∑

r

brEr . (4.14)

From the previous discussion follows that ak and br are the Kähler moduli describing the

size of the tori and blow-up cycles, respectively. Therefore, the relevant volumes on a blow-up

space (4.7) can be determined via intersection numbers of divisors, deduced from toric diagrams

or auxiliary polyhedra.

Another important fact which will be exploited during the analysis in Chapter 5 is the

following. The total Chern class of T , which is usually defined via the curvature two-form R,

c(T ) = det

(
1 +

R

2πi

)
, (4.15)

can be expressed in terms of divisors and products of divisors. From this follows, for instance,

that the second Chern class c2(T ) is given by

c2(T ) =
1

2

∑

S

(c1(T )− Si)Si = −
1

2

∑

S

S2
i , (4.16)

where S stands for all classes of divisors and the sum runs over all divisors. Note that the

second equality only holds if T is Calabi–Yau.

4.3 Model Building on Resolved Orbifolds

In order to construct explicit models on blow-ups of heterotic orbifolds and to match their

spectra with the ones from the underlying orbifold theory, we have to consider the low energy

effective theory called heterotic supergravity. Since it is unknown so far how to construct

the explicit metric on resolution spaces, we can not perform exact CFT calculations as in

the orbifold case. During the dimensional reduction of the effective theory the gauge group

breaking is achieved by wrapping gauge bundles around the resolutions. For a gauge bundle F
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with structure group H, the gauge group G = E8 × E8 is then broken to the commutant

of H in G. Since the description of gauge fluxes with non-Abelian structure group is fairly

complicated, we restrict ourselves to sums of U(1) line bundles. These can be expanded in

terms of the Cartan subalgebra elements HI of E8 × E8 and exceptional divisors as

F = ErV
I
r HI , (4.17)

where V I
r are called bundle vectors. Thus, for this choice of expansion the background flux

is supported at the exceptional divisors only, which, as explained in Section 4.2 reside at the

orbifold singularities. From our discussion of gauge group breaking on heterotic orbifolds in

Section 2.2.2 it is quite clear that the bundle vectors Vr have to be related in some way to the

local shift vectors Vg at each fixed point. In fact it turns out that [11]

V I
g,rHI = V I

r HI + λ , λ ∈ ΓE8×E8 . (4.18)

This relation can be proved using Stokes’ theorem over an appropriate curve.

However, in order to render a consistent theory with N = 1 supersymmetry in four dimen-

sions, the gauge bundle and thus the bundle vectors have to satisfy a number of additional

consistency conditions. For instance, the gauge flux has to be quantized properly, which means

it has to lie in the E8×E8 root lattice when integrated over any compact curve. Furthermore,

it has to satisfy the Bianchi identities and the Donaldson–Uhlenbeck–Yau (DUY) equations,

both of which will be discussed in the following.

Bianchi identities

We have briefly mentioned the Bianchi identities as consistency conditions in the low energy

effective theory in Chapter 3. The field strength H3 of the Kalb–Ramond two-form and its

exterior derivative

dH3 = trR2 − trF2 , (4.19)

have to be globally defined as they appear in the low energy effective action, e.g. in (3.12).

Since dH3 is exact, it follows from Stokes’ theorem that its integral over any closed four-cycle C

must vanish

0 =

∫

C

dH3 =

∫

C

(trR2 − trF2) . (4.20)

This result is commonly known as integrated Bianchi identity. As explained before, one partic-

ular basis of four-cycles (which are dual to the two-forms) is spanned by the exceptional and

inherited divisors. Thus, using (4.20) and knowledge about the relevant intersection numbers
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one can find conditions on the bundle vectors V I
r . For example, in the case of a blow-up of

T 6/Z3 one finds that the Bianchi identities read

V 2
r =

∑

I

V I
r V

I
r =

4

3
, (4.21)

for all bundle vectors.

Donaldson–Uhlenbeck–Yau equations

In order to preserve N = 1 supersymmetry in four dimensions, the gauge flux on a Calabi–

Yau X has to be F -flat and D-flat. It has been proved4 that this is equivalent to demanding

Fab = Fab = 0 , (4.22a)

Fabg
ab = 0 , (4.22b)

where g denotes the metric on X. These conditions are known as Hermitian Yang–Mills

equations. Notice that (4.22a) indeed restricts F to be a (1,1)-form, and thus the ansatz

in terms of exceptional divisors we made in (4.17) is justified. The DUY equations are an

integrated version of the D-flatness condition (4.22b) [56]. At tree level they read [15]

1

2

∫

X

J ∧ J ∧ F = 0 . (4.23)

Inserting the ansatz (4.17) for the gauge flux we obtain constraints on the bundle vectors of

the form

1

2

∫

X

J ∧ J ∧ErV
I
r HI =

∑

r

vol(Er)Vr = 0 , (4.24)

where we have used (4.14) for J and assumed that vol(Er) > 0 in the Kähler cone ak ≫ br > 0.

Chiral spectrum

In the beginning of this chapter we mentioned that the gauge flux wrapped around the resolved

singularities is responsible for the gauge group breaking from E8×E8 to some subgroup. Anal-

ogous to the case of orbifold compactifications, only those roots of E8×E8 which are orthogonal

to the bundle vectors Vr survive the compactification. However, the others can still appear

in the massless chiral spectrum of the four-dimensional theory as weights of matter represen-

tations. The multiplicity of these chiral multiplets can then be deduced from the gaugino

4See, for example, [55] for a very well explained account.
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contribution to the ten-dimensional anomaly polynomial. Integrating over the resolution space

yields the multiplicity operator [10],

N =
1

(2π)3

∫

X

(
1

6
F3 −

1

24
trR2 · F

)
, (4.25)

which corresponds to a special version of the Atiyah–Singer index theorem. Acting with (4.25)

on the 496 gaugino states of E8 × E8 gives the number of each of these states in the four-

dimensional chiral spectrum. Note that the integral depends on the resolution (and therefore

on the particular choice of triangulation), and so does the spectrum. Anomaly freedom of

the chiral spectrum is on the one hand ensured by the Bianchi identities, as they forbid the

presence of non-Abelian anomalies. On the other hand, all Abelian anomalies are canceled by

an appropriate Green–Schwarz mechanism as explained in Chapter 3.



Chapter 5

A T 6/Z3 Blow-Up Model

We are now in a position to fit the previously introduced concepts together and study non-

universal anomalies on smooth Calabi–Yau manifolds by means of a blow-up model of the Z3

orbifold. In this chapter we construct a very simple family of models via three Abelian

vector bundles which resolve the Z3 orbifold to a smooth CY manifold with gauge group

SO(8)×U(1)2×SU(3)×E8. Furthermore, we investigate potential anomalies of both U(1) fac-

tors in detail and work out the spectra and anomaly coefficients of three specific configurations.

We stress the fact that the axions which cancel the arising anomalies couple non-universally to

the gauge group factors and the Lorentz group. Afterwards, we investigate remnant discrete

symmetries, in particular R symmetries, from the orbifold and the blow-up perspective. At the

end of this chapter we discuss implications of anomaly non-universality for bottom-up models

with phenomenological restrictions. An explicit example of a Z6 non-R symmetry is given

which commutes with SU(5) grand unification and fulfills all phenomenological requirements

while having non-universal anomaly coefficients.

5.1 Blow-Up Procedure

Let us now construct an explicit string-derived realization illustrating the arguments made in

Chapter 3. We consider a model on the T 6/Z3 orbifold in E8 × E8 heterotic string theory.

In analogy to the example in Section 2.2.3 we choose the case of standard embedding with

shift vector given by (2.51) and without Wilson lines. Thus, the unbroken gauge group is

E6 × SU(3) × E8 and the massless chiral spectrum is given by (2.53). In particular, there is

no anomalous U(1) in this setup. In order to resolve the orbifold singularities and construct a

smooth Calabi–Yau manifold we follow the procedure outlined in Chapter 4: The orbifold fixed

points are replaced by 27 exceptional divisors Er, where r = 1 . . . 27. We choose an Abelian

background flux F which can be expanded in terms of the E8 × E8 Cartan subalgebra and

exceptional divisors according to (4.17).

37
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The bundle vectors V I
r are chosen to coincide with shifted momenta of twisted orbifold

states. Since our primary goal is to break the E6 and leave the SU(3) factor unbroken, we

take

V1 =
1

3

(
2, 2, 2, 0, 04

) (
08
)
, (5.1a)

V2 =
1

3

(
−1,−1,−1, 3, 04

) (
08
)
, (5.1b)

V3 =
1

3

(
−1,−1,−1,−3, 04

) (
08
)
, (5.1c)

from the twisted states (27,1,1). We assign V1 to the first k fixed points, V2 to the next p

fixed points and V3 to the remaining q = 27− k − p ones.

However, as explained in Chapter 4 the bundle vectors have to fulfill flux quantization,

the Bianchi identities, and the DUY equations. Since the bundle vectors are given by shifted

momenta of the twisted states (27,1,1), the flux quantization condition 3V I
r ∈ ΓE8×E8 is

automatically fulfilled. It is also easy to check that the Bianchi identity (4.21) is satisfied.

The relevant tree level DUY equations are given by (4.24). They can be fulfilled for all

configurations (k, p, q) with arbitrarily large exceptional divisor volumes. In particular, (4.24)

can be rewritten as

k∑

r=1

vol(Er) · V1 +

k+p∑

r=k+1

vol(Er) · V2 +

k+p+q∑

r=k+p+1

vol(Er) · V3 = 0 . (5.2)

Since in our model the bundle vectors add up to zero, this simplifies to the condition

k∑

r=1

vol(Er) =

k+p∑

r=k+1

vol(Er) =

k+p+q∑

r=k+p+1

vol(Er) . (5.3)

Each of the bundle vectors in Eq. (5.1) breaks E6 to a differently embedded SO(10)×U(1),

but only two breakings are independent. We are thus left with the gauge group

G = SO(8)× U(1)A × U(1)B × SU(3) ×E8 . (5.4)

The two U(1) factors are generated by

tA =
(
2, 2, 2, 0, 04

) (
08
)
, tB =

(
0, 0, 0, 2, 04

) (
08
)
. (5.5)

In this normalization all charges are integer. The U(1) generators are related to the bundle

vectors (5.1) via

V1 =
1

3
tA , V2 = −

1

6
tA +

1

2
tB , V3 = −

1

6
tA −

1

2
tB . (5.6)
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The induced decomposition of the 27 of E6 (via SO(10) × U(1)) is

27 −→ 161 + 10−2 + 14

−→ (8s)1,−1 + (8c)1,1 + (8v)−2,0 + 1−2,−2 + 1−2,2 + 14,0 .
(5.7)

As outlined in Chapter 4, this blow-up procedure in the field theory picture corresponds to

giving a vev to the twisted states with shifted momenta (5.1). In particular, the three bundle

vectors (5.1) on the Calabi–Yau side correspond on the orbifold side to a vev of the three singlets

in (5.7). The massless chiral spectrum on the blow-up then depends on the distribution (k, p, q)

of the bundle vectors over the 27 fixed points. The untwisted sector and the twisted (1,3)’s

in the orbifold spectrum (2.53) always contribute 72 · (1,3) and 9 · (8,3), while some of the

twisted 8’s get massive or vector-like. As a result, we get

(p− q) · (8v,1) + (k − q) · (8s,1) + (k − p) · (8c,1) . (5.8)

Furthermore, the U(1) charges of the states from the twisted sector will be shifted by the

charges of the blow-up modes at the respective fixed point. The blow-up mode at the r-th

fixed point is redefined as [16,49]

ΦBU-Mode
r = ebr+iβr , (5.9)

where br are the Kähler moduli of the r-th blow-up cycle dual to Er, and βr are the localized

axions. In addition, the twisted orbifold states ΦOrb are redefined as

ΦBU
r = ΦOrb · e−(br+iβr) . (5.10)

With this, the U(1) charges of the blow-up states are given by

q(ΦBU) = q(ΦOrb)− q(ΦBU-Mode) . (5.11)

For a detailed discussion of this redefinition procedure and a complete match of the orbifold

and blow-up spectra, see [16,17].

5.2 Anomaly Coefficients

Once the spectrum on the blow-up is determined, we can calculate the anomaly coefficients

of U(1)A and U(1)B via the corresponding triangle graphs using (3.3). As an important

consistency check, we compare the result with the coefficients appearing in the four-dimensional

anomaly polynomial (3.20).

From the structure of the anomaly polynomial we draw a number of conclusions: First we

take (3.20) for the first E8 (and hence drop the primes on all field strengths) and express it in
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terms of the second Chern class c2 as follows

I6 =
1

(2π)6

∫

X

[
1

6
tr(FF )2 −

1

4
c2 trF

2 +
7

48
c2 trR

2

]
tr(FF ) . (5.12)

Here we have used that trR2 = −2c2 and trF2 = trR2 in cohomology, as long as the second E8

remains unbroken. We expand the flux and the four-dimensional field strength as F = ErV
I
r HI

and F = F IHI and insert k times the contribution from V1, p times the contribution from V2,

and q times the contribution of V3 to obtain

I6 ∼ F
3
A ·

(
k − 6

12

)
+ FAF

2
B ·

(
k − 18

4

)

+ FA

[
trF 2

SU(3) + trF 2
SO(8) −

7

12
trR2

]
·

(
k − 9

2

)

+ FB

[
1

8
F 2
B +

1

48
F 2
A + trF 2

SU(3) + trF 2
SO(8) −

7

12
trR2

]
·

(
p− q

2

)
.

(5.13)

We have also used relations (5.6) and
∫
X
c2ErV

I
r FI = −6

∑
r V

I
r FI . From (5.13) it is evident

that U(1)B is omalous if p = q, that the cubic U(1)A anomaly vanishes for k = 6, and that

the non-Abelian anomalies of U(1)A vanish for k = 9. In particular, there is no configuration

with omalous U(1)A.

5.2.1 Gauge Boson Masses

Although U(1)B is omalous in some bundle configurations, both U(1)’s are always massive.

The axion associated with U(1)B always feels a shift proportional to λ due to the transforma-

tion (3.11) and hence gets a mass via the Stückelberg mechanism. From the expansion of B2

given by (3.18) and the transformation (3.11) we deduce that βr transforms as

δβr = trλVr . (5.14)

Notice that the inherited divisors Ri and thus the axions αi do not play a role in our case, since

we have chosen to expand the gauge flux in exceptional divisors only. Thus, the anomalies in

our model are canceled by the non-universal axions βr. There can be no contribution from the

universal b2 because of the absence of an anomalous U(1) on the orbifold. In particular, (5.6)

indicates that the first k of the βr cancel the anomalies of U(1)A and the rest cancel a mixture

of both U(1)’s. Hence the axions can be redefined such that only two of the 1 + 27 possible

axions transform with a shift, and the others are invariant under (3.5).

Specifically, to see that both U(1)’s are massive we consider the mass term for the four-

dimensional gauge bosons arising from the action (3.12),
∫

X

H3 ∧ ∗H3 = AI
µA

µ J
(
M2
)IJ

+ · · · , (5.15)
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with the mass matrix

(
M2
)IJ

= V I
r V

J
s ·

∫

X

Er ∧ ∗6Es . (5.16)

Here, ∗6 denotes the six-dimensional Hodge star. Using the result from [57],

∗6Es =
3

4

vol(Es)

vol(X)
J ∧ J −

1

2
Es ∧ J (5.17)

and the DUY equations (4.24) we find for the mass matrix

(
M2
)IJ

=
9

2
V I
r V

J
s δrstbt =

1

2




m1 m1 m1 m2

m1 m1 m1 m2

m1 m1 m1 m2

m2 m2 m2 m3



, (5.18)

and
(
M2
)IJ

= 0 for I, J > 4. The entries mi are given by

m1 = 4

k∑

r=1

br +

k+p∑

r=k+1

br +

27∑

r=k+p+1

br ,

m2 = −3

k+p∑

r=k+1

br + 3

27∑

r=k+p+1

br ,

m3 = 9

k+p∑

r=k+1

br + 9

27∑

r=k+p+1

br ,

(5.19)

which means that (M2)IJ always has rank two in the blow-up phase.

5.2.2 Examples

As an example of the above statements we discuss three simple models with different (k, p, q).

Their spectra and anomaly coefficients are summarized in Table 5.1(a) and 5.1(b), respectively.

Model 1 has the configuration (k, p, q) = (9, 9, 9). As explained before, U(1)B is omalous and

U(1)A only has Abelian anomalies. Model 2 has (k, p, q) = (25, 1, 1). Here, U(1)B is still

omalous and U(1)A has Abelian and non-Abelian anomalies. Model 3 with configuration

(k, p, q) = (13, 13, 1) is an example of the most general case, where all anomaly coefficients are

nonzero.

In all models the anomaly coefficients from the triangle diagrams and from the anomaly

polynomials match. All models exhibit Green–Schwarz anomaly cancellation with non-universal

axions.
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(k, p, q) Massless chiral spectrum

(9, 9, 9) 24 (1,3)4,0 + 24 (1,3)−2,−2 + 24 (1,3)−2,2

+ 3 (8v,3)−1,1 + 3 (8s,3)−1,−1 +3 (8c,3)2,0

(25, 1, 1) 72 (1,3)4,0

+ 24 (8s,1)3,1 + 24 (8c,1)3,−1

+ 3 (8v,3)−1,1 + 3 (8s,3)−1,−1 +3 (8c,3)2,0

(13, 13, 1) 36 (1,3)4,0 + 36 (1,3)−2,2

+ 12 (8v,1)0,2 + 12 (8s,1)3,1

+ 3 (8v,3)−1,1 + 3 (8s,3)−1,−1 +3 (8c,3)2,0

(a) Chiral massless spectra of the three example models.

(k, p, q) U(1) factor ASO(8)2 ASU(3)2 AU(1)2
A

AU(1)2
B

Agrav2

(9, 9, 9)
U(1)A 0 0 54 -18 0

U(1)B 0 0 0 0 0

(25, 1, 1)
U(1)A 4 4 342 14 28

U(1)B 0 0 0 0 0

(13, 13, 1)
U(1)A 1 1 126 -10 7

U(1)B 1 1 24 24 7

(b) Anomaly coefficients.

Table 5.1: Details of the three example models in an obvious notation. The gauge group is always

SO(8)× U(1)A × U(1)B × SU(3), with the unbroken E8 factor omitted.

5.3 Remnant Discrete Symmetries

Discrete symmetries find a large number of applications in string phenomenology. They are,

for example, very useful for explaining the absence of a perturbative µ term and of dimension-

four and -five proton decay operators. While discrete non-R symmetries often stem from

broken U(1) symmetries, discrete R symmetries arise as remnants of the internal Lorentz sym-

metry after compactification. Although the discussed family of models does not exhibit a

phenomenologically interesting gauge group the detailed investigation of discrete symmetries

is still worthwhile, since the procedure outlined in this section can be performed in a simi-

lar way in other models. After a short comment on non-R symmetries we analyze remnant

R symmetries. A full introduction into the theory of R symmetries, especially on orbifolds, is,
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however, beyond the scope of this thesis. Therefore, we recommend [44,58] for further reading.

Another instrument we use is the GLSM description [59] of complete intersection Calabi–Yaus

(CICYs). For a thorough introduction, see [12,13].

5.3.1 Non-R Symmetries

Since the blow-up is generated from twisted orbifold fields that get a vev, discrete symmetries

can arise from remnants of the U(1) gauge groups under which the blow-up fields were charged.

In the family of models at hand, the discrete non-R symmetries are the ones left over from

the two broken U(1)’s. One finds from the branching of the 27 of E6 in (5.7) that the bundle

vectors (5.1) correspond to the blow-up modes

(1,1)4,0 , (1,1)−2,−2 , (1,1)−2,2 . (5.20)

When these get a vev, a Z2 × Z2 subgroup survives1. It is easy to check that both Z2 factors

are omalous.

5.3.2 R Symmetries

The discussion of remnant R symmetries is more involved. R symmetries are those transfor-

mations that do not commute with supersymmetry, which in superspace language means that

the Grassmann coordinate θ transforms non-trivially. Since there is only one such coordinate

in four-dimensional N = 1 supersymmetry, this can at most be a single U(1) or ZN : If there

are several such symmetries, they can be redefined such that only one of them transforms θ,

while the others act as usual non-R symmetries. This convention only fixes the charges of the

fields up to an admixture of non-R symmetries that leave θ invariant. The normalization is

commonly chosen such that θ transforms with charge 1, which implies that the superpoten-

tial W has charge 2. Furthermore, a Z2 R symmetry can be turned into a non-R symmetry

by a combination with a sign reversal on the fermions, so Z2 symmetries do not lead to true

R symmetries.

In the following, we begin by reviewing R symmetries from the orbifold point of view. After

that, we discuss them from the Calabi–Yau perspective.

R symmetries on the orbifold

The T 6/Z3 orbifold possesses a discrete (Z3)
3 rotational symmetry stemming from rotating

each torus independently by 2πi
3 (note that this is a symmetry of the compactification space but

not an orbifold space group element). In the literature [44], one often finds the R charge of the

1Generically, this is a Z4 × Z4. In our family of models, however, all states have charge 0 or 2 under bothZ4’s.
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orbifold state defined as in (2.39). Notice that this only holds for space-time bosons. The ones

of space-time fermions are obtained via qfsh = qsh−
{
1
2 ,

1
2 ,

1
2 ,

1
2

}
, and hence Ri

f = Ri− 1
2 . R charge

conservation requires that for a superpotential coupling involving L chiral superfields Φα the

charges satisfy

L∑

α=1

Ri
α ≡ 1 mod Ni , i = 1, 2, 3 . (5.21)

Here Ni is the order of the orbifold twist in the i-th torus. Note that in this convention the

superpotential W has R charge 1 and thus θ has R charge 1
2 .

In cases where rotating a sub-torus independently by 2πi
Ni

is a symmetry, an orbifold state Φ

transforms as

R : Φ −→ e2πiv·R Φ (5.22)

with v =
(
0, 1

N1
, 0, 0

)
and similarly for the other sublattice rotations. Explicitly, this transfor-

mation acts in the following way:

• The bosonic R charge from (2.39) is quantized in units of 1
Ni

, so under (5.22) bosons get

a phase e
2πi

N2
i .

• The R charges of the fermions are shifted by −1
2 , so θ transforms with a phase e

2πi
2Ni , i.e.

sublattice rotations act as a Z2Ni
R symmetry.

• Finally, the order of (5.22) acting on the fermions is given by the least common multiple

of N2
i and 2Ni.

To summarize, the R transformations form a Z2N2
i
symmetry, under which the charges of

bosons, fermions and θ are of the form 2k, 2k −N and N , respectively, where k is an integer.

IfN is even, so are all charges, and consequently, only a ZN2
i
is realized on the fields. Due to this

slightly confusing symmetry pattern, one finds at least three different R charge normalizations

in the literature:

1. W has charge 1, and the smallest charge quantization is in units of 1
2Ni

. This is inspired

by the orbifold R rule (5.21).

2. W has charge 2, and the smallest charge quantization is in units of 1
Ni

, which fits with

the usual four-dimensional R symmetry conventions.

3. W has charge 2Ni, and the smallest charge quantization is in units of 1.

In the case at hand, each two-torus can be rotated independently (with Ni = 3 for i = 1, 2, 3)

and we use the second normalization, such that we speak of a ZR
6 symmetry where fermion
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charges are quantized in multiples of 1
3 , bosonic ones in multiples of 2

3 , and θ has charge 1. Note

that in particular the twisted states Φ corresponding to the 27 of E6 have R = 1
3(0, 1, 1, 1) and

thus transform with charge 1
9 under each Z3 sublattice rotation. Clearly, this is not a bona

fide Z6 symmetry because applying it six times does not give the identity of the fields, but it

fits with the standard R symmetry normalization from four-dimensional supersymmetry, and

the orbifold R charge conservation (5.21) becomes a mod 6 condition.

R symmetries from the blow-up perspective

To find unbroken R symmetries after switching on vevs to generate the blow-up, we seek

combinations of the three sublattice rotations Ri and the two U(1) generators tA,B which

leave the blow-up modes invariant,

1qA,qB −→ (R1)
r (R2)

s (R3)
t (tA)

qA (tB)
qB 1qA,qB = 1qA,qB , (5.23)

for (qA, qB) = (4, 0), (−2, 2) and (−2,−2). This implies that r + s + t ≡ 0 mod 3, i.e. only a

trivial Z2 R symmetry remains. Note that by combining with discrete non-R ZN symmetries,

higher ZN R symmetries (with N > 3) can be obtained. For the examples presented here, the

discrete non-R symmetries are Z2 × Z2, such that in this case no R symmetry enhancement

by mixing with other symmetries is possible. Hence for the models at hand it is expected that

no non-trivial R symmetry will be left after blowing up. However, as discussed in Section 5.4,

both R and non-R symmetries can forbid the unwanted superpotential terms once anomaly

universality is not required.

GLSM description

We now investigate how to reproduce this from the perspective of the resolution space. One

way to uncover discrete R symmetries on the resolution Calabi–Yau manifolds is to describe

the model via a gauged linear sigma model (GLSM). In our case, this GLSM is a (0,2) super-

symmetric two-dimensional field theory with U(1) gaugings, which in the infrared limit flows

to the superconformal world-sheet description. In this framework, changes in topology like

blowing-up an orbifold to a smooth CY manifold can be described by phase transitions of the

underlying GLSM [59]. For the sake of clarity, we focus on the (k, p, q) = (9, 9, 9) model, where

the blow-up can be described with just three exceptional divisors. However, using the results

from [13], the following analysis can be repeated for more general configurations and for other

orbifolds in the same fashion.

The starting point is the observation that the geometry of our model can be realized as the

blow-up of a complete intersection in
(P2[3]

)3
/Z3. The coordinates and charges for the GLSM

realization are given in Table 5.2. The notation is chosen as follows: The ziρ correspond to

the inherited divisors, where i = 1, 2, 3 labels the torus and ρ = 1, 2, 3 labels the fixed point.
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Charges z11 z12 z13 z21 z22 z23 z31 z32 z33 x111 x211 x311 c1 c2 c3

R1 1 1 1 0 0 0 0 0 0 0 0 0 -3 0 0

R2 0 0 0 1 1 1 0 0 0 0 0 0 0 -3 0

R3 0 0 0 0 0 0 1 1 1 0 0 0 0 0 -3

E111 1 0 0 1 0 0 1 0 0 -3 0 0 0 0 0

E211 0 1 0 1 0 0 1 0 0 0 -3 0 0 0 0

E311 0 0 1 1 0 0 1 0 0 0 0 -3 0 0 0

Table 5.2: Charge assignment of the GLSM superfields describing the geometry in the notation of [13].

The three coordinates xα11 label the three exceptional divisors where each resolves nine of the

27 orbifold fixed points. The ci correspond to charges of extra chiral superfields which are

inserted to ensure invariance of the superpotential.

The orbifold twist acts with a phase e
2πi
3 on z11, z21 and z31. From this and Table 5.2, one

derives the F -term equations for the ci

0 = z311x111 + z312x211 + z313x311 , (5.24a)

0 = z321x111x211x311 + z322 + z323 , (5.24b)

0 = z331x111x211x311 + z332 + z333 , (5.24c)

specifying the complete intersection, and the D-term equations

|z1α|
2 + |z21|

2 + |z31|
2 − 3|xα11|

2 = bα11 , α ∈ {1, 2, 3} , (5.25a)

|zi1|
2 + |zi2|

2 + |zi3|
2 = ai , i ∈ {1, 2, 3} , (5.25b)

specifying the geometric phase (the vevs of the ci have already been set to zero). Note that the

Fayet-Iliopoulos parameters ai and bα11 are related to the sizes of the tori and the exceptional

divisors, respectively. We have chosen a phase where ai ≫ 0 and ai ≫ bα11. For bα11 ≫ 0, one

uncovers the blow-up regime, while bα11 → −∞ corresponds to the orbifold regime.

To find R symmetries in this picture, we have to find holomorphic automorphisms of the

ambient space which leave (5.24) and (5.25) invariant. In addition, the automorphisms must

transform the holomorphic (3, 0)–form Ω non-trivially [58]. The latter can be seen from the

definition of Ω in (4.3). Ω can acquire at most a phase γ = e2πiα, α ∈ R, i.e. Ω → γΩ. This

means that η → ±γ
1
2 and thus the superpotential W transforms as W → γW , i.e. like Ω.

On the orbifold, the twisted 273 coupling is allowed, so the 27 of E6 has to transform with a

phase γ
1
3 .

In our case, we find that the F - and D-term constraints are invariant under the Z3 trans-
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formations2

ziα −→ e
2πi
3

·kiαziα ∀ i, α . (5.26)

Furthermore, there is the Z3 symmetry

(x111, x211, x311) −→ e
2πi
3

·k(x111, x211, x311) . (5.27)

Note that the presence of these symmetries is inherited from the symmetries of the orbifold.

In other words, the polynomials in (5.24) are not the most general ones in (P2[3])3 but have

been chosen to be compatible with the orbifold action. In particular, the complex structure

of the elliptic curves has been frozen at τ = e
2πi
3 , so that we are already at a special sublocus

of the whole moduli space which exhibits enhanced symmetries. At even more special points

in moduli space, there appear certain symmetries under coordinate exchange: When a2 = a3,

there is a symmetry

z2α ←→ z3α , α = 1, 2, 3 . (5.28)

When b1 = b2 = b3, we find an S3 permutation symmetry acting on

{(z11, x111) , (z12, x211) , (z13, x311)} . (5.29)

We can interpret these as exchanges of exceptional or inherited divisors, which are symmetries

whenever the corresponding volumes, given by the Kähler parameters ai and bα, are equal.

Focusing on the Z3 symmetries, we find combinations such that Ω → e
2πi
3 Ω. Thus γ = e

2πi
3

and the 27 of E6 transforms with e
2πi
9 , which reproduces the quantization in multiples of 1

9

from the orbifold, and hence the same ZR
6 symmetry.

So far, we have used the GLSM merely as a book-keeping device to realize the geometry of

the blow-up space. It does, however, contain more information. Specifically, from the preceding

discussion it seems that the Z3 symmetries (5.27) cannot be broken in the GLSM, since the ziα

appear only cubed or as absolute values. This seems puzzling, since we previously found that

all R symmetries are generically broken on the blow-up. On the other hand, from the GLSM

point of view the Z3 symmetries are merely accidental symmetries, and we would expect them

to be broken by quantum effects. However, notice that up to now we have not incorporated the

gauge bundle into the GLSM description, which, as in the field theory description, is expected

to be responsible for the breaking of the R symmetry.

To see this explicitly, in analogy to the blow-up modes (5.1) we consider the line bundle

L = O(0, 0, 0, 2,−1,−1)3 ⊕ O(0, 0, 0, 0, 3,−3). The chiral spectrum is then given by various

line bundle cohomology groups (see Table 5.3). Using cohomCalg [60, 61] we can reproduce

2Note that not all of these symmetries are independent, since some can be related using the GLSM U(1)

charges.
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Representation Bundles

(1,3) O(0, 0, 0, 4,−2,−2) ⊕O(0, 0, 0,−2, 4,−2) ⊕O(0, 0, 0,−2,−2, 4)

(8,3)
v,s,c

O(0, 0, 0, 2,−1,−1), O(0, 0, 0,−1, 2,−1), O(0, 0, 0,−1,−1, 2)

(8,1)
v,s,c

O(0, 0, 0, 0,−3, 3), O(0, 0, 0,−3, 0, 3), O(0, 0, 0,−3, 3, 0)

Table 5.3: The bundles whose cohomology groups determine the chiral spectrum. The number of

left-chiral representations in each case is given by h1(V )− h2(V ).

the chiral spectrum of the (9, 9, 9) model in Table 5.1(a), which is in turn consistent with the

orbifold picture.

The transformation of the states under the discrete symmetries can also be calculated

via cohomCalg. Starting from the symmetries (5.26) and (5.27), which are given in terms of

their actions on the GLSM coordinates, we have to determine how they act on the respective

cohomologies of our bundle restricted to the Calabi–Yau hypersurface. A priori, it is not clear

that the restriction of the symmetry to the Calabi–Yau can be lifted to the gauge bundle. A lift

of the discrete symmetry to the gauge bundle which is consistent with the bundle projection

and which preserves the group action is known as an equivariant structure [20, 62]. It can be

shown that this exists for all line bundles in the case of ZM symmetries. Given an equivariant

structure, we have to check how the relevant bundle cohomologies transform. As in the case of

the chiral spectrum, this is done by relating the gauge bundle on the Calabi–Yau to the gauge

bundle of the ambient space via the so-called Koszul resolution. The transformation of the

matter states is then given in terms of the action of the symmetry on the global sections3 of the

gauge bundle, which are given by polynomials in the homogeneous coordinates of the ambient

space. Unfortunately, it is beyond this thesis to explore this rich mathematical description.

Instead, we want to resort to the non-compact C3/Z3 orbifold, where a consistent connec-

tion between the orbifold and the GLSM bundle description is known [12]. In this case, the

bundle is described by chiral-Fermi multiplets ΛÎ , Î = 1, . . . , 16, which correspond to the Car-

tan subalgebra of E8 × E8. The ΛÎ are charged under the exceptional symmetries Eα11, with

charges given by the line bundle vectors (5.1) corresponding to the orbifold shifted momenta.

Now the coordinates z and x enter the action when determining the charged spectrum [12]:

The massless target space modes φ4d(x
µ) appear as deformations of the GLSM kinetic terms

for the ΛÎ as

∫
d2θ+φ4dN

Ĵ
Î
(ziα, xα11) Λ

ÎΛ
Ĵ
+ φ′4dNÎĴ

(ziα, xα11)Λ
ÎΛĴ + h.c. (5.30)

3If the bundle is not globally generated, one can twist it by an equivariant ample line bundle and check the

transformation for the twisted bundle.
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Charges Λa Λ4 ΛI Nab Na
4 Na4 NaI N I

a N4I N I
4

E111 2 0 0 -4 2 2 -2 -2 0 0

E211 -1 3 0 2 -4 2 1 1 -3 -3

E311 -1 -3 0 2 2 -4 1 1 3 3

(a) Charges of the chiral-Fermi fields and of the polynomials arising as kinetic

deformations.

Polynomial Some contributing monomials

Nab x21 (z21z̄22)
2 ,
(
z̄211z12z13

)2
, x1x̄2x̄3z̄21z22

Na,I , N
I
a x2x3z

2
21z̄

2
22, z

2
11z̄12z̄13, x̄1z̄21z̄22

N4I , N
I
4 x̄2x3, z

3
12z̄

3
13, x1x̄

2
3z

3
21z̄

3
22

(b) Some monomials contributing to the chiral massless spectrum.

Table 5.4: Charges of the chiral-Fermi multiplets Λ and the deformation coefficients N and some of the

contributing monomials. The monomials for Na
4
and Na4 can be obtained from Nab by permutations

of indices.

Here the N Î Ĵ and N Ĵ
Î
denote polynomials in the coordinate fields which are chosen such that

the expression is gauge invariant. Note that this is a Kähler potential term, so the N ’s need

not be holomorphic.

While locally at each fixed point the gauge group is SU(3)×SO(10)×U(1)×E8 , the global

model in the end has gauge group SU(3)× SO(8)×U(1)2 ×E8. With regard to this, we split

the index Î into Î =
(
a, 4, I, J̃

)
with a = 1, 2, 3, I = 5, . . . , 8. Furthermore, J̃ corresponds to

the second E8 which is unbroken and hence omitted in the following discussion. The gauge

fields are determined by the neutral deformations N b
a and N4

4 for SU(3)× U(1)2 and NJ
I and

NIJ for SO(8). We can also read off the charged spectrum from the coefficients: Nab, N
a
4 ,

and Na4 correspond to
(
1,3

)
and (1,3), NaI and N I

a correspond to
(
8,3

)
, and N4I and N I

4

correspond to (8,1). The relevant charges of the bundle and the resulting polynomial charges

are summarized in Table 5.4(a). Some of the contributing monomials are given in Table 5.4(b).

Note that the charges of the N ’s reproduce some of the line bundle charges of Table 5.3, but

not all of them: The missing ones correspond to spinorial roots of E8 which are not captured

in the outlined procedure.

The important fact we deduce from this discussion is the following: Generically, the pres-

ence of the N ’s in (5.30) breaks at least some of the discussed Z3 symmetries. However, a more

thorough understanding of these deformations is needed, e.g. as to which monomials actually
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Operator Charge Yukawa coupl. Weinberg op. SO(10) GUT

HuHd qHu + qHd
4R− (3q10 + q5) 5R− 5q10 0

(LHu)
2 2q5 + 2qHu 4R− (2q10 − q5) 2R 2R

10 5̄ 5̄ q10 + 2q5̄ q10 + 2q5̄ −2R+ 5q10 3R

10 10 10 5̄ 3q10 + q5̄ 3q10 + q5̄ −R+ 5q10 4R

10 10 10 5̄Hd
3q10 + qHd

2R + 2q10 − q5̄ 3R 3R

5̄ 5Hu
5̄Hd

5Hu
q5̄ + qHd

+ 2qHu 6R− 5q10 6R− 5q10 R

Table 5.5: Charges of relevant operators in MSSM models with U(1)X . The first two operators are the µ-

term and the Weinberg operator, respectively. All others violate baryon number conservation. The last

three columns are to be read as additional constraints, i.e. allowing the usual Yukawa couplings, allowing

the Weinberg operator, and requiring U(1)X to commute with SO(10) grand unification. Remember

that for a coupling to be allowed the charge has to be 2R, where R = 1 and R = 0 distinguishes between

R symmetries and non-R symmetries.

contribute in a given phase: Depending on the Kähler parameters, certain coordinates may or

may not vanish. This will play a role in determining the appearing operators and hence the

symmetry breaking. In particular, we should expect R symmetries to reappear in the orbifold

limit bα11 → −∞. However, in agreement with the field theoretic description it seems that the

gauge bundle is responsible for the breaking of the discussed R symmetries.

5.4 Bottom-up Models with Non-Universal Anomalies

Now that we have completed our discussion of the Z3 blow-up model with non-universal anoma-

lies, we want to comment on the consequences of non-universality for bottom-up models. As a

simple example of a model which does not require anomaly universality, consider an extension

of the MSSM by an additional U(1)X symmetry. Here, the anomaly coefficients depend on the

U(1)X charges of the MSSM superfields, i.e. on the imposed phenomenological requirements.

We have summarized the U(1)X charges of all relevant operators and the constraints that

follow from phenomenological requirements in Table 5.5.

From this, we draw a number of conclusions. First, anomaly universality is a strong addi-

tional constraint which, as was discussed in Chapter 3, is not required for consistency of the

theory. This comes about as follows: Assuming the U(1)X allows all MSSM Yukawa couplings

and the Weinberg operator, is flavor-blind, and commutes with SU(5) [but not necessarily with

SO(10)] results in the anomaly coefficients

ASU(3)2−U(1)X =
3

2
(3q10 + q5̄)− 3R , (5.31a)
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N q10 q5̄ qHu qHd

6 1 5 4 0

Table 5.6: Charge assignments for a Z6 symmetry with R = 0 which fulfills all phenomenological

requirements.

ASU(2)2−U(1)X = (3q10 + q5̄)− 3R , (5.31b)

AU(1)2
Y
−U(1)X

=
3

5
(3q10 + q5̄)−

9

2
R , (5.31c)

which generically do not fulfill the universality condition (3.27). Notice that we have also

assumed absence of light Higgs triplets. Our conventions are chosen such that ℓ(fundf ) =
1
2

and ℓ
(
adjf

)
= N for SU(N). Furthermore, while generically U(1) normalizations in a bottom-

up approach are not fixed, we use the GUT normalization for the hypercharge U(1)Y . We can

also go a step further and argue that anomaly universality does not automatically follow from

grand unification: Assuming an SU(5)× U(1)X theory at some high scale, after the breaking

to the MSSM we might expect that ASU(3)2−U(1)X = ASU(2)2−U(1)X . However, this only holds

• for non-R symmetries, since for R symmetries, the gauginos contribute a non-universal

factor ℓ
(
adjf

)
,

• and before doublet–triplet splitting, as removing the triplets will change ASU(3)2−U(1)X

but not ASU(2)2−U(1)X (unless qHu + qHd
− 2R = 0, in which case the µ term is not

forbidden).

From this also follows that if the anomaly was universal before doublet–triplet splitting, it will

not be afterwards and vice versa. However, this of course depends on the type of symmetry

breaking mechanism. In a continuous breaking, e.g. a Higgs mechanism, only vector-like pairs

of chiral states are removed from the massless spectrum and thus universality is maintained.

In contrast, a discrete breaking mechanism, as for example in orbifold compactifications, will

generically violate this universality and the above arguments are valid. The above discussion

works analogous for the case of a ZN instead of U(1)X . In that case the anomaly coefficients

are only defined mod N or mod N
2 , depending on whether N is odd or even.

A second conclusion we draw from Table 5.5 concerns the µ term: Only when SO(10) grand

unification is imposed, an R symmetry is necessary to forbid the µ term. For SU(5) grand

unification we have

2 (qHu + qHd
) = 10(R − q10) mod N , (5.32)

and thus the µ term can be forbidden by both R and non-R symmetries once anomaly univer-

sality is not imposed. As an explicit example, we give a Z6 non-R symmetry with corresponding
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charge assignments in Table 5.6. It fulfills all constraints from Table 5.5 except for SO(10)

grand unification.



Chapter 6

Outlook and Conclusion

In the preceding chapter we have seen that the discrete R symmetry on the Z3 orbifold blow-

up, both in field theory and GLSM description, can be understood in terms of the underlying

orbifold R symmetry. However, it should be interesting to investigate this connection for more

general cases. In particular, for a generic smooth manifold of SU(3) holonomy one expects

a U(1)R symmetry to be the unbroken remnant of the local Lorentz group. One might ask

what causes this U(1)R to be broken to a discrete subgroup in the case of orbifold blow-up

manifolds.

In this chapter, we discuss certain orbifold superpotential terms as origins of such a break-

ing. As an example, we discuss a blow-up of the Z3 orbifold in standard embedding, i.e. we

resolve the singularities using a vector bundle with structure group SU(3). As this is work in

progress, the results and arguments made in this chapter still require critical evaluation. In

the very last section of this chapter, we give a short conclusion of this thesis.

6.1 R Symmetry Breaking via Superpotential Couplings

Before we consider the superpotential for chiral fields and moduli to investigate couplings which

break the R symmetry during the resolution procedure, let us fix the notation. The spectrum

of the T 6/Z3 orbifold is given in (2.53). We adopt the following notation for the untwisted

and twisted sector fields:

Ua
i =̂

(
27,3

)
(−1,0,0)

, i, a = 1 . . . 3 , (6.1a)

Sr =̂ (27,1)(− 1
3
,− 1

3
,− 1

3
) , r = 1 . . . 27 , (6.1b)

T a
r,i =̂ (1,3)( 2

3
,− 1

3
,− 1

3
) , r = 1 . . . 27 ; i, a = 1 . . . 3 , (6.1c)

where a is the SU(3) index and the subscript on the irreducible representations denotes the

orbifold R charges Ri, with i = 1 . . . 3, in the three complex planes. Using this sign convention,

53
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the R charge conservation rule for superpotential couplings of L superfields reads

L∑

α=1

Ri
α = −1 mod N i = −1 mod 3 . (6.2)

Orbifold cubic superpotential

The superpotential for this model contains 496 terms of cubic order (as computed by the

Orbifolder [63]). We observe the following structure:

• The untwisted fields Ui only couple as U1U2U3 since otherwise (6.2) is violated.

• There are no couplings between twisted and untwisted sector.

• The twisted fields Sr couple as S3
r or as SrSsSt with r 6= s 6= t 6= r, according to a

number of non-trivial selection rules for r, s, and t (see, for example [27,64,65]).

• The twisted E6 singlets Tr,i only couple as Tr,iTs,iTt,i with r, s, and t as above. There

are no T 3 couplings at a single fixed point since the antisymmetric SU(3) contraction

Ti,aTi,bTi,cǫ
abc vanishes.

Higher order couplings

Order Couplings No. of couplings

4 US2T 1134

5 U2ST 2 3321

6 U3S3, U3T 3, U3U3, S3T 3, T 3T 3 > 2 · 106

Table 6.1: Superpotential couplings allowed by gauge invariance under E6 × SU(3). The last column

gives the number of couplings computed by the Orbifolder, taking into account R charge conservation

and other selection rules.

The schematic form of all couplings allowed by gauge invariance up to sixth order is sum-

marized in Table 6.1. As will become clear in the following two sections, not all of these cause

possible R symmetry violation in the blow-up phase. Of particular interest are the couplings

T 3T 3, U3U3, and U3S3. Furthermore, we investigate couplings of the form U6T 3.

Blow-up spectrum and superpotential

In the blow-up phase the SU(3) piece of the gauge group is completely broken by the vector

bundle. In the field theory picture, this corresponds to giving a vev to the twisted T a
r,i fields
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of the form [66]

〈T a
r,i〉 = λrδ

a
i . (6.3)

Thus, only three of the nine T ’s situated at each fixed point gets a vev. λr corresponds to

the freedom in choice of the size of the blow-up cycle, and the remaining eight fields become

massive. The blow-up vev (6.3) also breaks the orbifold R symmetry in a way that only a ZR
2

symmetry survives (cf. the discussion in Section 5.3).

The resulting massless spectrum under E6 contains 36 fields in the 27 as well as h(1,1) =

36 singlets corresponding to the volumes of the three tori and the blow-up cycles around

the singularities, respectively [54, 66]. Expanding the Kähler form J in terms of exceptional

divisors Er and inherited divisors Ri as

J = aiRi − brEr , (6.4)

these singlets correspond to the 30 Kähler moduli ai and br. The six additional moduli are

related to a number of additional non-intersecting divisors Sa, with a = 1 . . . 6. Together with

the antisymmetric two-form B2, expanded as

B2 = b2 + αiRi − βrEr , (6.5)

one can construct the so-called complexified Kähler form J + iB2 and define the complexified

Kähler moduli as follows,

tr ≡ br + iβr , t̃i ≡ ai + iαi . (6.6)

For convenience, we choose a normalization of R charge such that R(θ) = 1 and R(W ) = 2.

To determine the R charge of the moduli, we compute the Kähler potential K(t, t̃) according

to the description in [54]:

K(t, t̃) = − ln

(∫
J ∧ J ∧ J

)

= − ln

(∫
a1a2a3R1R2R3 −

∫
brbsbtErEsEt

)

= − ln

(
9a1a2a3 − 9

∑

r

b3r

)

= − ln

[
9

2
(t̃1 + t̃∗1)(t̃2 + t̃∗2)(t̃3 + t̃∗3)−

9

2

∑

r

(tr + t∗r)
3

]
. (6.7)

HenceK(t, t̃) = K(t+t∗, t̃+t̃∗) and therefore R(t) = R(t̃) = 0. From this it follows immediately

that superpotential terms which contain moduli only must vanish due to R charge conservation.
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The combined superpotential for chiral matter and moduli (which give zero contribution)

matches the orbifold superpotential nicely. It reads [54]

W = 9U1U2U3 + 9(Sr)
3 , (6.8)

where U and S now denote the blown-up counterparts of (6.1a) and (6.1b), respectively.

Thus, all charged matter fields must have R charge 2
3 . Note that this superpotential takes

no instantonic corrections into account, which on the orbifold correspond to couplings over

different fixed points.

R symmetry breakdown

Let us now focus on those superpotential terms which are allowed on the orbifold, but break

the R symmetry in the blow-up phase. As mentioned earlier, interesting candidates for such

couplings are T 6, U6, U3S3, and U6T 3. For the sixth order couplings we observe the following

facts:

• The coupling U6 has R charge 4 on the blow-up and thus leaves only a ZR
2 symmetry

unbroken. The argument for this works as follows:

For a generic discrete R symmetry we choose the charge normalization such that

R(θ) = 1, R(W ) = 2, and R(chiral matter) = 2
3 . However, let us now choose a case

where under a ZR
6 symmetry θ has charge 3, W has charge 6, and chiral matter (in

the following denoted by Φ) has charge 2. A coupling Φ6 integrated over d2θ then has

charge 6. We can write the surviving symmetry generator as

T6 ≡ e
2πi 1

6
q , (6.9)

where q is the charge under the surviving symmetry. Looking at (6.9) we deduce that aZ6 symmetry is left over. However,

T6 · θ = e2πi
3
6 θ = −θ , (6.10)

and therefore the R-part of the surviving symmetry is merely a Z2.

• On the orbifold these couplings of type U6 seem to be allowed, since U1U2U3 has

Ri = (−1,−1,−1) and U3
i has Ri = (−3, 0, 0) and thus can be added without vio-

lating (6.2). However, it has been argued several times in the literature [27, 67] that

untwisted couplings are only allowed at cubic order. In [65] it was argued that this is

due to Rule 5. Indeed, this can be verified in an explicit CFT calculation1. Therefore,

the discussion of U6 appears irrelevant. But, since only untwisted couplings up to order

three are allowed, it seems that the untwisted sector is subject to an effective U(1)R

symmetry.

1We thank Damian Kaloni Mayorga Pena for pointing this out and performing the calculation.



6.1. R Symmetry Breaking via Superpotential Couplings 57

• The above discussion concerning R charge of U6 works analog for U3S3, for which there

is no reason to vanish. For example, one non-zero contribution to the superpotential is

given by

CU3S3 = ǫIJKLMNǫabcU
I,a
1 UJ,b

1 UK,c
1 SL

r S
M
s SN

t f
rst , (6.11)

where capital letters denote E6 indices and a, b, c denote SU(3) indices. f rst encodes

the selection rules for couplings over different fixed points. Both ǫ tensors are totally

antisymmetric. This is possible, as the tensor product 276 contains both a symmetric

and an antisymmetric singlet. The contribution of the symmetricE6 contraction vanishes.

Also note that couplings with r = s = t vanish, so that all contributing terms of type

U3S3 can be interpreted as instantonic corrections. In total, there are 351 non-vanishing

couplings of this kind.

• Since the t’s and t̃’s, which are some linear combination of the orbifold T ’s after gauge

symmetry breaking, have R charge 0 on the blow-up, couplings of the form T n will always

break the R symmetry. However, as discussed above, the superpotential for the moduli

actually vanishes. This can also be seen from the orbifold perspective. Consider the

coupling

T 6 ≡f rstuvwT a
r,iT

b
s,jT

c
t,kT

d
u,lT

e
v,mT

f
w,n · ǫabcǫdef

=λ6ǫijkǫlmn ,

where we have used (6.3) in the second equality. This requires that i 6= j 6= k 6= i and

l 6= m 6= n 6= l, but then the total orbifold R charge of this coupling is Ri = (0, 0, 0),

which clearly violates (6.2).

Couplings of type U6T 3

The discussion of couplings of the form U6T 3 is more involved. Several cases have to be dis-

tinguished since gauge invariance allows for different kinds of index contractions. As discussed

before, the E6 tensor product 276 contains a symmetric as well as an antisymmetric singlet.

In SU(3), the tensor products 33 and 3× 3̄ both contain a singlet. After giving a vev to the

T ’s the discussed coupling has the generic form

C9 ≡ ǫIJKLMNU
I
α,a1

UJ
β,a2

UK
γ,a3

UL
δ,a4

UM
κ,a5

UN
λ,a6
· δb1i δ

b2
j δ

b3
k · λrλsλtf

rst , (6.12)

where again capital letters denote E6 indices and ai and bi are SU(3) indices. Greek indices

as well as i, j, and k label the three different triplet states in the orbifold spectrum (2.53). As

before, r, s, and t label fixed points and f rst again encodes the selection rules. In total, there

are 10773 couplings of this kind, each belonging to one of the following cases:
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(i) ǫIJKLMN is symmetric (thus, in this case we omit capital indices) and U ’s and T ’s are

contracted antisymmetrically among themselves. Then (6.12) becomes

ǫb1b2b3ǫ
a1a2a3ǫa4a5a6C9 = λ3ǫijk(Uα,a1Uβ,a2Uγ,a3ǫ

a1a2a3)(Uδ,a4Uκ,a5Uλ,a6ǫ
a4a5a6) , (6.13)

which is clearly antisymmetric in (α, β, γ) and (δ, κ, λ). However, this is forbidden by

orbifold R charge conservation. Therefore, this case gives no contribution to the discussed

coupling.

(ii) ǫIJKLMN is symmetric and the T ’s are contracted symmetrically with three of the U ’s

while the remaining three U ’s are contracted antisymmetrically. The coupling then be-

comes

δa1b1 δ
a2
b2
δa3b3 ǫ

a4a5a6C9 = λ3Uα,iUβ,jUγ,k(Uδ,a4Uκ,a5Uλ,a6ǫ
a4a5a6) , (6.14)

which gives a non-zero contribution for α = β = γ, since δ, κ, and λ all have to be

different.

(iii) ǫIJKLMN is antisymmetric and U ’s and T ’s are contracted antisymmetrically among

themselves. In this case we have

λ3ǫIJKLMNǫijk(U
I
α,a1

UJ
β,a2

UK
γ,a3

ǫa1a2a3)(UL
δ,a4

UM
κ,a5

UN
λ,a6

ǫa4a5a6) , (6.15)

which is symmetric in (α, β, γ) and (δ, κ, λ). We deduce that there can be non-vanishing

contributions in a number of cases, e.g. for α = β = γ while δ 6= κ 6= λ 6= δ.

(iv) In the last possible scenario ǫIJKLMN is antisymmetric and the T ’s are contracted sym-

metrically with three of the U ’s while the remaining three U ’s are contracted antisym-

metrically. The relevant coupling then reads

λ3ǫIJKLMNU
I
α,iU

J
β,jU

K
γ,k(U

L
δ,a4

UM
κ,a5

UN
λ,a6

ǫa4a5a6) , (6.16)

which is antisymmetric in (α, β, γ) and symmetric in (δ, κ, λ). Therefore, there is a

contribution to the superpotential if and only if δ = κ = λ.

This completes our discussion of R symmetry breaking via higher order superpotential cou-

plings. Note that the breaking could be induced both via purely localized couplings at single

fixed points and via finite volume effects, i.e. twisted couplings over three different fixed points.



6.2. Conclusion 59

6.2 Conclusion

In this thesis we investigated anomaly cancellation and R symmetries in E8 × E8 heterotic

string theory models. We studied the compactification of heterotic strings on orbifolds, in par-

ticular the T 6/Z3 orbifold, and its resolved Calabi–Yau manifold. The most important result of

this discussion is that Green–Schwarz anomaly cancellation does not require a universal axion

coupling to different gauge group factors and the Lorentz group in generic compactifications.

Although this result has been established in the literature for some time, it was recently under

dispute. We first demonstrated non-universality by deriving the four-dimensional anomaly

polynomial for a compactification in the presence of finite-volume four-cycles which resolve

the orbifold singularities. Afterwards, we gave an explicit example by constructing a string

model on the T 6/Z3 orbifold and its resolution. By computing all relevant anomaly coeffi-

cients we proved that anomaly universality is not a necessary condition for the Green–Schwarz

mechanism to work, thus clarifying some confusion which recently arose in the literature.

Another important result of this work concerns R symmetries on orbifolds and their smooth

counterparts. In the aforementioned model, we were able to identify a ZR
6 symmetry in the

orbifold phase and match it to the remnant R symmetry in the blow-up phase using a GLSM

description. The investigation of R symmetries and their origin is a very interesting topic

for future research. In the last part of this thesis we commented on the potential connec-

tion between R symmetries on orbifolds and smooth Calabi–Yau manifolds. In particular, we

compared superpotential terms on the Z3 orbifold and its blow-up in standard embedding for

untwisted fields, twisted fields, and moduli to find those terms which might break a contin-

uous U(1)R symmetry to a discrete ZR
N . The prime goal of future work will be to obtain a

fundamental understanding of R symmetries as remnants of the local Lorentz group.
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Appendix A

A.1 Resolution of C3/Z3

D1 D2

D3

E

Figure A.1: Two-dimensional projection of the toric diagram of Res(C3/Z3).

The toric diagram of Res(C3/Z3), depicted in Figure A.1, contains three three-dimensional

cones: (D1, E,D2), (D1, E,D3), and (D2, E,D3). Thus, there is a single linear equivalence

relation between the ordinary divisors Di and the exceptional divisor E, given by

0 ∼ 3Di + E , i = 1 . . . 3 . (A.1)

From this it follows that the only non-vanishing triple-intersection number is given by E3 = 9.

A.2 Resolution of T 6/Z3

The T 6/Z3 orbifold has 27 isolated quotient singularities. On each of these singularities we

put one compact exceptional divisor denoted by Eαβγ , where α, β, γ = 1 . . . 3 label the fixed

points on the three T 2 tori. In addition, there are nine divisors Rjk inherited from T 6 and

nine ordinary divisors Diα, where i, α = 1 . . . 3 label the three tori and fixed points per torus,

respectively. In the global resolution, the equivalence relation (A.1) becomes

Ri ∼ Diα +
∑

β,γ

Eαβγ . (A.2)
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Since all exceptional divisors are compact and do not intersect the Rjk, the intersection ring is

of a very simple form. One can show that all non-vanishing intersection numbers are given by

R1R2R3 = 9 , and E3
αβγ = 9 . (A.3)

We can now use the expression for the Euler number of a given divisor S [47],

χ(S) = c2(X) · S + S3 , (A.4)

to calculate the second Chern classes of the inherited and exceptional divisors. Applying (A.4)

to Diα and Eαβγ and plugging into (A.2) gives

c2 · Ri = 0 , and c2 · Eαβγ = −6 . (A.5)

A.3 Differential Forms

A complex (p, q)-form ωp,q is a totally antisymmetric tensor with p holomorphic and q anti-

holomorphic indices. It is usually expanded in the coordinates of a given complex manifold

as

ωp,q =
1

p!q!
ωi1...ipj1...jqdz

i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq , (A.6)

where the wedge-product of k one-forms is defined by

dzi1 ∧ · · · ∧ dzik =
∑

P∈Sk

sgn(P )dziP (1) ∧ · · · ∧ dziP (k) . (A.7)

For r-forms on a real n-dimensional manifold M with coordinates xi, the exterior derivative d

maps r-forms to (r + 1)-forms as follows,

dωr =
1

r!

(
∂

∂xj
ωi1...ir

)
dxj ∧ dxi1 ∧ · · · ∧ dxir . (A.8)

Furthermore, if M has a metric g and Levi–Cevita tensor ǫi1...in there is a natural opera-

tor ∗ called Hodge duality operator, which maps r forms to (n− r)-forms according to

∗ωr =

√
|g|

r!(n− r)!
ωi1...irǫ

i1...ir
jr+1...jn

dxjr+1 ∧ · · · ∧ dxjn . (A.9)

From this and our definition of the wedge-product follows that the product

ωr ∧ ∗ ηr =

√
|g|

r!
ωi1...irη

i1...irdx1 ∧ . . . dxn , (A.10)

is symmetric and an n-form. Note also that the invariant volume element of M is given by

∗ 1 =

√
|g|

n!
ǫi1...ındx

i1 ∧ · · · ∧ dxin =
√
|g|dx1 ∧ · · · ∧ dxn . (A.11)
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Returning to the case of complex differential forms, the exterior derivative separates into

the so-called Dolbeault operators d = ∂ + ∂̄. Each of them is nilpotent, i.e. ∂2 = ∂̄2 = 0. With

these operators one defines the Dolbeault cohomology as

Hp,q

∂̄
(M) =

∂̄-closed (p, q)-forms in M

∂̄-exact (p, q)-forms in M
. (A.12)

the dimension of Hp,q

∂̄
(M) is the Hodge number hp,q. In addition, define the adjoint Dolbeault

operators ∂∗ and ∂̄∗ and the Laplacians

∆∂ = ∂∂∗ + ∂∗∂ ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ . (A.13)

Then the ∆∂̄-harmonic (p, q)-forms are in one-to-one correspondence with the cohomology

classes Hp,q

∂̄
(M). This fact is of central importance to the notion of index theorems.
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