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1 Introduction

Motivation

Today, almost all physical observations can be explained within two physical
theories. Gravitational effects, which are dominant at large length scales up to
cosmic scales, are described by general relativity, which is a classical theory of the
dynamics of spacetime as a Riemannian manifold. Observations at short scales
or high energies are governed by the standard model of particle physics, which
is a quantum theory of fields in Minkowski space. The detection of a new boson
with mass around 125 GeV [1] at the large hadron collider (LHC) is presumably
the discovery of the Higgs boson, the last missing piece of the standard model.
Thus, within the range of our observation, general relativity and the standard
model can be considered as the most fundameltal, experimentally confirmed
theories.

However, we know that these theories cannot be the full story. On the one
hand, there are observations that require extensions of the theories, like neutrino
oscillations or the hints for the existence of dark matter. On the other hand,
the range of the theories themselves is limited and beyond this range one finds
the need for a new underlying theory. From the standard model point of view,
problems appear when going to higher energies. Then radiative corrections give
quadratic contributions to the Higgs boson mass, resulting in an enormeous
fine tuning at higher energy scales, known as the hierachy problem. Another
problem is the Landau pole of the running hypercharge gauge coupling which
puts an upper bound on the validity range of the theory itself. Besides that,
the standard model has a complicated structure with an underlying gauge group
SU(3)C×SU(2)L×U(1)Y and chiral matter fields in specific representations. One
could ask if this structure and also the values of the theory parameters can be
explained in an underlying framework.

Even more problems occur when going to situations when gravitational in-
teractions become comparably strong to the standard model gauge interactions,
like black holes or the big bang. Then the quantum nature of gravity must show
up and be able to explain e.g. the black hole entropy and Hawking radiation.
Here the problem is that simply quantizing general relativity leads to a non-
renormalizable theory. So it is desirable to find a consistent theory of quantum
gravity which also explains what happens inside a black hole.

Taking the data of the standard model at hand, we see many hints for theo-
retical concepts that could address these questions and problems. These include
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1 Introduction

field SM rep SU(5) rep SO(10) rep

Q (3, 2)1

10

16

ū (3, 1)−4

ē (1, 1)6

d̄ (3, 1)2
5

L (1, 2)−3

ν̄ (1, 1)0 1

Table 1.1: Standard Model fields and their representations under the SM gauge
group and common GUT groups. The right handed neutrino ν̄ is not part of the
SM, but is required for neutrino oscillations and for SO(10) completion.

supersymmetry, supergravity, grand unification, discrete symmetries and extra
dimensions. All of these ideas can found in the framework of string theory.

Supersymmetry (SUSY) is, by itself, an extension of the Poincaré group by
fermionic generators Q, Q, the so-called supercharges. The fermionic nature of
the supercharges means that they transform bosonic states into fermionic states
and vice versa. In four dimensions we can have supersymmetric extensions rang-
ing from N = 1, the minimal amount of SUSY, and N = 8, the maximal amount
for a physically meaningful theory. We focus onN = 1 SUSY since N > 10 would
lead to non-chiral theories. Then in the minimal supersymmetric standard model
(MSSM), each particle gets a superpartner with same quantum numbers but op-
posite statistics, which has some nice consequences. The quadratic contributions
to the Higgs mass cancel between each particle and its superpartner, thus SUSY
stabilizes the Higgs mass against high energy physics. The lightest superpartner
is stable due to R-symmetry so it provides a candidate for a cold dark mat-
ter particle. Furthermore, the superpartners modify the running of the three
gauge couplings such that they meet at a scale MGUT ≈ 1016GeV. However, the
MSSM has drawbacks. First of all, no superpartners have been observed so far,
thus SUSY must be broken. Since the breaking mechanism is not known, one
introduces soft breaking terms which increase the amount of parameters from
17 in the standard model to more than 100 in the MSSM. In specific breaking
schemes, the amount of parameters is reduced, however, one can only speculate
on how SUSY is precisely broken. Promoting SUSY to a local symmetry, one
at the same time obtains invariance under general coordinate transformations
which results in general relativity. Thus a theory with local supersymmetry is
called supergravity (SUGRA) [2].

The representation of the standard model chiral spetrum on its own, see ta-
ble 1.1, may seem unsystematic, apart from the fact that it exactly cancels the
gauge anomalies. The idea of grand unified theories (GUT’s) [3] is to explain
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this pattern by embedding the SM gauge group into a bigger group such that
the fields join together to representations of the GUT group. The most popular
examples are SU(5), where the SM spectrum fits into just two irreducible repre-
sentations, the 10 and the 5. The next logical step is SO(10) where everything
fits into the spinor representation 16 when including a singlet which is a po-
tential right-handed neutrino. The existence of such a GUT theory requires the
gauge couplings to be equal. Fortunately, in the MSSM this is realized at the
scale MGUT ≈ 1016 GeV. GUT theories also come with some problems that need
to be solved for a fully consistent theory. First of all, the breaking mechanism at
the GUT scale has to be specified. Then, at the SU(5) level, we also require the
unification of the Yukawa couplings for the electrons and down quarks, which is
not the case for all three families. In addition, to get full SU(5) multiplets, the
Higgs doublet must get a triplet partner, whose absence needs to be explained.

There is one phenomenological problem that occurs in both, the MSSM and
in GUT theories, namely the stabilify of the proton. From experimental ob-
servations we know that the lifetime of the proton is greater than 1032 years.
However, in the MSSM and in GUT theories one can draw graphs which lead
to the decay of the proton, so one has to understand the absence or supression
of these processes. A popular solution for this problem is to introduce discrete

symmetries. Further applications of discrete symmetries can be the explanation
of a small µ term, which is supposed to be at the electroweak scale MEW ≈ 100
GeV, or the hierachies between the masses of the three families.

Already Kaluza and Klein realized that theories in lower dimensions can be
traced back to simpler theories in higher dimensions by the properties of the
compactification space. Many of the aforementioned problems tend to have sim-
ple solutions when extending the four observed spacetime dimensions by extra

spatial dimensions wrapped up at some small scale. Localization of fields in the
internal space can divide the 4d theory in various sectors and explain the sur-
pression of their interactions. This way a SUSY breaking sector can be modelled
which does not interact directly with the standard model sector. The breaking
of GUT symmetries can easily be explained by non-trivial backgrounds of the in-
ternal components of the gauge fields, like Wilson lines or fluxes. Also the origin
of discrete symmetries can be found in the symmetires of the compactification
space.

String theory [4–8]is a framework which offers vast possibilities to address all of
the forecited issues. First of all, every string theory automatically incorporates
a quantum theory of gravity. Due to the regularizing role of the string scale,
this theory is fully consistent to all scales. The most fundamental string theories
live in ten spacetime dimensions and are neccessarily supersymmetric. Thus
they can be viewed as starting points for four-dimensional particle theories by
compactifying on a six-dimensional manifold. In order to prerve N = 1 SUSY in
four dimensions, this space has to be Calabi–Yau (CY). Here we will work with
the E8 × E8 heterotic string theory, since, as a ten-dimensional theory, it comes
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1 Introduction

with a E8 × E8 gauge symmetry, which contains many favoured GUT groups in
a chain of subgroups

E8 ⊃ E6 ⊃ SO(10) ⊃ SU(5) ⊃ SU(3)C × SU(2)L × U(1)Y .

The second E8 factor is usually seen as a hidden sector e.g. for SUSY breaking
dynamics.

The big challange is to find a reduction of the theory to four dimensions such
that one recovers the properties of the standard model. Here the compactification
on Calabi–Yau manifolds [9] is just one possibility. Its advantage is that many
different CYs are known and thus offer a huge playground. The disadvantages lie
in the complicated nature of these spaces. In particular, for no compact Calabi–
Yau the metric is explicitely known which limits the possibilities for direct string
computations. Instead one has to rely on approximation in the string length,
which can be seen as compactification of 10d heterotic supergravity. However, in
perturbative heterotic SUGRA one finds that the volume of the compactification
space is related to the gauge coupling and hence is limited from above. Therefore
the validity of the SUGRA approximation in realistic theories is problematic.

More trustworthy appreaches are to start with a worldsheet theory with four
extended dimensions which one has under control. Then the internal degrees of
freedom may or may not have a geometric interpretation. Here the compactifi-
cation on toroidal orbifolds [14, 15] is of great significance since it at the same
time offers full calculability due to the flat metric and a geometric picture. Also
the concept of local grand unification [33] emerges where different sectors of
the theory come in representations of different GUT groups. However, toroidal
orbifolds are rather rare so the possibilities for model building are restricted,
although not fully explored. Furthermore, orbifold theories sit at very special
points in a much bigger moduli space and it turns out that for a fully realistic
model one has to leave the orbifold point to a more generic theory. The reasons
are, on the one hand, the need to get rid of many of the massless fields which
one observes at the orbifold point but not in reality and, on the other hand, the
radiative dynamics of the effective theory which destabilize the orbifold point.
This can result in a blow-up of the orbifold singularities, so in certain cases the
theory can be approximated by a SUGRA theory compactified on the smooth
resolved space.

This leads to the question how one can understand the resolution process.
From the orbifold point of view one can study the four-dimensional low energy
theory and do perturbations around the orbifold point. This way one can under-
stand the spontaneous breaking of symmetries and the decoupling of states by
generating masses. But like every perturbation theory it has a limited range of
validity and is blind to non-perturbative effects. Another approach is to study
the theory from the other side, which is the large volume region of the smooth
resolution. Here the SUGRA is a good approximation and corrections appear in
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the string length. In fact, the expansion parameters of these two theories can
be viewed as inverses of each other. However, since the SUGRA is fully valid
in the infinite volume limit, is does not describe true string compactifications.
By comparing and matching the orbifold and the resolution theories one can get
more insights in the resolution process, but none of these frameworks is able to
see exactly what happens in between.

In order to describe a smooth interpolation between orbifold and resolution
theories, gauged linear sigma models (GLSM) turn out to be the right tool.
These are two-dimensional supersymmetric theories in which the moduli can be
controlled in an easy way. Having such a GLSM for a toroidal orbifold resolution
at hand could show how transition between the theories can be realized. The
drawback of GLSM’s is that they do not describe string theories by themselves
but instead one has to perform the infrared limit where they flow to a conformal
non-linear theory. Because of this, fully reliable exact string computations are
very difficult and also the quantization of the theory is not straight forward. But
still from GLSMs one can infer properties of the string theories and relations
among them.

Outline

In chapter 2 we discuss heterotic string theories on toroidal orbifolds. We first
review the construction of the heterotic string and focus on how low energy
spectra can be obtained. As a next step we introduce toroidal orbifolds and
discuss their geometry, in particular the fixed point structure. Consequently
we show how heterotic compactifications on orbifolds are described as free con-
formal field theories. We argue that many properties can be read off from the
Abelianization of the space group. The four-dimensional low energy spectra are
determined, with the distinction between twisted and untwisted string, leading
to different sectors which play different roles. This will be illustrated with two
examples. One is the standard embedding of the Z3 orbifold, which is the stan-
dard pedagogical example. The other one is a more complicated MSSM-like
model on a Z2 × Z2 orbifold. Here the relation of freely acting symmetries to
non-factorizable lattices is being illuminated.

Chapter 3 deals with how resolutions of toroidal orbifolds can be realized as
target spaces of two-dimensional theories. Since the simplicity of the flat but
singular orbifolds is lost, one has to use more involved methods. We begin with
a brief recap of toric geometry with a focus on the ingredients which one needs
for toroidal orbifold resolutions. These are one the one hand the two-tori or
elliptic curves, which contain the global information on the resolution geometry,
and on the other hand the resolution of local Calabi–Yau singularities, which
describe the local properties. We introduce the framework of gauged linear sigma
models, which are two-dimensional supersymmetric theories whose target spaces
are complete intersections in ambient toric spaces. One distinguishes between
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1 Introduction

N = (2, 2) models, which are easier to control but leave no freedom in the
compactification of the gauge sector, and N = (2, 0) models, which potentially
can describe many different gauge bundles but are very stringent due to the
required absence of gauge anomalies. A Green–Schwarz like mechanism to cancel
the (2, 0) anomalies is presented. In the following, we explain how resolutions of
toroidal orbifolds are realized as complete intersections in toric ambient spaces
and thus as target spaces of GLSMs. We find that all factorizable orbifolds plus
some non-factorizable ones can be constructed. We find that there are many
different possible models for one orbifold geometry. The minimal models are
the simplest ones, but do not allow for Wilson lines. The maximal models offer
the most possibilities but this comes at the cost of their complexity. As a first
example we choose (2, 2) models of the Z3 orbifold and show how the geometry
emerges and how topological properties are deduced. Due to the GLSM we
are able to explore many regions of the moduli space which go beyond orbifold
and resolution phases. We identify many different phases, among them a non-
geometric Landau–Ginzburg like phase and half-geometric hybrid phases. In the
cases Z3 and Z4 we show how non-factorizable orbifolds can be achieved. Here
one has to distinguish between non-factorized orbifolds, which are deformations
of factorizable ones, and truly non-factorizable orbifolds with different topologies.
Finally we discuss properties of (2, 0) models with the focus on line bundles and
their relation to the orbifold CFTs.

In chapter 4 we want to find out what happens as one moves around in the
moduli space. For this we first discuss how heterotic SUGRA theories with line
bundles are constructed at the large volume region in moduli space and how low
energy spectra are obtained. One particular issue is the flux quantization for
which we show that it forces the gauge bundle to be related to orbifold data
in terms of shift vectors and Wilson lines. As an example we study a simple
example on the Z2 × Z2 orbifold, where we compare the spactra between the
orbifold theory and the smooth resolution theory in four different phases. One
fining is that the multiplicity of some states jumps between the different phases
which can be explained by the inclusion of non-perturbative string instanton
correntions.
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2 Heterotic Strings on Orbifolds

In this chapter we demonstrate how heterotic string models on orbifolds are
constructed. In section 2.1 we review the basics of the heterotic string and
how its spectrum is obtained. In section 2.2 we discuss the geometrical and
topological properties of toroidal orbifolds. Finally, in section 2.3 we compactify
the heterotic string on toroidal orbifolds and determine the low energy spectrum.
This is worked out on two examples, the Z3 standard embedding and a Z2 ×Z2

standard model candidate.

2.1 The Heterotic String

Perturbative string theories are best described as conformal field theories (CFT)
on a two-dimensional worldsheet with Lorentzian signature. If the worldsheet
has no boundary, i.e. it is a closed Riemann surface, massless modes strictly split
into left- and right-moving parts and so do the supersymmetry generators. The
target space, i.e. the space of ground states of the bosonic coordinates, must con-
tain four dimensions to describe our observable universe which is approximated
by Minkowski space M4. But the worldsheet theory requires more degrees of
freedom in order to cancel the conformal anomaly. They can describe a compact
space at yet unobservable length scales, or they can be non-geometric or hybrid.
The amount of required dofs is dictated by the amount of SUSY.

Theories with (0, 0) SUSY are pure bosonic string theories, and as such phe-
nomenologically not viable. Theories with gauged (1, 1) SUSY are refered to as
type II theories. By including open strings and their coupling to D-branes, they
are able to describe four-dimensional N = 1 theories with a gauge sector and
chiral matter. Furthermore, non-perturbative physics of the type II theories can
be reflected in M-theory [10] or F-theory [11] which, however, do not capture
the full string dynamics of the theories.

The two-dimensional splitting between left- and right-moving dofs allows to
have a different amount of SUSY in there two sectors. This enables theories with
gauged (1, 0) SUSY which are referred to as heterotic string theories [12,13]. One
can think of them as hybrid theories that are mixed bosonic and superstring
theories. When one considers a geometric theory, one chooses the bosons to take
values in a target space manifold and the fermions live in the tangent bundle.
Then, the consistency of the theory requires the bosonic left-movers to live in a
26-dimensional space whereas the right-moving superstring target space must be

9



2 Heterotic Strings on Orbifolds

ten-dimensional. But this means that in heterotic string theory there are 16 more
right-moving bosonic degrees of freedom than left-moving ones. Consistency of
the theory highly constrains these dofs.

In the bosonic formulation one describes them as 16 real bosonic fields which
must be compactified on a torus which has an underlying even, self-dual lattice.
Thus such a torus is rigid and has no dynamics. There are two choices for
such a lattice in 16 dimensions, namely the Lie algebra lattice of E8 × E8 or
the lattice of Spin(32) combined with its spinor weight lattice. The advantage
of this construction is that it is geometrical, for example group actions on the
dofs can be seen as actions on the underlying torus, or we can interpret string
states as winding modes along the torus cycles. We will use this construction
for the heterotic orbifolds since it nicely visualizes the shifts and Wilson lines.
The disadvantage is that a sole right-moving boson does not have a Lagrangian
description and thus is less natural to handle.

Equivalently, one can use the fermionic construction where each bosonic dof
is replaced by two fermionic ones. Roughly speaking, a boson corresponds to
the phase of two fermions combined to a complex one. In this case the two
consistent theories correspond to different choices of boundary conditions. A
right-moving fermion in two dimensions can be seen as a right-chiral fermion
and thus naturally possesses a Lagrangian description. This will be useful e.g.
in GLSM constructions in section 3.2.2 where a complex right-moving fermion
form the dynamical dof of an N = (2, 0) multiplet. In the following we will work
with the E8 × E8 heterotic string.

Low Energy Spectrum

Since string theories are conformal field theories there is huge freedom to choose
coordinates while keeping the worldsheet metric constant. For analyzing asymp-
totic states in the heterotic string one must consider a worldsheet with an infi-
nite timelike direction and a close spatial direction, i.e. an annulus. It is usually
parameterized by coordinates (τ, σ) with identifications σ ∼ σ + π. Alterna-
tively one defines a complex coordinate z = e2(τ+iσ where the identification is
automatically build in. However, in constructions where the target space is de-
scribed as a coset by a discrete group, M = A/G, it is more convenient to write
closed string by identifying endpoints of the σ coordinate up to a G action, i.e.
X(σ = π) = gX(σ = π) with g ∈ G.

The simplest theory is the uncompactified ten-dimensional one. For our pur-
poses it will be useful in two different ways. On the one hand, we can deduce
from it the ten-dimensional low energy spectrum and its effective action which
can be seen as the limit in which the string length goes to zero. This result
is ten-dimensional heterotic supergravity which is used as a starting point for
CY compactifications. On the other hand it is useful when we study orbifold
compactifications. Since toroidal orbifolds are flat spaces, up to fixed points of

10



2.1 The Heterotic String

a discrete group action, the string quantization on them is very similar to the
ten-dimensional case.

To be more precisely, the bosonic formulation of the heterotic string consists
of the fields Xµ, µ = 1, . . . , 10 which describe the ten-dimensional target space,
their right-moving superpartners ψµ and 16 left-moving bosons XA. The bosons
are subject to a compactification on a torus with underlying Lie algebra lattice
of E8 × E8 or Spin(32), i.e.

XA(σ + π) = XA(σ) + PA , with PA ∈ ΛE8×E8
or ΛSpin(32) . (2.1)

Since in ten dimensions we have a flat metric and no additional background
fields, the theory of those fields is a free theory and can thus be canonically
quantized in a well known fashion. One first defines a ground state which is
the direct product of a left- and a right-moving ground state. The left-moving
one is determined by the boundary condition of the bosons XA, i.e. it is labeled
by |P 〉 with the winding number P explained in (2.1). For the right-moving
ground state we have to specify boundary conditions for the fermions, which
can be periodic or anti-periodic, Ψ(σ + π) = ±Ψ(π) giving rise to the Ramond
(R) or Neveu–Schwarz (NS) sectors. Whereas the R sector leads to space time
fermions, in the NS sector we find bosonic states. From the worldsheet energy
momentum tensor we get the expressions for the target space mass of the states.
In particular, for massless states we find that the right-moving state necessarily
must form a vector (NS) or Majorana–Weyl spinor (R) representation of the
ten-dimensional Lorenz group SO(9, 1). In the left-moving sector we have more
freedom. The masslessness condition can be stated as

1 =
P 2

2
+N , (2.2)

in terms of the winding number P and the oscillator number N . Thus we can
build massless states by either having P 2 = 2 which corresponds to the roots of
E8 × E8 or by switching on an oscillator excitation. This leads to the following
massless spectrum,

|q〉 ⊗ αµ
−1|0〉 →






gµν graviton ,

Bµν 2-form ,

φ dilaton ,

ψµ gravitino ,

ψ dilatino ,

(2.3)

building up an N = 1 SUGRA multiplet and

|q〉 ⊗ αI
−1|0〉

|q〉 ⊗ |P 〉

}
→
{
Aa

µ gauge bosons ,

λa gauginos ,
(2.4)

which is a N = 1 vector multiplet transforming in the adjoint of E8 × E8.
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2 Heterotic Strings on Orbifolds

2.2 Orbifold Geometries

In this section we discuss the construction and properties of toroidal orbifolds.
Since we want to have a canonically quantizable string theory, we need a com-
pactification space with a flat metric. Such spaces can be described as quotients
of flat Euclidean space by a discrete symmetry group S which is calls space
group. For convenience, the Euclidean space C3 will be parameterized by three
complex coordinates zi rather than six real ones. To make sure that the com-
pactification space is compact, the space group will contain a six-dimensional
lattice as a subgroup, S ⊃ Λ6

∼= Z6. If the space group would only be the
lattice, the resulting space would be a six torus, which is nice to study for com-
pactifications, but leaves too much supersymmetry since it acts trivially on the
internal spinors. This can be changed by having a space group which also acts
rotationally and thus is able to project out some of the internal spinors, which
immediately leads to the space group of an orbifold. It contains lattice shifts in
all six directions and in addition rotational generators which must be compatible
with the lattice. Thus it can be written as a semi direct product of the lattice
Λ6 with a so-called point group P which contains just the rotations. Then any
element of S can be written as

S ∋ (θ, nαeα) : zi 7−→ θiz
i + nαe

i
α , (2.5)

where eα span the lattice Λ6, nα are integers and θi = e2πivi , where Nvi ∈ Z,
N being the order of the element. For convention we choose 0 ≤ vi < 1. The
vector v = (v1, v2, v3) is called twist vector. The requirement to preserve N = 1
SUSY in d = 4 reads v1 +v2 +v3 = 0 modulo 1, which restricts the choices for P
to be either of the form ZN or ZN × ZM . In principle one could consider more
exotic space groups which have generators that simultaneously shift and rotate
in different complex planes, or which contain rotations around different centers.

To specify an orbifold, one first specifies the point group and then the lattice
which is compatible with the point group. The list of point groups, for which
there exist six-dimensional compatible lattices is not very long, see table 2.1.
Concerning the lattices, one distinguishes between two cases, factorizable and
non-factorizable lattices. Here a lattice is called factorizable if, once the point
group action is diagonal in the complex coordinates, the lattice can be written
as a direct sum of three two-dimensional lattices, where each of them lies in
one of the complex planes. In these cases the geometry is easy to understand.
One can first mod out the lattice to obtain a direct product of three two-tori.
Then the point groups rotates each two-torus into itself, however since it always
rotates multiple tori simultaneously, the direct product structure is lost. Instead
one obtains a “semi-direct product” structure, where one can understand the
geometry as torus fibration with degenerating fibers over some points. Then
each two-torus is geometrically specified by a Kähler modulus ai, which measures
the volume of the torus, and a complex structure modulus τi, which is the ratio
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2.2 Orbifold Geometries

Point group Twist vector(s) Lattice(s)Z3
1
3
(1, 1, 1) A3

2Z4
1
4
(1, 1, 2) D2

2
×A2

1
, D2×A1×A3, A

3
3Z6−I

1
6
(1, 1, 4) G2

2
×A2Z6−II

1
6
(1, 2, 3) G2×A2×A2

1
, A5×A1, A2×D4, A2×B3×A1Z7

1
7
(1, 2, 4) A6Z8−I

1
8
(1, 2, 5) B4×B2Z8II

1
8
(1, 3, 4) B4×B2, D5×A1Z12−I

1
12

(1, 4, 7) E6, A2×F4Z12−II
1
12

(1, 5, 6) D2×F4Z2×Z2
1
2
(0, 1, 1), 1

2
(1, 0, 1) A6

1
,A3

1
×A3 A

2
3Z2×Z4

1
2
(0, 1, 1), 1

4
(1, 3, 0) D2

2
×A2

1Z2×Z6−I
1
2
(0, 1, 1), 1

6
(1, 1, 4) G3

2Z2×Z6−II
1
2
(0, 1, 1), 1

6
(1, 5, 0) G2

2
×A2

1Z3×Z3
1
3
(0, 1, 2), 1

3
(1, 2, 0) A3

2Z3×Z6
1
3
(0, 1, 2), 1

6
(1, 5, 0) G2

2
×A3Z4×Z4

1
4
(0, 1, 3), 1

4
(1, 3, 0) D3

2Z6×Z6
1
6
(0, 1, 5), 1

6
(1, 5, 0) G3

2

Table 2.1: Points groups, generating twist vectors and possible lattices for three-
dimensional orbifolds. Factorizable lattices are written boldface.
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2 Heterotic Strings on Orbifolds

of the two basis lattice vectors as complex numbers. From this we see that the
point group P must be compatible with the symmetries of each two-torus, which
boils the order of the elements of P down to four choices:

• Z2 with the complex structure being unconstrained,

• Z3 where τ is fixed to ξ := e2πi/3,

• Z4 with τ = i,

• Z6 where again τ = ξ.

The lattices are only defined up to continuous deformations which in general
destroy the property that they can be written an root lattices of some Lie al-
gebras. More precisely, to describe these deformations, we look at differential
forms on a torus and see which of those are invariant under the point group. On
the six-torus, written in complex coordinates zi, we define the one-forms dzi and
dz̄i which are a basis of the cohomology groups H(1,0) and H(0,1), respectively.
These one-forms can be taken as generators of the whole torus cohomology, i.e.
every (p, q) form can be written as

ω(p,q) = dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq . (2.6)

These forms transform under the point group and only the invariant ones cor-
respond to differential forms on the orbifold. A closer look reveals that the
one-forms always get projected out1. Next, we observe that there is always a
holomorphic (3, 0) form Ω = dz1∧dz2∧dz3, and its conjugate (0, 3) form, which
is left invariant due to the N = 1 SUSY condition. This implies that also the
(2, 0) forms get projected out. Thus we are left with two independent types of
forms which can be present on orbifolds. These two classes correspond to the
allowed deformations of the orbifold lattices, the so called untwisted moduli:

• The (1, 1) forms correspond to Kähler deformations of the geometry. On
orbifolds there are always at least three such forms, namely, Ri = dzi ∧dz̄i

which in the factorizable case scale the size of the three two-tori. There can
be more (1, 1) forms, Rij = dzi∧dz̄j if vi = vj for all point group elements.
In this case, switching on these moduli makes the lattice non-factorizable
by tilting the two-tori into one another.

• If the point group acts on the ith plane only to second order, then the
(2, 1) form dzj ∧ dzk ∧ dz̄i with i 6= j 6= k 6= i is invariant. For factorizable
orbifolds it corresponds to the complex structure modulus τi which, as we
discussed, is only free in the Z2 case.

1One might construct orbifolds where the point group acts non-trivially in just two complex
planes where this is not true. However, such orbifolds can always be written as a product
of a two-torus and a two-dimensional orbifold and leave N = 2 SUSY unbroken in four
dimensions. Thus they will not be considered here.
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2.3 Strings on Orbifolds

To sum up, the amount of untwisted (p, q) forms is specified by the two num-
bers h1,1

untw. and h2,1
untw., the rest follows from Hodge duality and symmetry under

complex conjugation 2.

Fixed points

Since the space group contains rotational elements, its action on C3 is not free
but rather has fixed points. For example one easily sees that the point group
elements always have the origin as fixed point. In general, if an element rotates
in all three planes, it has exactly one fixed point which is the center of rotation.
If the element rotates in two planes and acts trivially in the third plane, one has
a so called fixed line. Depending on the remaining space group action, the fixed
line may have the topology of a T 2, or, if there are more twisting elements, an
orbifolded torus T 2/ZN . When discussing strings on orbifolds, we will see that
the fixed points correspond to conjugacy classes of the space group.

Now away from the fixed points, the orbifold is a flat space, i.e. it can be
endowed with a flat metric. To see this, note that every point which is not a
fixed point has a neighborhood such that all the images of the neighborhood
under the space group are disjoint. For a fixed point we cannot find such a
neighborhood. Instead, imagine a ball around the fixed point. After modding
out the space group, the ratio of surface area to radius does not correspond to
the flat space value, thus indicating non-vanishing curvature inside the ball. But
all points except the fixed point are flat, the curvature must be concentrated
in a delta-peak at the fixed point. Thus the orbifold is no longer a manifold,
which by definition must be smooth. Understanding toroidal orbifolds as limits
of smooth Calabi–Yau manifolds will be discussed in chapter 3. For factorizable
orbifolds the fixed point structure can always be understood in terms of the fixed
points on the two tori, which is rather simple. They will be discussed in section
3.1 when discussed in the context of elliptic curves.

2.3 Strings on Orbifolds

To put strings on an orbifold we use the property that the orbifold is written
as flat space modulo the space group. For convenience, we define the complex
coordinate fields on the worldsheet Z i = X2i+2 + iX2i+3, i = 1, 2, 3 and sum
over all closed string boundary conditions of the form Z i(σ+π) = gZ i(σ) where
g runs over the whole space group. The uncompactified dimensions must stay
untouched. Then, supersymmetry dictates how the fermionic superpartners on
the worldsheet have to transform, again up to a sign ambiguity to distinguish the
NS and R sectors. Finally, in heterotic string theory the action of S sixteen extra

2Or alternatively from Serre duality.
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2 Heterotic Strings on Orbifolds

left-moving degrees has to be specified and will necessarily be non trivial3 due to
the invariance of the one loop partition function under modular transformations.
We will only consider Abelian embeddings of the space group, so we must only
specify its action on the Abelianization of S. The Abelianization is defined as
the quotient of S by the subgroup which is generated by all commutators inside
S, Ab(S) = S/[S, S]. One finds that the Abelianization of an orbifold space
group is a finite Abelian group, and thus can be written as a direct product of
cyclic groups ZM . In fact it can always be written as a direct product of the
point group P with some other cyclic factors, Ab(S) = P ×

∏
α ZNα, where the

elements in the ZNα can be represented by non-twisting elements, i.e. by lattice
vectors. In the bosonic formulation, the action of Ab(S) on the sixteen extra
left-movers is given by a shift. More precisely, it is given by

g : XI 7→= XI + kV I +mV ′I +
∑

α

nαW
I
α , for g = (θkθ′m, nαeα) ∈ S ,

(2.7)

where θ′ and V ′ are trivial for P = ZN . The vectors V , V ′ are called shift
vectors, and the Wα are discrete Wilson lines, where the name is inherited from
the continous Wilson lines on the torus. Since Ab(S) is finite, the shift vectors
and Wilson lines underly quantization conditions. For P = ZN × ZM we find

NV ∈ ΛE8×E8
, MV ′ ∈ ΛE8×E8

, NαWα ∈ ΛE8×E8
. (2.8)

In the fermionic construction the action of Ab(S) is by phase rotations of the 16
complex fermions, thus showing that they correspond to linear representations.
Having fixed V, V ′ and Wα we have specified a particular string theory at the
orbifold point and can start quantizing it. For this one finds that the different
sectors in the partition function correspond to the conjugacy classes of the space
group. Indeed, if two elements are conjugate, g′ = hgh−1, the strings closed
under g and g′ are mapped onto each other by h, or more precisely, will corre-
spond to sums over all elements in the conjugacy class in order for the state to
be invariant under S. The conjugacy classes of S fall into three categories. In
the trivial class one finds the untwisted strings. Then, there is a finite number of
classes which contain all element with non-trivial twists. Strings in these classes
are called twisted strings. Finally, there are infinitely many classes containing
the non-trivial elements of Λ. Strings in these classes are pure winding string
and are in general massive and will thus not be considered here.

Note that in the case of factorizable orbifolds, the additional factors in the
Abelianization of the space group can be read off from the restriction of S to
the two-tori. Since there are only four different orbifolds of two-tori, Ab(S) can
quickly be classified for them and be used for the higher dimensional cases. For

3There are two exceptions, Z3 and Z7 where it can be trivial.
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2.3 Strings on Orbifolds

this we first look at the commutator subgroups. Due to the semidirect product
structure of S = P ⋉ Λ, it follows that each commutator has a trivial twist and
thus is a lattice vector. Therefore [S, S] is a sublattice of Λ which we will denote
by Λcoarse. Then we find Ab(S) = P × Λ/Λcoarse where the lattice quotient is
indeed a finite Abelian group. For the two-dimensional lattices it is

• Z2 × Z2 for the Z2 orbifold,

• Z3 for the Z3 orbifold,

• Z2 for the Z4 orbifold,

• trivial for the Z6 orbifold.

Untwisted sector

The quantization in the untwisted sector is almost as in the ten-dimensional case.
In particular, as a starting point one can take the ten-dimensional spectrum
which, however, will be subject to projections. For each space group element
one can divide the space group into its stabilizer, which is normal in S, and the
quotient. To create S invariant states, these two groups play different roles. The
quotient is used to construct linear combintions over the whole conjugacy class.
The stabilizer, on the other hand, will lead to projections of the states. In the
case of the identity class, the whole group is the stabilizer so all elements will
act by projections. It is sufficient to take a generating set of the stabilizer to find
all the projections. A massless string state is made of a right-moving ground
state |q〉NS/R, a left-moving states with winding |P 〉 and left-moving oscillators
αµ. These elements transform as

|q〉 → e−2πiq·v|q〉 , (2.9a)

α̃a
n → e2πivaα̃a

n , (2.9b)

|P 〉 → e2πiP ·Vθ |P 〉 . (2.9c)

From this we find the following states surviving the orbifold projection. We
show only the bosons since the corresponding fermions can always be obtained
by applying the supersymmetry generator which lowers q by (1/2, 1/2, 1/2, 1/2).

• |qV 〉 ⊗ αµ=1,2|0〉 where qV = (1, 0, 0, 0) are the four dimensional graviton,
dilaton and universal axion

• |qV 〉 ⊗ αI |0〉 are U(1)16 gauge bosons

• |qV 〉 ⊗ |P 〉 are non-Abelian gauge bosons if P · V ≡ P ·Wα ≡ 0, where
≡ means equal modulo one. They enhance the U(1)16 to a non-Abelian
group G.
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2 Heterotic Strings on Orbifolds

• |qS〉 ⊗ |P 〉, where qS = (0, 1, 0, 0), are charged chiral field if qS · v ≡ P · V
and P ·Wα ≡ 0 They transform in representations of G according to the
decomposition of the breaking E8 × E8 → G.

• |qS〉⊗αa|0〉 are the untwisted moduli corresponding to untwisted (1, 1) and
(2, 1) forms.

Twisted Sectors

Obtaining the spectrum in the twisted sectors is a little more involved, however
still straight forward. First one has to notice that the twisting boundary condi-
tions lead to changes in the mode expansion of the coordinate fields. Instead of
going into the details we recite the results and their implications for the spec-
trum. First of all, one finds that the center of mass of twisted strings necessarily
lies on the fixed point of the space group element and that the momentum has to
vanish. Thus these string states are localized in the internal space. At the same
time the oscillators get fractional in the internal space, which for the description
of the right-mover leads to a shift in the momentum vector. The masslessness
condition then implies that the shifted weight of the boson is equal to the twist
vector up to integers such that all entries are non negative, qsh ≡ v. Next we
focus on the changes in the left-moving sector. Here the 16 extra dofs also get
shifted boundary condition,

XI(σ + π) = XI(σ) + P I
sh , where Psh = P + Vg , P ∈ ΛE8×E8

,

Vg = kV +mV ′ + nαWα , for g = (θkθ′m, nαeα) .
(2.10)

Vg is called the local shift. Thus the twisted states are of the form |qsh〉 ⊗ |Psh〉
with possible fractional oscillators acting on them. To be a physical state in the
low energy theory, they must fulfill the masslessness condition

P 2
sh + 2N =

∑

i

v2
i + 1 , (2.11)

N being the sum of oscillator numbers. Furthermore, they must survive the
projections (2.9) by the centralizer of g.

Anomalous U(1)

The breaking of the gauge symmetry from E8×E8 to the four-dimensional gauge
group due to the shifts and Wilson lines works in an Abelian fashion. This means
it can be thought of an internal background value of the gauge fields in the
Cartan subgroup. Thus, the four-dimensional gauge group should naively be of
the same rank as E8×E8 which is 16. However, in general models one finds that
one U(1) factor in four dimensions appears anomalous from the chiral spectrum
point of view. This anomaly is cancelled in a Green–Schwarz fashion [22] by
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the unique orbifold axion aorbi which is dual to the four-dimensional components
of the Kalb–Ramond field. This in turn generates a Stückelberg mass term
for the associated gauge boson. In addition one finds a non-vanishing Fayet–
Illiopolous term [53], which reveals that the orbifold point is not a stable point
in moduli space. Instead, for a stable SUSY vacuum, some of the chiral fields
must have non-trivial vevs [23]. This can result in a backreaction on the orbifold
geometry, like the resolution of the orbifold singularities. Going away from
the orbifold point can lead to further breaking of the gauge symmetries and
decoupling of states, but also the appearance of unexpected novel states, which
will be discussed in section 4.2. The relation between anomalies on orbifold and
resolution is addressed in [36, 45].

2.3.1 Examples

We want to demonstrate heterotic orbifold models with two examples, the stan-
dard embedding on the Z3 orbifold and a more complicated semi-realistic model
on Z2 × Z2.

Standard Embedding on T 6/Z3

The first and best studied example of a heterotic orbifold compactification is the
standard embedding on the Z3 orbifold on the lattice A3

2. After rescalings the
lattice basis vectors are

e1 =




1
0
0



 , e2 =




ξ
0
0



 , e3 =




0
1
0



 ,

e4 =




0
ξ
0



 , e5 =




0
0
1



 , e6 =




0
0
ξ



 .

(2.12)

The point group acts as θe2i−1 = e2i, θe2i = −e2i−1 − e2i. This action has
27 fixed points which we label by Fαβγ = {z1 = zfixed

α , z2 = zfixed
β , z3 = zfixed

γ }
where zfixed

1 = 0, zfixed
2 = (2 + ξ)/3 and zfixed

3 = (1 + 2ξ)/3. Since the lattice is
factorizable, we immediately find that Ab(S) contains, besides the point group,
three factors of Z3, so we have to specify a third order shift vector V and three
Wilson lines W2i, also of order three. In the standard embedding, the shift vector
is in its first components equal to the twist, up to integers, and the Wilson lines
are trivial,

Vstd.emb. =
1

3
(1, 1,−2, 013) , Wα = (016) . (2.13)

The resulting gauge group is SU(3) × E6 × E8. Concerning chiral matter, the
untwisted sector contains three copies of (27, 3), and nine singlets which are
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the complexified Kähler moduli inherited from the torus. Due to the absence of
Wilson lines, the 27 twisted sectors are all the same. They contain one multiplet
in the (27, 1) and three transforming as (1, 3). Due to its simplicity this model
is frequently used, e.g. for the study of interactions [49], T-duality [50] or, more
recently, elusive moduli [51], just to name a few.

A Standard Model candidate on Z2 × Z2

The next example is a standard model candidate constructed in [40, 41]. In
the heterotic orbifold framework there have been many attempts to build more
or less realistic models with standard model gauge group and three families of
chiral matter. There are standard-like models on the Z3 orbifold [25,26], the Z7

orbifold [27], and more recently on the Z12−I orbifold [28] and the Z6−II [29–32]
which goes under the name “Mini-Landscape”.

For the Z2 ×Z2 model presented here, there are two equivalent ways to think
of its construction. One way is to start with a factorizable Z2 × Z2 orbifold
model, with low energy gauge group containing an SU(5)GUT factor and six
chiral families in the 10⊕5. Then one divides out a Z2 free which is freely acting
on the orbifold. This will divide the chiral spectrum by two and at the same
time, by an associated Wilson line, break SU(5) down to the standard model.
An equivalent way to think of it is to start with a factorizable six-torus and first
mod out the Z2,free to obtain a non-factorizable torus, based on the root lattice
of A3 × A3

1. The Z2 × Z2 orbifold of this will reproduce the same model, just
that Z2,free is already included as part of the spacegroup. Here we will use the
approach with the non-factorizable lattice.

Imagine a factorizable lattice, spanned by vectors eα which has only non-zero
components in the ⌊α/2⌋th complex plane. The Z2,free acts on it as a shift by
(e2 + e4 + e6)/2. Since this is a half lattice vector, we obtain a new lattice whose
fundamental cell is one half of the one of the factorizable lattice. To see that
this lattice corresponds to A3 × A3

1, choose the basis

ẽ2 =
e2 + e4 + e6

2
, ẽ4 =

−e2 − e4 + e6
2

, ẽ6 =
−e2 + e4 − e6

2
, (2.14)

and ẽα = eα for α = 1, 3, 5. For an appropriate choice of lengths of the lattice
basis, the inner product of the even eα becomes the Cartan matrix for A3. TheZ2 ×Z2 acts by rotations by 180 degrees in two complex planes simultaneously,

θa : zb 7−→ −(−1)δabzb , a, b = 1, 2, 3 . (2.15)
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This action extends to the basis vectors as

θ1 :




ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6




7−→




ẽ1
−ẽ2 − ẽ4 − ẽ6

−ẽ3
ẽ6
−ẽ5
ẽ4



, θ2 :




ẽ1
ẽ2
ẽ3
ẽ4
ẽ5
ẽ6




7−→




−ẽ1
ẽ6
ẽ3

−ẽ2 − ẽ4 − ẽ6
−ẽ5
ẽ2



, (2.16)

and θ3 = θ1θ2, which specifies the space group multiplication rules. From this
we can determine its Abelianization. It is isomorphic to Z2

2 × Z3
2 × Z4, where

the first two Z2 factors correspond to the point group whereas the next threeZ2 factors represent the lattice vectors ẽα, α = 1, 3, 5 . The Z4 factor in turn
is generated by any of the ẽα for α even. Thus in the heterotic model we can
assign three Wilson lines Wα, α = 1, 3, 5 of order two, and one Wilson line W0

of fourth order. In the free quotient construction [40,41] W0 corresponds to the
freely acting Wilson line Wfree. Here the Abelianization of the non-factorizable
space group answers the question why a freely acting Z2 is associated to a fourth
order Wilson line.

Next, we inspect the fixed point structure. In the θ1 sector, there are eight
fixed lines which can be represented by the space group elements

(
θ1, n3ẽ3 + n5ẽ5 + n0(ẽ2 + ẽ4)

)
, ni = 0, 1 . (2.17)

Similarly the θ2 and θ3 sectors have eight fixed planes each, corresponding to the
elements

(
θ2, n1ẽ1 + n5ẽ5 + n0(ẽ4 + ẽ6)

)
, ni = 0, 1 , and (2.18)

(
θ3, n1ẽ1 + n3ẽ3 + n0(ẽ2 + ẽ6)

)
, ni = 0, 1 . (2.19)

Note that the ẽi with even i only appear in even multiples. This implies that the
twisted sectors only feel twice the Wilson line W0, which has the nice feature that
we can choose W0 such that 2W0 preserves an SU(5) GUT symmetry, whereas
W0 breaks it down to the standard model gauge group. In such a case, all twisted
sectors come in representations of SU(5) which favors the appearance of complete
families. The untwisted sector, however, is affected by W0 so one can realize a
pair of Higgs doublets without their triplet partners. The space group elements
with an odd multiple of the even ẽi do not have fixed points, which reflects the
non-trivial fundamental group of the orbifold, π1(T

6
A3×A3

1

/Z2 × Z2) ∼= Z2.

A concrete model is given by the two shift vectors

V1 =

(
5

4
,−3

4
,−7

4
,
1

4
,
1

4
,−3

4
,−3

4
,
1

4

)
(0, 1, 1, 0, 1, 0, 0,−1) , (2.20a)

V2 =

(
−1

2
,−1

2
,−1

2
,
1

2
,−1

2
,−1

2
,−1

2
,−1

2

) (
1

2
,
1

2
, 0, 0, 0, 0, 0, 4

)
, (2.20b)
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multiplicity representation label multiplicity representation label

3 (3, 2; 1, 1, 1) 1

6
q 3 (3, 1; 1, 1, 1)− 2

3
u

3 (3, 1; 1, 1, 1) 1

3
d 3 (1, 2; 1, 1, 1)− 1

2
ℓ

3 (1, 1; 1, 1, 1)1 e 33 (1, 1; 1, 1, 1)0 s

4 (1, 2; 1, 1, 1)− 1

2
h 4 (1, 2; 1, 1, 1) 1

2
h

5 (3, 1; 1, 1, 1) 1

3
δ 5 (3, 1; 1, 1, 1)− 1

3
δ

5 (1, 1; 3, 1, 1)0 x 5 (1, 1; 3, 1, 1)0 x

6 (1, 1; 1, 1, 2)0 y 6 (1, 1; 1, 2, 1)0 z

Table 2.2: Spectrum at the orbifold point. We show the representations w.r.t.
SU(3)C × SU(2)L ×U(1)Y × [SU(3)× SU(2)× SU(2)]hid and their multiplicities
and labels. The [. . . ]hid groups stem from the second E8.

and the Wilson lines

W3 =

(
−3

4
,−1

4
,
1

4
,
7

4
,−1

4
,−1

4
,−1

4
,−1

4

)(
1

4
,
1

4
,
1

4
,
5

4
,−3

4
,
1

4
,−3

4
,
1

4

)
, (2.21a)

W5 =

(
−1
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and W1 trivial. The resulting four-dimensional gauge symmetry is SU(3)C ×
SU(2)L ×U(1)Y × [SU(3) × SU(2) × SU(2)]hid together with some U(1) factors,
one of which is anomalous. The massless spectrum was computed using [34].
It is summarized in table 2.2. More details on the spectrum and possible semi-
realistic vacua can be found in [40].
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3 GLSM description of Resolved
Toroidal Orbifolds

This chapter is dedicated to the construction of resolutions of toroidal orbifolds in
the context of two-dimensional theories. In section 3.1 we first review aspects of
algebraic geometry, in particular toric geometry, which is required to understand
the geometry and topology of the emergent target spaces. This includes the
description of two-tori as elliptic curves and the resolution of local singularities,
which are the basic ingredients for global resolutions. Then, in section 3.2 we
introduce Gauged Linear Sigma Models (GLSMs) which are two-dimensional
supersymmetric theories whose target spaces naturally are complete intersections
in toric varieties with vector bundles. In section 3.3 we show how resolved
toroidal orbifolds can be realized in the GLSM by two examples, the Z3 andZ4 orbifold, each of which has realizations on different lattices. We take simple
examples to study the (2, 2) moduli spaces and identify the phase structure.
Finally, in section 3.4 we discuss issues of (2, 0) models with the example Z2×Z2.

3.1 Some Algebraic Geometry

A huge class of complex geometries is best described by the means of toric
geometry. Therefore we will review briefly the construction of toric varieties and
discuss their basic properties. As an application we will construct the resolution
of local C3/P singularities, with an Abelian finite point group P , and of elliptic
curves. These are at the same time the basic ingredients which are required for
the construction of resolved toroidal orbifolds.

Toric Geometry

There are many ways in which one can understand the construction of toric
varieties. The underlying feature of all these is that properties of a complicated
complex geometry are reflected in the combinatorics of a fan, i.e. a collection of
rational convex polyhedral cones. For a proper introduction, see [17, 18].

Holomorphic Quotient

The maybe most intuitive way to think of a toric variety is the holomorphic
quotient construction. For this we start with a d-dimensional lattice N ∼= Zd,
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3 GLSM description of Resolved Toroidal Orbifolds

where d is supposed to be the complex dimension of the variety. In this lattice
we choose r vectors v1, . . . , vr ∈ N where r ≥ d. Out of these vectors we now
construct the fan. For this we start with the definition of a convex rational
polyhedral cone. These are subsets σ of N ⊗Z R ∼= RN which can be written as

σ = 〈vi1 , . . . , vik〉 :=

{
∑

j

ajvij |aj ∈ R+
0

}
. (3.1)

The convexity condition restricts the cone to lie in a half-space, in other words,
x,−x ∈ σ ⇒ x = 0. Now a fan Σ is defined as a collection of convex rational
polyhedral cones together with two criteria. First, for each cone σ ∈ Σ, the faces
of σ, i.e. cones which are generated by subsets of the generators of σ are also in
Σ. Second, the intersection of two cones in Σ must also be a cone in Σ of lower
dimension. If these criteria are met, one can proceed to define the toric variety.
For this, we associate to each vector vi a coordinate zi, which from now on will
be called homogeneous coordinate. Since we assumed r ≥ d, the vectors vi are
subject to linear equivalence relations of the form

∑

i

qI
i vi = 0 , I = 1, . . . , r − d . (3.2)

We use these relations to define a (C∗)r−d action on the coordinates,

µazi 7−→ µqa
i zi . (3.3)

One last ingredient we need is the exclusion set F which is defined as,

F =
⋃

{i1,...,ik}⊂[1,r]∩Z
〈vi1

,...,vik
〉6∈Σ

{zi1 = . . . = zik = 0} (3.4)

We have all together in order to define the toric variety. For this we take the
vector space spanned by all homogeneous coordinates, remove the exclusion set
and divide out the (C∗)r−d action,

V =
Cr − F

(C∗)r−d
. (3.5)

The holomorphic quotient as presented here only works properly if the vectors
vi span the full lattice N . In that case the resulting variety is smooth. Otherwise,
a further finite discrete symmetry, isomorphic to the quotient of N by the span
of the vi, has to be divided out and gives rise to orbifold singularities. Later we
will see that it is also possible to induce these symmetries as remnants of some
(C∗)l action.
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3.1 Some Algebraic Geometry

Symplectic Quotient

Another way to understand a toric variety is the symplectic quotient construc-
tion. For this, the basic observation is that the multiplicative group C∗ can
be written as a direct product, C∗ = U(1) × R+, which corresponds to writing
complex numbers in polar coordinates z = reiφ. Then, we start with a set of
homogeneous coordinates zi with U(1)r−d charges qI

i . The U(1)r−d action will
be divided out as before, but instead of also dividing out Rr−d

+ , we impose a set
of r − d real equations,

∑

i

qI
i |zi|2 = aI , I = 1, . . . , r − d , (3.6)

where aI are real parameters. The toric variety is then the solution set of these
equations, divided by U(1)r−d. This way the exclusion set F is automatically
determined as the union of simultaneous zero loci of coordinates for which the
equations (3.6) have no solution. This set is highly dependent on the values of
the aI , but at generic points it corresponds to the exclusion set as determined
by a fan as in the holomorphic quotient. These parameters aI correspond to the
Kähler moduli of the space, i.e. they control the volumes of the variety and its
subspaces and can lead to geometric transitions.

Both constructions, the symplectic and the holomorphic quotient have their
pros and cons. The advantage of the holomorphic quotient is clearly its holomor-
phicity, which allows to use the techniques of complex geometry. Furthermore,
since one can mod out a whole C∗ action, one can always set certain coordinates
to arbitrary values (usually to one) in exchange for the C∗ scalings, and simply
use the remaining ones as coordinates. The disadvantage is that, to determine
the exclusion set, one has to start from a fan, which particularly in higher dimen-
sions can be quite tedious. Here lies the advantage of the symplectic quotient,
since one immediately start with the coordinates and their charges. The precise
topology of the space is determined by a set of equations, which can be viewed as
linear in the absolute values squares of the coordinates. Furthermore, by varying
the parameters aI one can explore various phases of the variety, even singular
ones, which would correspond to different fans. For our convenience, we will use
the advantages of both of those constructions.

Divisors, Intersections

The topology of a manifold can be described in terms of its homology classes
and their intersection ring. Since we are working with complex coordinates, most
even homology classes can easily be described. In terms of algebraic geometry, a
hypersurface is described as a zero locus of a holomorphic equation. A divisor is
then defined as a formal linear combination of such hypersurfaces. In order for
such an equation to be well-defined, it must only contain terms of a fixed degree
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3 GLSM description of Resolved Toroidal Orbifolds

(i.e. charge under the (C∗)r−d). For many purposes, e.g. the computation of the
intersection numbers, the divisor is sufficiently specified by this degree. If, for
given degree, there exists only one monomial, the associated divisor is rigid. If,
however, there are more monomials of the same degree, the divisor can be moved
around and the coefficients encode its locus.

There are linear equivalences between the divisors that arise by factorization
of the polynomials. If a polynomial, or in the simplest case a monomial, is a
product of some pieces, the associated divisor is equivalent to the sum of the
divisors of the factors. Thus as a generating set of divisors one can use the zero
loci of the homogeneous coordinates Di := {zi = 0}. However, they are not
linearly independent, but fulfill d linear dependence conditions

∑

i

va
iDi ∼ 0 , (3.7)

where va
i is the ath component of the vector vi ∈ N . If, however, one wants a

basis of divisors, one can try to find polynomials pI(zi) with charge qJ(pI) ∝ δIJ

and associate divisors D̃I := {pI = 0}. In all our examples we will be able to
find such a basis, thus in the following we will assume its existence.

Elements of the even homology classes can then be realized as intersections of
divisors. In particular, the intersections of d divisors, which are points, charac-
terize the topology. Since the intersection numbers only depend on the divisor
class (i.e. the degree of the polynomial), one can use linear equivalences among
the divisors to determine all intersection numbers including self-intersections.
Knowing all the intersection numbers, one can use them to compute topologi-
cal integrals on the variety of the Poincaré-dual (1, 1)-forms. We will use the
same symbols for divisors and their Poincaré-dual forms. It will be clear from
the context which one is meant. The intersections or wedge products will thus
simply be written as products, where for intersection numbers the integral will
be implicit.

Kähler Form, Characteristic Classes

Toric varieties, if smooth, are automatically Kähler manifolds which means one
can define a closed Kähler form. Then we can expand the Kähler class in our
divisor basis,

J =
∑

I

aID̃I . (3.8)

The notation aI for the Kähler moduli is chosen to be the same as the parameters
in the equations (3.6) in the symplectic quotient construction. In the upcoming
examples we will indeed see that these two things can be identified. The Kähler
form can be used to compute the volumes of the holomorphic submanifolds. Here
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3.1 Some Algebraic Geometry

we specify to the three-dimensional case and give the formulæ for the volumes
of the whole variety V, the divisors D and the curves C,

Vol(V) =
1

6
JJJ , Vol(D) =

1

2
JJD , Vol(C) = JC . (3.9)

In the next step we can define the Kähler cone of the variety. The Kähler cone
is then defined as the subset of moduli space for which the volumes of all these
subvarieties are positive. This set is a cone, since for J in it, λJ is also in it if
and only if λ ∈ R+. At the boundary of the Kähler cone, typically the volume
of a curve goes to zero and the variety becomes singular. When one crosses such
a boundary, flop transitions can occur, in which a curve disappears and another
curve, whose class is minus the class of former one, appears. Then one ends up
in the Kähler cone of a different variety, whose cones only differ by the flopped
cones. Even worse transitions can happen, including the jump of the dimension,
which will be demonstrated in section 3.3.2. In the symplectic quotient, these
transitions occur automatically as one varies the FI parameters in (3.6). We will
show this with an example in section 3.1.1

Another important quantity of a complex manifold is the Chern class. It
is formally defined via the determinant of the curvature two-form, but using
methods from algebraic geometry there are easier methods to obtain it. In
terms of the divisors it is

c(V) =
∏

i

(1 +Di) = 1 +
∑

i

Di

︸ ︷︷ ︸
c1(X)

+
∑

i<j

DiDj

︸ ︷︷ ︸
c2(X)

+
∑

i<j<k

DiDjDk

︸ ︷︷ ︸
c3(X)

. (3.10)

We will need the Chern classes in various contexts. The vanishing of the first
Chern class is an indicator for the Calabi–Yau property. The second Chern class
appears in the Bianchi identity of the Kalb–Ramond fiend strength. Last but
not least, the integrated third Chern class gives the Euler characteristic of the
threefold, which serves as a cross check.

Vector Bundles, Cohomology

Now we have everything we need to describe the compactification geometry, at
least topologically. But for a viable and consistent heterotic compactification we
also need to switch on background fluxes of the gauge field. These fluxes are, in
the context of algebraic geometry, nicely described in terms of vector bundles,
or more precisely, coherent sheaves. Here we will refrain from giving precise
mathematical definitions but rather review the relevant properties.

Vector bundles are characterized, though by far not uniquely, by their structure
group, which is related to their holonomy group. The simplest vector bundles
are line bundles those fibers are one-dimensional and thus their structure group
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3 GLSM description of Resolved Toroidal Orbifolds

is U(1) or a subgroup thereof. In order to classify line bundles, we look at the
curvature of their connection, which in physical terms can be thought of as a
Abelian field strength. For holomorphic line bundles the curvature is a (1, 1)-
form1 and thus dual to a divisor. Thus by specifying a divisor class D we at the
same time describe a line bundle which we will call O(D) or alternatively O(q)
where q is the charge vector of the defining polynomial of D. To close the circle,
the divisor D is cut out as the zero set of a homogeneous polynomial which is a
global section of the line bundle O(D),

D = {p(z) = 0} , with p(z) ∈ Γ(O(D)) . (3.11)

Vector bundles which are not (sums of) line bundles are more complicated to
obtain. One way to define them is as kernels or cokernels of linear maps between
line bundles. One such construction, which also appears in (2, 0) GLSMs is the
so called monad complex

0 −→ ON a−→
⊕

i

O(qi)
b−→
⊕

l

O(Ql) −→ 0 , (3.12)

where vector bundle is defined as V = ker b/ima. As an example, the tangent
bundle of a (complete intersection in a) toric variety can always be defined in
this way.

One important property of a vector bundle are its cohomology groups Hp(V).
For the physical context it might be appropriate to think of the elements of
Hp(V) as bundle valued p-forms which are harmonic w.r.t a covariant Laplacian
containing the bundle connection.

Hypersurfaces and Complete Intersections

When looking at the definition of the first Chern class (3.10) together with the
set of linear equivalence relations among the divisors (3.7) we find that a toric
variety is Calabi–Yau, i.e. has vanishing first Chern class, if and only if the
vectors vi lie in a plane. In that case, however, the fan does not span the whole
vector space N ⊗Z R which reflect the fact that the variety is not compact. We
will use such Calabi–Yau constructions when we discuss the resolution of non-
compact singularities in section 3.1.1, but for a proper heterotic compactification
we need compact Calabi–Yau spaces. For this we look at complete intersections
of hypersurfaces in ambient toric varieties. A subvariety X is called complete
intersection if it can be cut out by a set of holomorphic homogeneous polynomials
pk=1,...,s(zi) with s = codimVX . For such complete intersections the formula for
the Chern classes gets modified,

c(X ) =
∏

i

(1 +Di)

s∏

k=1

(1 +Hk)
−1 , (3.13)

1Its Dolbeaut cohomology class is the first Chern class of the bundle.
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3.1 Some Algebraic Geometry

where Hk are the divisors cut out by pk. Here, and in general, the divisors have
to be restricted to X . If we denote the charge of pk by Qk, the Calabi–Yau
condition for a complete intersection reads

∑

i

qi =
∑

k

Qk . (3.14)

3.1.1 Local Singularity Resolutions

Throughout this work we deal with singularities which locally look like C3/P
with P = ZN or P = ZN × ZM . These singularities can all be realized as
non-compact toric varieties together with the possibility to blow them up. We
will describe this process here in the symplectic quotient picture and show the
properties of the resolved spaces. The basic idea is to promote the discrete P
action to a continuous U(1) (or C∗ in the holomorphic quotient) action. Since
modding out a continuous action would reduce the dimension of the space, we
at the same time have to introduce new coordinates. The charges are then to be
chosen such that the action of P can get induced.

More concretely, the action of P is of the form

θr : (z1, z2, z3) 7→
(
e2πi

q1
Nr z1, e

2πi
q2
Nr z2, e

2πi
q3
Nr z3

)
, (3.15)

with q1+q2+q3 = 0 mod Nr, 0 ≤ qi < Nr and q1, q2, q3, Nr relatively prime. If an
element θr satisfies qr

1 + qr
2 + qr

3 = Nr, one introduces a homogeneous coordinate
xr and a U(1)Er action with charge assignment

coordinate z1 z2 z3 xr

charge qr
1 qr

2 qr
3 −Nr

.

At the same time we impose an equation

qr
1|z1|2 + qr

2|z2|2 + qr
3|z3|2 −Nr|xr|2 = br . (3.16)

We observe that since the sum of charges is zero, the resulting space is Calabi–
Yau. If br < 0, we find that xr cannot vanish and we can fix its phase by a U(1)Er

rotation, thus breaking it down to a ZNr action that acts on zi like (3.15). Thus,
for all br < 0 we recover the orbifold C3/P with fixed point at (0, 0, 0).

Now if br > 0, we see that the fixed point can no longer satisfy (3.16) and thus
is removed. Instead one finds the exceptional divisor Er = {xr = 0} as a smooth
hypersurface replacing the singularity. For the set {xr 6= 0} the same argument
as above applies, thus it look like a C3/P with the singularity removed. In fact,
introducing U(1)Er actions for a generating set of θr ∈ P would be sufficient to
induce the P action on the coordinates za, however, one needs to introduce all
of them in order to be able to construct a smooth space. Leaving out some of
them would necessarily result in subsingularities.
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3 GLSM description of Resolved Toroidal Orbifolds

In the holomorphic quotient construction we would have to construct a fan
that reproduces the charges. For this we first have to assign the vectors va corre-
sponding to the coordinates za. They must be chosen such that the rationomials∏

a z
vi

a
a are an integral basis of invariant monomials. The Calabi–Yau condition

implies that z1z2z3 can always be chosen as such a basis vector, thus one con-
veniently fixes v1

a = 1 and the vectors lie in a plane. Next, one has to add
exceptional divisors, i.e. for each θr fulfilling the conditions above one adds the
vector ur =

∑
a q

r
a/Nr · va, which also lies in the same plane. This corresponds

to adding all vectors which lie in the triangle spanned by the va in this plane.
Finally, in order to determine the higher dimensional cones, one has to triangu-
late the diagram which corresponds to fixing the way in which the exceptional
divisors intersect. This triangulation is in many cases not unique, and different
triangulations correspond to different topologies.

Already at this stage we are able to describe some different phases of the
geometry, which we study in the symplectic quotient construction.

• For all br < 0, we are in the orbifold phase in which the exceptional divisors
Er do not exist, but which is the only phase for which the fixed point
(z1, z2, z3) = (0, 0, 0) is part of the geometry.

• The full resolution phase is basically given if all br > 0, however, there
might be more constraints. First of all, (3.16) only tells that for br > 0 the
divisor Er = {xr = 0} exists. However, there can still be singularities that
need to be blown up in higher codimension, like e.g. conifold singularities.
In fact, whenever one finds a linear combination of the equations (3.16)
which is of the form

|y1|2 + |y2|2 − |y3|2 − |y4|2 = f(br) , yi = xr, za , (3.17)

where f(br) is a linear polynomial, one can observe conifold transitions
within the resolved singularity. If f(br) < 0, the curve {y1 = y2 = 0} exists
whereas the curve {y3 = y4 = 0} does not, and vice versa for f(br) > 0.
The point f(br) = 0 is a conifold point with a singularity at y1 = y2 = y3 =
y4 = 0. Going through such a point is called a flop transition and changes
the intersection numbers of the divisors. In the holomorphic quotient this
corresponds to a change of the fan.

• In between there usually are intermediate, not fully resolved phases. These
are e.g. given if some br are smaller than zero while others are greater. In
such a case the orbifold singularity is removed but just partially resolved.
It may also happen that if all br > 0 there are regions where the singularity
is not fully resolved. Then, all divisors exist, but some curves which are
necessary to resolve the subsingularities do not.
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3.1 Some Algebraic Geometry

3.1.2 Elliptic Curves and their Symmetries

As we are studying toroidal orbifolds, we need to have an algebraic description
for the torus as a starting point. In algebraic geometry we are able to describe
two-tori, i.e. elliptic curves, and products thereof. However, it is not possible to
describe higher-dimensional tori at an arbitrary point in moduli space which is
why a priori we can only deal with factorizable orbifolds. In section3.3.3 we will
see that in some cases we are still able to obtain non-factorizable orbifolds.

Elliptic curves are the only two-dimensional compact spaces which are Calabi–
Yau. Thus, we will have to realize them as subvarieties in ambient toric spaces.
In fact we will restrict ourselves to weighted projective spaces which are toric
varieties with just one U(1) action. Let’s say we have coordinates zi, i = 1, . . . , N
with charges qi, then we need N − 2 hypersurface constraints pk(zi) = 0, with
charge Qk, to obtain a complex one-dimensional space. This may look like
there are many possibilities to construct elliptic curves, but with two additional
requirements we will boil it down to just four. First, if qi = Qk for some i
and k, then pk can uniquely be solved for zi and both, the equation and the
coordinate, can be removed. Thus we require qi 6= Qk for all i, k. Next, we
require all Qk to be divisible by all qi, since in this case pk can be written using
only pure monomials, i.e. powers of a single coordinate, which makes the discrete
symmetries of the elliptic curve practically tractable. This leaves us with four
choices, each of which corresponds to a T 2 with a certain orbifold symmetry,P2

111[3] , P2
112[4] , P2

123[6] , P3
1111[2, 2] . (3.18)

The numbers in the subscript denote the charges of the coordinates and the
numbers in the brackets are the charges of the polynomials. We will discuss
these cases in detail later, but first we want to connect these elliptic curves to
the classical torus T 2 = C/Λ.

The Weierstrass Map

We define the tours as T 2 = C/Λ where Λ = e1Z⊕ e2Z and want to map it into
a (weighted) projective space. For this we need to define meromorphic, double
periodic functions on C which is easiest done by an infinite sum over the lattice.
In order for it to be convergent, the degrees must be sufficiently negative, and
the simplest such example is the Weierstrass elliptic function,

℘(u) =
1

u2
+
∑

v∈Λ−0

(
1

(u− v)2
− 1

v2

)

=
1

u2
+

∑

(n,m)∈Z2

(m,n)6=(0,0)

(
1

(u−me1 − ne2)2
− 1

(me1 + ne2)2

)
.

(3.19)
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Point Group Geometry n-volution elliptic curve

Z2 b b

bb Z2 × Z2 P
3
(1,1,1,1)[2, 2]

Z3 b b

b Z3 P
2
(1,1,1)[3]

Z4 b

b

rs rs Z2 P
2
(1,1,2)[4]

Z6 b rs

rs rs

ut

ut

– P
2
(1,2,3)[6]

Table 3.1: The four elliptic curves corresponding to the four point groups in
two dimensions. The the second column shows the geometry where the shaded
region is a fundamental domain and the dots are at the fixed point positions.
Squared and triangled dots get identified under the point group.

The Weierstrass elliptic function fulfills the Weierstrass differential equation

℘′(u)2 = 4℘(u)3 − f(e1, e2)℘(u) − g(e1, e2) , (3.20)

where f and g encode the information on the complex structure modulus τ = e2/e1.
More precisely, the Klein invariant of the coomplex structure is found to be
j(τ) = 1728f 3/(f 3 − 27g2). There are two special values for τ corresponding to
enhanced symmetry of the torus at τ = i ↔ g = 0 and τ = ζ := e2πi/3 ↔ f = 0.

Now suppose we have an elliptic curve which is a hypersurface in a two-
dimensional ambient space. Then, if we can bring the hypersurface equation
to the form

y2 = 4x3 − fx− g , (3.21)

where y and x are meromorphic global coordinate functions, we get a holomor-
phic map between the elliptic curve and the classical two-torus. This will help
to identify the required symmetries of our elliptic curves, as we will see in the
following examples.

Two-torus T 2

3
with Z3 symmetry

In general, if we have coordinates with charges qi and equations of order Qk,
for each coordinate there is a discrete symmetry rotational ZN symmetry, with
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3.1 Some Algebraic Geometry

N = gcd{Qk}/qi if we only allow for pure monomials. Thus in order to realize aZ3 symmetry we choose the elliptic curve P2
111[3] with defining equation,

z3
1 + z3

2 + z3
3 = 0 . (3.22)

Possible prefactors have been absorbed into the coordinates. This equation hasZ3 symmetries acting as,

θi : zi 7−→ ζzi , zj 6=i 7−→ zj , i = 1, 2, 3 . (3.23)

This actually generates a Z2
3 symmetry since θ1θ2θ3 is already an element of the

U(1) action and thus acts trivially on the torus. Thus for a generating set we
choose θ := θ1 and α := θ3θ

2
2 and call it Z3,orbi × Z3−vol. Now each θi has three

fixed points at zi = 0 which lie at zj +ζ lzk = 0 with l = 0, 1, 2 and i 6= j 6= k 6= i.
On the other hand, α is freely acting on the torus.

Let us establish the map to the classical torus. For this we do the coordinate
transformation,



z1
z2
z3


 = 2−1/3



−2 0 0
0 3−1/2 1
0 −3−1/2 1





x
y
v


 , (3.24)

to bring it to the form,

y2v = 4x3 − v3 . (3.25)

Using the identifications,

℘(u) =
x

v
, ℘′(u) =

y

v
, (3.26)

we restore the Weierstrass equation (3.20) with (f, g) = (0, 1) corresponding to
complex structure τ = ζ as expected. The singularity of ℘ at u = 0 is mapped
to v = 0. Now we can translate the discrete symmetries to to classical torus,
which is in detail done in appendix A. The result is:

θ : u 7→ ζu , α : u 7→ u+
ζ − 1

3
. (3.27)

We find that θ is indeed the orbifold symmetry, and α is a discrete symmetry
which acts as a shift on the torus. Since it is freely acting on the torus, we
call it 3-volution (or in general n-volution for a Zn that is freely acting on the
torus ). This 3-volution maps the three θi fixed points onto each other for all i.
Thus there are two ways to get a T 2/Z3 orbifold: either one simply divides outZ3,orbi, then there are three fixed points at z1 = 0, or one divides out the fullZ3,orbi × Z3−vol, then there is one fixed point at zi for i = 1, 2, 3 each.
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3 GLSM description of Resolved Toroidal Orbifolds

Two-torus T 2

4
with Z4 symmetry

In order to realize a Z4 symmetric torus, we choose the elliptic curve P2
1,1,2[4]

with defining equation

z4
1 + z4

2 + z2
3 = 0 . (3.28)

This has the symmetries,

θi : zi 7−→ izi , zj 6=i 7−→ zj , i = 1, 2 ,
θ3 : z3 7−→ −z3 , zj 6=i 7−→ zj .

(3.29)

Again, the combination θ1θ2θ3 is a U(1) element, thus we are left with a Z4,orbi×Z2−vol symmetry generated by θ = θ1 and the involution (2-volution) α = θ1θ
3
2.

Let us analyze the fixed point structure. We observe that θ1 has two fixed points
at z1 = 0 and z2

2 = ±z3, while θ2
1 has two additional Z2 fixed points at z2 = 0.

However, these get identified by θ1 as expected from a rotational Z4 orbifold
action. On the other hand, θ3 has four fixed points at z3 = 0 and z1 = ilz2,
l = 0, 1, 2, 3. The involution α has no fixed points.

As before, we want to map the elliptic curve to the classical torus via the
Weierstrass function. For this we perform a coordinate transformation,



z1
z2
z3


 =




1 0 2−1i

i1/2 0 −2−1i1/2

0 i 0





x
y
v


 , (3.30)

to bring it to the form

y2 = 4x3v − xv3 . (3.31)

Using the identifications

℘(u) = x/v , and ℘′(u) = y/v2 , (3.32)

this becomes the Weierstrass equation (3.20) with (f, g) = (1, 0), i.e. the torus
has complex structure τ = i . This map translates the discrete symmetries to

θ : u 7→ iu , α : u 7→ u+
1 + i

2
. (3.33)

A detail calculation can be found in appendix A. As expected, θ is the rotational
orbifold symmetry while α is a discrete shift. In analogy to the Z3 case we find
two ways to obtain a T 2/Z4 orbifold. Either we just divide out Z4,orbi, then the
two Z4 fixed points are at z1 = 0 and one Z2 fixed point is at z2 = 0. Or we
divide out the full Z4,orbi ×Z2−vol, then there is one Z4 fixed point at z1 = 0 and
z2 = 0 each, and the Z2 fixed point lies at z3 = 0.
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3.1 Some Algebraic Geometry

Two-torus T 2

6
with Z6 symmetry

For a torus with Z6 symmetry we have to choose the elliptic curve P2
1,2,3[6] with

defining equation,

z6
1 + z3

2 + z2
3 = 0 . (3.34)

The symmetries are,

θ1 : z1 7−→ −ζ2z1 , zj 6=1 7−→ zj ,
θ2 : z2 7−→ ζz2 , zj 6=1 7−→ zj ,
θ3 : z3 7−→ −z3 , zj 6=1 7−→ zj .

(3.35)

As usual, we have θ1θ2θ3 being an element of U(1), thus we are effectively left
with a Z6,orbi action generated by θ = θ1. It has one fixed point at z1 = 0.
Furthermore, θ2 has two additional fixed points at z2 = 0 which get identified
by θ, and θ3 has three fixed points z3 = 0 which are also identified by θ. To sum
up, we find exactly the fixed point structure of the T 2/Z6 orbifold.

Here the defining equation is almost in Weierstrass form with (f, g) = (0, 1)
or τ = ζ , one just has to do some rescalings,

z1 = v , z2 = −22/3ζx , z3 = y , (3.36)

and identify ℘(u) = x/v2 and ℘′(u) = y/v3. This immediately shows that the
orbifold action indeed translates to θ : u 7→ −ζ2u.

Two-torus T 2

2
with Z2 symmetry

In principle every elliptic curve has a Z2 symmetry, realized as y 7→ −y in the
Weierstrass equation. But we want to stick to the building principle we had used
before, i.e. that each fixed point should have its own homogeneous coordinate and
the degree of the polynomial should be equal to the order of the orbifold action.
In that sense the T 2/Z2 orbifold is special since it has four fixed points, thus
with four homogeneous coordinates we will require two hypersurface equations.
This ultimatively leads to the elliptic curve P3

1111[2, 2] which we discuss in the
following. The most general equation with only pure monomials are

a1z
2
1 + a2z

2
2 + a3z

2
3 + a4z

2
4 = 0 ,

b1z
2
1 + b2z

2
2 + b3z

2
3 + b4z

2
4 = 0 .

(3.37)

Note that if we had two generic second order equations, i.e. also including mixed
monomials, we can always find a GL(4,C) transformation on the zi such that
all mixed monomials disappear. Therefore this choice is very convenient but
not restrictive. In order to further eliminate the number of coefficients, we first
do a Gauss elimination to set a4 and b3 to zero. Then we can rescale the four
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3 GLSM description of Resolved Toroidal Orbifolds

coordinates and the two equations which sets just five of the coefficients to one,
since simultaneous scaling of all coordinates and all equations with inverse scaling
parameter leaves the equations invariant. Thus we are left with one parameter
κ and the general equations become,

κz2
1 +z2

2 +z2
3 = 0 ,

z2
1 +z2

2 +z2
4 = 0 . (3.38)

This parameter represents the complex structure modulus τ which is unfixed forZ2 orbifolds. Let’s first discuss the symmetries. As always we have symmetries
of the form

θi : zi 7−→ −zi , zj 6=i 7−→ zj , i = 1, 2, 3, 4 , (3.39)

where the combination θ1θ2θ3θ4 acts trivially up to a U(1) rotation. Thus as
generators for the remaining Z2,orbi ×Z2−vol ×Z′

2−vol we choose θ = θ1, α = θ2θ3
and α′ = θ2θ4. A fixed point analysis reveals that θ has four fixed points at
z1 = 0, z2 = ±z3 and z2 = ±z4, while α and α′ are freely acting. In order to
properly interpret these action we must establish a map to the classical torus,
which turns out not to be as easy as for the previous cases since here we are
dealing with the intersection of two hypersurfaces. Therefore we look at the
following non-linear coordinate identifications

z2
1 = (ǫ3 − ǫ1)v , z2

2 = ǫ1v − x , z2
3 = x− ǫ2v , z2

4 = x− ǫ3v . (3.40)

These identifications fulfill the equations (3.38) precisely if κ = ǫ1−ǫ2
ǫ1−ǫ3

. However,
x and v are invariant under the actions of θi and thus not sufficient as coordinates
for the elliptic curve. Therefore we define

y =
2√

ǫ1 − ǫ3
z1z2z3z4 . (3.41)

Then, if we also choose ǫ1 + ǫ2 + ǫ3 = 0, which is always possible, we find that
(y, x, v) fulfill the equation,

y2 = 4x3v − fxv3 − gv4 , f = 4(ǫ1ǫ2 + ǫ1ǫ3 + ǫ2ǫ3) , g = −4ǫ1ǫ2ǫ3 . (3.42)

After the identification ℘(u) = x/v, ℘′(u) = y/v2 this becomes the Weierstrass
equation for a torus with unfixed complex structure. A closer look at the map
(z1, z2, z3, z4) 7→ (y, x, v) reveals that it is still not bijective, but rather the preim-
ages of (y, x, v) form an orbit under Z2−vol×Z′

2−vol. Hence the map can be viewed
as a holomorphic bijection of elliptic curves,P3

1111[2, 2]Z2−vol × Z′
2−vol

∼= P2
112[4] . (3.43)
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3.2 Gauged Linear Sigma Models

Via the Weierstrass map of the P2
112[4] we find that the orbifold action θ trans-

lates to the flat torus precisely to u 7→ −u. In order to find out more about the
discrete symmetries, we consider the maps βi : u 7→ u + ei/2, i = 1, 2. Via the
identifications above we find them to be translated into

β1 : (z1, z2, z3, z4) 7→
(
κ−

1

4 z2 , κ
1

4z1 , κ
1

4 z4 , −κ−
1

4z3

)
, (3.44)

β2 : (z1, z2, z3, z4) 7→
(
i(κ2 − κ)−

1

4z3 , (1 − κ−1)−
1

4z4 , i(κ2 − κ)
1

4 z1 , (1 − κ−1)
1

4 z2

)
.

Details can be found in appendix A. One observes that β2
1 = α and β2

2 = α′,
thus the involutions α, α′ can be interpreted as discrete shifts u 7→ u+ e1/2 on a
coarse torus with lattice vectors 2e1, 2e2. Since this torus has the same complex
structure, we can use the maps to identify its Klein invariant. In terms of the
coefficients in the general equation (3.37) it is given by,

j(τ) = 256
(c22 + c23 + c24 − c2c3 − c2c4 − c3c4)

3

(c2 − c3)
2 (c2 − c4)

2 (c3 − c4)
2 , (3.45)

with

c2 = a1a2b3b4 + b1b2a3a4 , c3 = a1b2a3b4 + b1a2b3a4 ,

c4 = a1b2b3a4 + b1a2a3b4 .
(3.46)

This expression is nicely symmetric under the permutation of the four coordi-
nates an the two equations, as well as under rescalings.

To sum up, there are four ways to realize a Z2 orbifold out of this elliptic
curve. One either divides out just θ, then all four fixed points are at z1 = 0, or
one divides out the full Z2,orbi ×Z2−vol ×Z′

2−vol, then there is one fixed point at
each zi = 0, i = 1, 2, 3, 4, or one divides out just one of the involution, then one
finds two fixed points at each of the vanishing loci of two coordinates.

3.2 Gauged Linear Sigma Models

Gauged Linear Sigma Models (GLSM) were first studied by Witten in [19]. They
are two-dimensional SUSY theories that typically contain a U(1)N gauge sym-
metry and some chiral fields which are charged. Such theories are not conformal
since the gauge kinetic terms and the superpotential couplings are necessarily
dimensionful. This is also why in CFTs one only has kinetic terms for chiral
fields which thus in general have field dependent coefficients containing the in-
formation on the theory like background values of certain target space fields.
Now GLSMs have the advantage that they are also able to describe this infor-
mation but in a more tractable way. The kinetic terms remain field independent
and the theory stays linear. We will see that the information about the target
space topology is basically stored in the gaugings and in the charges of the chiral
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3 GLSM description of Resolved Toroidal Orbifolds

fields. The values of (most of) the moduli fields are reflected by the values of
the FI terms and the superpotential parameters.

Since GLSMs are not conformal, one could ask the question, what they have
to do with string theory. The answer is that in the infrared limit, i.e. when one
sends all dimensionful parameters to infinity simultaneously, the theory flows to
a conformal theory. In this limit only the massless degrees of freedom survive.
When integrating out the massive fields and after fixing the gauge, one generates
non-linear kinetic terms for the massless ones, thus resulting in a typical confor-
mal non-linear sigma model (NLSM), i.e. a suitable world sheet theory. However,
one has to make sure that the parameters of the theory remain constant in this
limit.

Whereas in heterotic theories the gauged SUSY stays N = (1, 0), one in-
creases the amount of global SUSY to N = (2, 0) in order to describe a complex
geometry. For further simplification one can go to global N = (2, 2), then one
automatically describes the standard embedding. In the following we will intro-
duce these two formalisms and discuss their properties.

3.2.1 (2,2) SUSY in two dimensions

Probably the easiest way to think of N = (2, 2) in two dimensions is to take
the well known N = 1 SUSY formalism in four dinemsions and dimensionally

reduce it. For this we take the superspace coordinates xµ, ϑ± and ϑ
±
, and

drop the dependence of the superfields of two spatial coordinates. One can
think of it as compactifying on a torus and shrinking it to zero size. Then many
representations of the N = (2, 2) superalgebra in two dimensions can be deduced
from the respective N = 1 in d = 4 representations. Note that the internal parts
of the Poincaré algebra become central charge and R-symmetry generators. The
most common massless representations are

• The chiral multiplet Ψ = φ+ ϑ+ψ− + ϑ−ψ+ + ϑϑF with a complex scalar
φ, a non-chiral pair of complex fermions ψ± and a complex auxiliary scalar
F .

• The vector multiplet, here in WZ gauge, V = ϑ+ϑ̄+a++ϑ−ϑ̄−a−+ϑ−ϑ̄+σ+
ϑ+ϑ̄−σ̄+gauginos+ϑϑϑ̄ϑ̄D. The 4d vector boson is decomposed into left-
and right-moving d = 2 components a±, while the two internal components
build up a complex scalar σ. The auxiliary scalar D plays the same role
as in d = 4.

• The twisted chiral multiplet is a new feature in d = 2, i.e. it has no
counterpart in d = 4 N = 1. It fulfills a twisted chirality constraint
D̄+F = D−F = 0. In this context they are not discussed as independent
fields but appear as superfield strength of the vector multiplet, which for
Abelian gauge symmetries reads F = D̄+D−V .
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3.2 Gauged Linear Sigma Models

We will be interested in theories with a gauge group U(1)N so we label the vector
multiplets by V I with I = 1, . . . , N . Furthermore, N = (2, 2) SUSY contains a
global U(1)L × U(1)R R-symmetry under which the superspace coordinates ϑ±

are charged. They are chosen such that θ+ is only charged under U(1)R and θ−

under U(1)L. These symmetries can be used to enforce a superpotential with
finitely many terms which will turn out to be very useful.

Action

Since our aim is to take the IR limit at the end, it is sufficient to consider
only relevant and marginal terms for the action. Irrelevant terms, i.e. terms of
negative mass dimension, will go to zero in this limit. However, since chiral
superfields are of mass dimension zero in two dimensions, one can in principle
have polynomials of arbitrary high order as coefficients of all the terms, as long as
they are allowed by the symmetries. So in order not to have an infinite number of
parameters, we have to make some restrictions. First of all, we set the coefficients
of all kinetic terms to one. This way we might lose some information concerning
e.g. the target space metric, but we will see that most of the moduli can be
recovered in another fashion so we are still able to explore vast regions of the
moduli space.

One important piece of the action comes from the superpotential,

Lsuper = m

∫
dϑ+dϑ−W(Ψi) + h.c. , (3.47)

where W is a holomorphic polynomial in the superfields Ψi, andm is a parameter
of mass dimension one. The superpotential must be charged under U(1)L ×
U(1)R with charge (1, 1). It gives rise to the F -terms in the scalar potential and
fermionic bilinears,

Lsuper = m

(
∑

i

Fi
∂W
∂Ψi

+
∂2W

∂Ψi∂Ψj

ψ+
i ψ

−
j

)
+ h.c. . (3.48)

Another important piece of the action is the the twisted superpotential contain-
ing the super field strength,

Ltwisted =

∫
dϑ+dϑ̄−ρIF I + h.c. . (3.49)

Here a priori ρI are neutral holomorphic functions of the chiral superfields. In
compact Calabi–Yau compactification it turns out that these can only be con-
stant, ρ = a + iθ. In section 3.2.2 we show what happens when these terms
become field dependent in (2, 0) models. When one integrates over the Grass-
mann coordinates, one finds that this term contains the D-term and the field
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3 GLSM description of Resolved Toroidal Orbifolds

strength f , more precisely its (0, 1) component which makes it a topological
term.

Ltwist = aIDI + θIf I . (3.50)

After integrating out the auxiliary fields Fi and DI , the relevant parts of the
scalar potential are

Vscalar =
∑

I

e2I(D
I)2 +m2

∑

i

|Fi|2 , (3.51)

where eI is the dimensionful gauge coupling, DI =
∑

i q
I
i |φi|2 − aI and F ∗

i =
∂W/∂Φi .

The infrared limit can also be interpreted as sending eI and m to infinity. In
this limit we have to make sure that the parameters of the theory, i.e. the FI
parameter ρI and the coefficients in W do not renormalize. For the superpotental
this follows from the non renormalization theorem. In case of the FI term, one
can easily see that this imposes the tadpole cancellation condition

∑

i

qI
i = 0 , ∀I . (3.52)

Ground State Geometry

We want to discuss models which allow for a ground state with preserved SUSY
and a non trivial compact (possibly singular) vacuum manifold. This will, in the
conformal limit, lead to the interpretation of a string theory compactification.
To ensure this, some constraints on the model have to be imposed.

In typical CY GLSM constructions one chooses a certain set of chiral super-
fields to have charge (1, 1) under U(1)R × U(1)L and the rest to be neutral. In
the following the former will be denoted by Ca and the latter by Zi, with scalar
components ca and zi, respectively. Furthermore, the charges are chosen such
that there exists a basis of U(1)’s in which the charges of the Zi are positive and
those of the Ca are negative. This will ensure that the target space geometry
stays compact. Furthermore, we choose the number of Zi to be greater than
the number of Ca plus the number of U(1) gaugings. Then the most general
superpotential is of the form

W =
∑

a

Ca · Pa(Zi) , (3.53)

where Pa are polynomials with finitely many terms. The D-term equations can
then be written as

∑

i

qI
i |zi|2 +

∑

a

qI
a|ca|2 = aI . (3.54)
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3.2 Gauged Linear Sigma Models

When all aI are greater than zero, this will describe the geometric regime. Then,
the D-term (3.54) together with the gauge fixing of the U(1)N describes a sym-
plectic quotient. Thus, without the FCa-terms, the target space geometry is a
toric variety. Now we also have to take the FCa into account. Since these are
holomorphic polynomials in the coordinate fields zi, F

∗
Ca

= Pa(zi) , their zero
locus is a complete intersection in this ambient toric variety.

3.2.2 (2,0) SUSY in two dimensions

In true heterotic constructions, the left- and right-movers have different field
content. Whereas the right-moving fermions transform in the tangent bundle
of the compactification space, the left-movers live in the vector bundle that
describes a non-trivial gauge background. In (2, 2) SUSY theories, in which
these two are equal, we can thus only have heterotic models with standard gauge
embedding. To describe more general gauge backgrounds, we need to lower the
amount of SUSY to (2, 0).

The (2, 0) multiplets in two dimensions can best be understood by reduction
of the (2, 2) superspace by dropping the θ+,θ̄+ coordinates. This way we can
observe how the (2, 2) multiplets decompose.

The chiral (2, 2) multiplet decomposes into a (2, 0) chiral multiplet and a
chiral–fermi multiplet, Ψ(2,2) = Ψ(2,0) + θ+Λ. Concerning the degrees of freedom,
in (2, 0) theories one has to count left- and right-moving dof’s separately. This
is because the chirality of the fermions is in one to one correspondence to their
on-shell direction. Bosonic dofs, on the other hand, can always move in both
directions. Furthermore, since the SUSY only transforms the right-movers, it fol-
lows that only for them the on-shell fermionic and bosonic dofs have to match.
The (2, 0) chiral multiplet has one scalar and one right-moving Weyl fermion,
Ψ = z+θ−ψ−. The chiral fermi multiplet contains a left-moving fermion and the
auxiliary scalar, Λ = ψ+ + θ−F . Note that off-shell, one cannot distinguish be-
tween left- and right-moving dof’s anymore, however, still the amount of bosonic
and fermionic dofs agree.

Similarly, the (2, 2) vector multiplet decomposes into a (2, 0) vector (or gauge)
multiplet (V,A) and a fermi–gauge multiplet Σ,

V(2,2) = A+ θ+Σ + θ̄+Σ̄ + θ+θ̄+V(2,0) . (3.55)

Note that the bosonic gauge multiplets always come in pairs (V,A), where V
and A do not mix under SUSY transformations, however they transform un-
der the same (super) gauge transformations and thus need to appear together.
In detail, the gauge superfields transform with a chiral superfield, whereas the
fermi gauge multiplet transforms with a fermionic gauge transformation whose
gauge parameter is a chiral fermi field. In Wess–Zumino gauge, the superfield
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3 GLSM description of Resolved Toroidal Orbifolds

type dimension notation
R- gauge

δΞi

scalar

charge charge comp.

chiral 0
Ψa 0 qI

a - za

Φm 1 qI
m - cm

chiral fermi 1
2

Λα 0 QI
α M i

α(Ψa) -

Γµ 1 qI
µ M i

µ,m(Ψa)Φm -

Table 3.2: The (2, 0) chiral and chiral fermi superfield notation and their trans-
formation properties. δΞi

denotes the variation under fermionic gauge transfor-
mations.

expansions are

A = θ−θ̄−a− , (3.56a)

V = a+ + θ−λ̄+ + θ̄−λ+ + θ−θ̄−D , (3.56b)

Σ = θ̄−σ + θ−θ̄−λ− . (3.56c)

The degrees of freedom that are carried by these multiplets are all massive at
generic points in moduli space and thus become irrelevant in the infrared limit.
Instead they rather serve to introduce gauge symmetries, where here one must
distinguish between bosonic and fermionic gaugings. The bosonic gaugings act
in the usual way on both chiral superfields, whereas fermionic gaugings only act
on chiral fermi fields,

Ψa 7−→ eiq
I
aΘI

Ψa , Λα 7−→ eiQ
I
αΘI (

Λα +M i
α(Ψa)Ξ

i
)
, (3.57)

Here ΘI and Ξa are the bosonic and fermionic gauge parameter, respectively,
and Ma

α(Ψi) is a holomorphic function of the chiral superfields with charge QI
α.

Furthermore, we assign right-moving R-charges to the various fields. For a
geometric interpretation it is useful to assign R-charges zero and one to the
fields, and in the following we will distinguish them in the notation, see table 3.2.
Furthermore, for a compact target space, we will require the existence of a U(1)N

basis such that all qI
a > 0 and all QI

µ < 0, similarly to the (2, 2) case.

Action

We analyze the action and the resulting target space geometry and gauge bundle.
Most of the time we will work in the geometric regime where the FI parameters
are positive and the cm have zero vev. This is a rather non–trivial require-
ment and has to be checked for each model to be possible. The most generic
superpotential is

W(2,0) = m [ΓµP
µ(Ψa) + ΛαΦmN

α,m(Ψa)] , (3.58)
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3.2 Gauged Linear Sigma Models

where Pµ and Nα,m are holomorphic polynomials of charge −Qµ and −qm −Qα,
respectively, and m is the mass dimension one prefactor. This superpotential
must be invariant under fermionic gauge transformations, leading to the require-
ments

M i
µ,m(Ψa)P

µ(Ψa) +M i
α(Ψa)N

α,m(Ψa) = 0 , ∀m, i . (3.59)

In (2, 0) theories the chiral fermi multiplets carry the auxiliary fields F , thus for
each of them we get a holomorphic equation that must be fulfilled for a SUSY
vacuum. In the geometric regime, the terms F ∗

α = cmN
α,m(za) are automatically

zero, thus we are left with the geometric F -terms F ∗
µ = P µ(za). Thus, the

ground state geometry is a complete intersection of the hypersurfaces P µ = 0 in
an ambient toric variety defined by the coordinates zi and the U(1) gaugings.
The Calabi–Yau condition now reads

∑

a

qI
a +

∑

µ

QI
µ = 0 . (3.60)

To identify the gauge bundle, we have to analyze the massless left-moving
fermions in the chiral fermi multiplets. The fermion components of the Γµ get a
mass term from the superpotential and thus are removed in the conformal limit.
Thus we have to check which of the fermions in Λα remain massless. For a mass
term they have to pair up with right-moving fermions which are contained in the
chiral and fermi-gauge multiplets. From the superpotential (3.58) we see that
in the geometrical phase we only get non-vanishing fermionic bilinears with the
fields Φm but not with Ψa. Furthermore, from the fermi gauge covariant kinetic
terms we get fermionic bilinears with coefficients 2 M i

α(Ψa). In other words, the
massless left-moving fermions can be thought of as the cohomology of the monad
complex,

0 −→ O⊕#ferm.gaug. M i
α−→
⊕

α

O(Qα)
Nα

m−→
⊕

m

O(−qm) −→ 0 . (3.61)

Then, the coefficients in the polynomials M i
α and Nα

m represent the gauge bundle
moduli. Accordingly, properties of the gauge bundle such as characteristic classes
and cohomology groups can be deduced from this definition. We also find that
there is a separation in the roles of the fields. The fields Ψ and Γ, combined
with the bosonic gaugings, are responsible for the target space geometry and
its tangent bundle, whereas the fields Λ and Φ, together with the fermionic
gaugings, build up the vector bundle over the geometry.

Anomaly Cancellation

Since (2, 0) theories are chiral, one has to deal with gauge anomalies that can
render the theory inconsistent. More precisely, when we define the effective

2Alternatively one can think of these fermionic dofs being gauged away.
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3 GLSM description of Resolved Toroidal Orbifolds

action of the gauge fields as

eiSeff =

∫
DX eiScl , (3.62)

where X represents all chiral fields in the theory, the gauge anomalies can be
written as

δΘISeff = 2πi

∫
ω2(Θ) . (3.63)

The two-form ω2 is most elegantly represented by the anomaly polynomial ω4

via the descent equations

δΘIω3 = dω2 , ω4 = dω3 . (3.64)

In (2, 0) GLSMs, only the fermions are chiral, and the left- and right-moving
fermions contribute to the anomaly with different sign. Thus we find

ω4 =
1

2
AIJ

f I

2π
∧ fJ

2π
, AIJ = qI · qJ −QI ·QJ . (3.65)

Here f I are the worldsheet gauge field strengths and the dots denote summations
over all chiral or chiral fermi fields, respectively.

The worldsheet gauge anomalies are directly related to the anomalies in the
low energy effective target space theory. To establish this link, one finds that the
worldsheet U(1) gaugings correspond to divisors or cohomology classes of (1, 1)
forms DI . More precisely, one finds that the world sheet gauge field strength f I

is the pullback of a representative of such a (1, 1) form, i.e. f I = Ψ∗(DI). We
rewrite the anomaly as

ω4 ∝ Ψ∗

(
(
qI
aq

J
a −QI

µQ
J
µ

)
DIDJ −

(
QI

αQ
J
α − qI

mq
J
m

)
DIDJ

)

∝ Ψ∗( trR2 − trF2
)
,

(3.66)

with the target space curvature R and the gauge flux F . Thus, when the world-
sheet theory is free of gauge anomalies, then on the target space the Bianchi
identity of the Kalb–Ramond field strength is fulfilled. However, for N gaug-
ings, the WS anomaly freedom imposes N(N + 1)/2 conditions on the charges,
while on the target space we integrate the Bianchi identity as a (2, 2) form giving
N conditions when integrated over the N divisors. In that sense the GLSM con-
ditions are more stringent. But the N integrated Bianchi identities change when
e.g. going through a flop transition, thus a bundle that seems to be consistent
in one phase might become inconsistent in another one. Anomaly freedom, as
a WS consistency condition, ensures a consistent bundle in all phases even in
singular and non-geometrical ones.
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3.2 Gauged Linear Sigma Models

If one has a theory with AIJ 6= 0, there can still be the chance to cancel
the WS anomalies by a Green–Schwarz like mechanism. For a more detailed
discussion, see [42, 43]. For this consider a field dependent FI term in a (2, 0)
model which is,

LFI =

∫
dθ−ρI(Ψa)F I + h.c. = Re(ρI)D

I + Im(ρI)f
I , (3.67)

with super gauge field strength F I . Thus, if ρI transforms with a shift under
gauge transformations,

ρI(Ψa) 7−→ ρI(Ψa) + iTIJα
J , (3.68)

αJ = ImΘJ
∣∣
θ=0

being the non-super gauge parameter, we get a contribution to
the variation of the effective action. Although the anomaly coefficients AIJ are
symmetric, for the TIJ this need not be the case. Instead, their lack of symmetry
can be repaired by the so-called V -A couplings,

LV A =

∫
d2θ−cIJV

IAJ , (3.69)

with antisymmetric coefficients cIJ = −cJI . Their variation is δαSV A = cIJ

∫
f I

2α
J ,

thus when we choose cIJ = (TIJ − TJI) /2, the variation of SFI + SV A becomes
symmetric. Then the total anomaly cancellation condition reads ,

AIJ + cJI + TIJ = 0 . (3.70)

In order to realize a shift transformation of the FI terms one can either in-
troduce new axionic superfields as was done in [48]. One can also take (linear
combinations of) logarithms of a homogeneous polynomial of the linearly trans-
forming chiral fields that one already has,

ρI(Ψa) = tIX log
(
RX(Ψa)

)
, TIJ = tIXqJ (RX) . (3.71)

The coefficients tIX are subject to quantization conditions which come from
gauge instantons on the worldsheet. More precisely, an instanton leads to a flux
quantization condition of the form qI

a

∫
f I

2 ∈ 2πZ, thus for the partition function
to be invariant under the shift of the logarithm log 7→ log +2πi, we roughly
find that the charges tIXqJ(RX) (here without sum over X) must be quantized
like multiples of the gauge charges. In order to find the precise quantization
conditions one must study the allowed instanton configurations which is very
model dependent.

We interpret these results on the target space. The coefficients in the com-
plexified Kähler form now become position-dependent,

J + iB2 =
∑

I

ρI(za)DI =
∑

I

(bI(za) + iβI(za))DI , (3.72)
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3 GLSM description of Resolved Toroidal Orbifolds

which implies that the Kähler form is no longer closed. At the same time we
get a topologically non trivial H3 background, i.e. the mainfold is equipped with
a torsional connection. To illustrate what happens, we assume for simplicity
ρ = ρ0 + log(Ψ1). Then the Kalb–Ramond field becomes B2 = log(z1/z̄1)D and
we find

dB2 =

(
1

z1
dz1 −

1

z̄1
dz̄1

)
D , ddB2 ∝ δ(z1)dz1 ∧ dz̄1 ·D . (3.73)

The physical interpretation of this is that the Kalb–Ramond field is magnetically
sourced by an object that is localized on the intersection of D with z1 = 0. In
non–perturbative heterotic M-theory such objects in fact exist and are called
NS5 branes3. Furthermore, the presence of NS5 branes modifies the Bianchi
identity of the H3 field. Starting from its definition

H3 = dB2 + ωCS,L
3 − ωCS,YM

3 , (3.74)

we look at the class of dH3,

0 = [dH3] = [ NS5 branes ] + [trR2] − [trF2], (3.75)

This is reproduced by the anomaly cancellation condition (3.70) when multi-
plying it by the comology classes DIDJ . The term AIJ encodes as usual the
Chern characters of the tangent- and vector bundle, see (3.66), the cIJ term
vanishes due to symmetry, and the TIJ term encodes the homology class of the
NS5 branes.

To see the implications on the geometry, we take a look at the D terms. Due
to SUSY they get a contribution from the log term of the form,

∑

a

qI
a|za|2 = bI +

∑

X

tIX log(|RX(za)|) . (3.76)

This shows that the geometry gets deformed as one approaches the NS5 brane
locus RX = 0 which can be interpreted as geometric backreaction. Furthermore,
this locus is removed from the target space, as the log approaches infinity, which
hints on the non–perturbative nature of the NS5, brane, i.e. it cannot properly
be described by a perturbative WS theory.

3.3 (2,2) Models of Resolved Toroidal Orbifolds

Now we have all ingredients to construct the resolutions of toroidal orbifolds. For
this, we first have to take a look at what orbifolds are possible to realize. Since
most six-tori are not realizable as a complete intersection in a toric variety,

3Sometimes they are also called M5 branes or H5 branes.
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

Point twist T 6 torus exc. Invisible moduli Indistinguishable

group vector(s) lattice coord. h
1,1
off–diag h

1,2
twisted fixed points/toriZ3

1
3
(1, 1,−2) A3

2 27 6 0 0Z4
1
4
(1, 1,−2)

D2
2 × A2

1 23 2 6 1 × 2 T

D2 × A1 × A3 12 2 2 8 × 2 P

A2
3 8 2 0 4 × 4 PZ6−I

1
6
(1, 1,−2) G2

2 × A2 17 2 5 1 × 3 T , 1 × 2 PZ6−II
1
6
(1, 2,−3) G2 × A2 × A2

1 32 0 10 0Z2 × Z2

1
2
(1,−1, 0),

A6
1 48 0 0 0

1
2
(0, 1,−1)Z2 × Z4

1
2
(0, 1,−1),

D2
2 × A2

1 57 0 0 1 × 2 T
1
4
(1,−1, 0)Z2 × Z6−I

1
2
(0, 1,−1),

G3
2 26 0 0 3 × 3 T , 1 × 2P

1
6
(1, 1,−2)Z2 × Z6−II

1
6
(1,−1, 0),

G2
2 × A2 46 0 2 1 × 3 T

1
2
(0, 1,−1)Z3 × Z3

1
3
(1,−1, 0),

A3
2 81 0 0 0

1
3
(0, 1,−1)Z3 × Z6

1
3
(0, 1,−1),

G2
2 × A2 65 0 1 2 × 2 T , 3 × 2 P

1
6
(1,−1, 0)Z4 × Z4

1
4
(1,−1, 0),

D3
2 87 0 0 0

1
4
(0, 1,−1)Z6 × Z6

1
6
(1,−1, 0),

G3
2 80 0 0 1 × 2 P

1
6
(0, 1,−1)

Table 3.3: This Table shows toroidal orbifolds for which we can construct fully
resolvable GLSMs. It shows all maximal, factorized models plus two non-
factorizable Z4 models. The column labeled “exc. coord.” indicates the num-
ber of exceptional coordinates (which come with the same number of gaugings
and FI-parameters). The two columns labeled “invisible moduli” indicate the
amount of geometric moduli which are not explicitly visible in the GLSM for-
mulation: off–diagonal untwisted Kähler moduli and twisted complex structure
moduli. The final column gives the number of indistinguishable fixed points (P)
and fixed tori (T) in these construction.

we have to focus on those which we can realize, namely products of two-tori.
Therefore we can a priori only obtain factorizable orbifolds, i.e. those for which
the lattice factorizes into three orthogonal two-dimensional lattices, each of which
lives in one of the complex planes on which the point group acts diagonally. For
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3 GLSM description of Resolved Toroidal Orbifolds

such orbifolds the order of the point group as it acts in each two-torus is restricted
to be 2, 3 4 or 6, corresponding to the four elliptic curves we constructed in 3.1.2.
More concretely, if all point group elements are of the from

P ∋ θ : (z1, z2, z3) 7−→
(
e2πim1

θ/N1z1, e
2πim2

θ/N2z2, e
2πim3

θ/N3z3

)
, (3.77)

with minimal choices for the orders Ni, then as a starting point we choose the
six torus T 2

N1
× T 2

N2
× T 2

N3
with coordinates zai where a = 1, 2, 3 and i = 1, 2, 3

if Na 6= 2 and i = 1, 2, 3, 4 if Na = 2. Then we say that the point group acts
on the ath torus in N th

a order. In (2, 2) models these coordinates are promoted
to chiral superfields which we denote by Zaρ. In general we will use calligraphic
capital letters for superfields and normal minuscules for their scalar component.
In this convention we denote a certain fixed point by (i, j, k) corresponding to
z1i = z2j = z3k = 0. For fixed planes there will be one index less. For each
torus we require one gauging, denoted by U(1)Ra and with FI parameter aa,
and one (or two) superfields for the hypersurface constraints, called Ca ( and
C′

a ). In (2, 0) models these fields will be chiral fermi fields since they induce the
holomorphic hypersurface constraints.

By construction these six tori have many symmetries which appear as phase
rotations of the fields. Besides the n-volution group, which comprises the n-
volutions of each two-torus, there is a potential point group ZN1

× ZN2
× ZN3

.
However, it is always a subgroup of this group which preserves the Calabi–
Yau condition and thus is suitable for supersymmetric string model building. A
summary of all realizable point groups and their factorizable geometries is shown
in table 3.3.

Now, in order to generate these discrete symmetries we have to add exceptional
fields Xr together with exceptional gaugings U(1)Er and associated FI parameters
br, such that for xr 6= 0 the U(1) gets broken and the discrete symmetries are
recovered and modded out. This is quite analogous to the local resolution.
The index r will encode the information on the point group element which is
generated and the localization of the respective fixed point/plane in the torus.
It will typically look like k, αβγ where k labels the twisted sector corresponding
to the point group element, and αβγ are the information which of the z1α, z2β

and z3γ fields are charged under the U(1).
For example, for a T 6/Z4 orbifold we need exceptional coordinates for the θ

and θ2 sector. Thus for the θ sector we can introduce exceptional coordinates
x1,αβγ with α, β = 1, 2 and γ = 1, 2, 3, 4. The θ2 sector leaves the third torus
invariant, thus we can have exceptional coordinates x2,αβ with α, β = 1, 2, 3. A
detailed discussion of the T 6/Z4 models is found in section 3.3.3.

One already sees that we have a huge playground to create models which
will differ in the amount of exceptional gaugings. In the classification of such
models the crucial point are the n-volutions. They either remain symmetries of
the theory, i.e. they describe how different fixed points behave in the same way,
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

or they are modded out, then the fixed points might have different properties.
However, it might happen that via the n-volutions some fixed points are created
which do not stem from one exceptional gauging and thus have no exceptional
coordinate. These fixed points can therefore not be resolved within these models,
however, one can always add the required coordinates to make the model fully
resolvable. So for a complete classification, one would distinguish the models in
the choice of fixed points which can be resolved and which not. If in a model all
fixed points can be resolved, we will call it “fully resolvable”.

In general we will always have the minimal models, in which none of the n-
volutions is modded out. They have a minimal field content in order to describe
a smooth geometry but also treat all fixed points in the same way. Thus they are
the best choice to construct models without Wilson lines. Then, there are the
maximal, fully resolvable models, which have maximal field content and where
almost4 all fixed points and tori have their own exceptional gauging. But the
generality comes at the cost of complexity which makes computations e.g. of
cohomologies more involved. Then, there are models in between, which can be
useful for models in which a Wilson line is not switched on. Then the remaining
n-volution symmetry appears as part of a potential family symmetry.

3.3.1 Example: Resolution of T 6/Z3

The easiest and best studied orbifold is the Z3 orbifold [14–16] so we will use it
to demonstrate the construction of toroidal orbifold resolutions. This example
will already be useful to demonstrate many properties of the toroidal orbifold
resolution GLSM constructions. We will show how the geometries emerge from
the choices of coordinates for the minimal and maximal model. We also will
discuss models in between and find that some non-factorizable lattices can be
generated. We will study the intersection ring of the model in the smooth phase,
and finally we will explore the moduli space of certain simple models.

As a warm up we present the GLSM for a local C3/Z3 singularity resolution.
The point group acts on the coordinates as

θ : (u1, u2, u3) 7−→ (ζu1, ζu2, ζu3) , ζ = e2πi/3 . (3.78)

In order to resolve the singularity we add one exceptional gauging and coordinate
corresponding to the θ1 sector, and get the charge assignment,

superfield U1 U2 U3 X
U(1)E 1 1 1 −3

,

4For Z4 and Z6 orbifolds it occurs that some fixed points or fixed tori are always indistin-
guishable, i.e. they are always described by the zero set of the same coordinates. This will
be elaborated further in section 3.3.3.
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3 GLSM description of Resolved Toroidal Orbifolds

which leads to the D-term

|u1|2 + |u2|2 + |u3|2 − 3|x|2 = b . (3.79)

The phase structure is simple since there is just one FI parameter. For b < 0, we
find that x 6= 0 which induces the θ action on the coordinates ua with fixed point
(0, 0, 0). For b > 0, this fixed point is removed and replaced by the exceptional
divisor E = {x = 0} which is a P2.

In order to get an orbifold of the full torus we start with the six torus T 2
3 ×

T 2
3 ×T 2

3 . It has superfields Zaρ with a, iρ = 1, 2, 3 and Ca, a = 1, 2, 3 with charge
assignment shown in table 3.4. The superpotential, constrained to linear order
in C by R-symmetry, is

Wtorus =
∑

a,i

CaZ3
ai , (3.80)

and we get the D-terms

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = aa , a = 1, 2, 3 . (3.81)

In the geometric phase aa > 0 from the F -terms we get ca = 0 and the zai become
homogeneous coordinates for the elliptic curves P2[3]. Since we are interested in
a Z3 orbifold we focus on discrete symmetries which are generated by elements
of the form

θαβγ : (z1α, z2β, z3γ) 7−→ (ζz1α, ζz2β, ζz3γ) , α, β, γ = 1, 2, 3 . (3.82)

Although this might look like a Z27
3 , it is in fact only a Z4

3 symmetry generated
by the elements

θ = θ111 , α1 = θ−1
111θ211 , α2 = θ−1

111θ121 , α3 = θ−1
111θ112 , (3.83)

since up to U(1)Ra rotations we find θαβγ = θαα−1
1 αβ−1

2 αγ−1
3 . Accordingly we will

denote this symmetry by Z3,orbi × Z3
3−vol. Then, adding an exceptional gauging

U(1)Eαβγ
with coordinate xαβγ will induce the θαβγ action.

Maximal Model

We start with the discussion of the most general, the maximal, fully resolvable
model. The superfield content and charge assignment is shown in table 3.5. We
have 3 + 27 gaugings, three of them corresponding to the construction of the
torus and 27 for the local singularities. Accordingly their D-terms divide up
into the elliptic curve D-terms and the resolved singularity D-terms :

|za1|2 + |za2|2 + |za3|2 − 3|ca|2 = aa a = 1, 2, 3 , (3.84a)

|z1α|2 + |z2β |2 + |z3γ |2 − 3|xαβγ|2 = bαβγ α, β, γ = 1, 2, 3 . (3.84b)
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

Superfield Z1α Z2β Z3γ C1 C2 C3

R1 1 0 0 −3 0 0

R2 0 1 0 0 −3 0

R3 0 0 1 0 0 −3

Table 3.4: Charges of the superfields in the GLSM description of the T 6 torus
possessing a Z3 orbifold symmetry.

The superpotential for the elliptic curves have to be modified by the X fields in
order to be gauge invariant,

Wmax = C1

∑

α

Z3
1α

∏

βγ

Xαβγ + C2

∑

β

Z3
2β

∏

αγ

Xαβγ + C3

∑

γ

Z3
3γ

∏

αβ

Xαβγ . (3.85)

Here we see that mixed monomials in the Zai could not be made gauge invariant
by the X s which is why they are left out from the beginning. This restriction
reflects the fact that the complex structure of the two tori is fixed to be τ = ζ .
From this we get the geometric F -terms

F ∗
C1

= z3
11

∏

β,γ

x1βγ + z3
12

∏

β,γ

x2βγ + z3
13

∏

β,γ

x3βγ , (3.86a)

F ∗
C2

= z3
21

∏

α,γ

xα1γ + z3
22

∏

α,γ

xα2γ + z3
23

∏

α,γ

xα3γ , (3.86b)

F ∗
C3

= z3
31

∏

α,β

xαβ1 + z3
32

∏

α,β

xαβ2 + z3
33

∏

α,β

xαβ3 , (3.86c)

plus additional F -terms FZai
and FXαβγ

. The latter ones are linear in ca and
will therefore vanish in the geometric regime which is roughly given by aa > 0
and aa ≫ bαβγ . This regime includes both the orbifold and the full resolution
phase, as well as all possible partial resolutions for which some b are positive
while others remain negative.

The emergence of the geometry is best understood using the holomorphic
quotient. For this we start in the orbifold regime where all bαβγ < 0. The D-
terms then force xαβγ 6= 0 and we can perform C∗

αβγ scalings to set them equal to
one, leaving a discrete symmetry generated by the θαβγ . Thus we can understand
the geometry in terms of the zai coordinates with the discrete symmetry being
modded out. Then we immediately see that (3.86) reduce to the hypersurface
equations of the elliptic curves T 2

3 on which the discrete symmetries act likeZ3,orbi × Z3
3−vol. In particular, each θαβγ has fixed points at z1α = z2β = z3γ = 0

which all get identified by the 3-volutions αa.
Now we can start to blow-up the fixed points individually by setting the ap-

propriate bαβγ > 0. Then the corresponding fixed points are no longer able to
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3 GLSM description of Resolved Toroidal Orbifolds

fulfill the D-term equations and are replaced by the exceptional divisor Eαβγ =
{xαβγ = 0}. As long as the bαβγ are small compared to the aa, the neighborhood
of the exceptional divisors looks like the neighborhood of the fixed points. In
particular, the exceptional divisors do not intersect each other.

Next, we want to qualitatively find the boundaries of the blow-up and partial
blow-up phases, in which the picture of locally happening resolutions breaks
down. For this, in the orbifold and blow-up regime we require that coordinates
which carry different labels of the same type (e.g. pairs with α = 1, 2 like z1,1, z1,2

or z1,1, x211 or x111, x211) must not vanish simultaneously. This can be achieved by
conditions of the form aa ≫ bαβγ on the FI parameters. We explain this shortly.
First of all, sitting on a fixed point or the exceptional divisor, respectively, implies

|z1,α|2 ≤ max {bαβγ , 0} . (3.87)

In blow-up, the D-term together with the exceptional divisor condition xαβγ = 0
imply (3.87) with bαβγ being the maximum. If the fixed point is not resolved,
the fixed locus equation z1,α = 0 also trivially implies (3.87). Let’s look what
happens if we want to sit at the same time at two fixed points / exceptional
divisors in one plane. This means that two coordinates with different labels, like
e.g. one coordinate with α = 1 and one with α = 2 are zero. Then the F -term
implies that one of the coordinates with α = 3 must also be zero. Thus we get
three equations of the form (3.87) which inserted into the U(1)R1

D-term imply

a1 = |z1,1|2 + |z1,2|2 + |z1,3|2 ≤ max {b1β1γ1
, 0} + max {b2β2γ2

, 0} + max {b3β3γ3
, 0}

for some βi, γi. In particular, in full blow-up, these conditions are

a1 ≤ b1β1γ1
+ b2β2γ2

+ b3β3γ3
(3.88)

The precise boundaries of the blow-up phases are rather complicated to depict
due to the high dimensionality of the moduli space. However, such boundaries
always appear whenever the bαβγ become of the order of the aa. A more precise
discussion is performed in section 3.3.2.

Inherited divisors In [47] three types of divisors were introduced, namely ordi-
nary, exceptional and inherited divisors. The ordinary and exceptional divisors
can in the GLSM models be described nicely as zero loci of homogeneous co-
ordinates, i.e. ordinary divisors are Dai := {zai = 0} and exceptional divisors
are Er,ijk := {xr,ijk = 0}. For the inherited divisors Ra the situation is more
complicated.

To deduce the proper form of the inherited divisors Ra in the GLSM and show
that it has the desired properties, we start from their definitions on the torus

Ra :=
2⋃

k,l=0

{
ua = ζk ũa + l

ζ − 1

3

}
, (3.89)
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

Superfield Z1i Z2j Z3k C1 C2 C3 Xijk

R1 1 0 0 −3 0 0 0

R2 0 1 0 0 −3 0 0

R3 0 0 1 0 0 −3 0

Eαβγ δiα δjβ δkγ 0 0 0 −3 δiαδjβδkγ

Table 3.5: Charges of the fields needed in the maximal description of the resolved
T 6/Z3 orbifold. The indices i, j, k, α, β, γ run from 1 to 3.

where ũa are some constants. The union over the nine distinct pieces is necessary
for Z3,orbi × Z3−vol invariance. Via the Weierstrass map (3.26), we can translate
them into

ya = pa va , ya (1 − i pa) = va (pa − 3i) , ya (1 + ipa) = va (p+ 3i) , (3.90)

with pa := ℘′(ũa). Each of these terms is Z3,orbi invariant and thus represents
three pieces inside (3.89). To make the equations invariant under Z3,orbi ×Z3−vol

we multiply them to obtain ,

0 = −(v3
a + vay

2
a)
(
p3

a + 9pa

)
+ (9v2

aya + y3
a)
(
1 + p2

a

)
. (3.91)

Using the Weierstrass equation and the substitution (3.26) we can turn these
equations into polynomials in zai,

0 =
(
p3

a + 9pa

)
z3

a1 + 6
√

3
(
1 + p2

a

)
·
(
z3

a2 − z3
a3

)
. (3.92)

In the GLSM, to make it fully gauge invariant, we also have to include the xijk

coordinates. Then this corresponds to a homogeneous equation of the same
degree as the F -term which cuts out the torus. The result is

R1 :=

{
t11 z

3
11

∏

j,k

x1jk + t12 z
3
12

∏

j,k

x2jk + t13 z
3
13

∏

j,k

x3jk = 0

}
, (3.93)

and R2, R3 similarly. The coefficients tai(ũa) encode the information about the
position of the inherited divisors set by the constants ũa.

From this we can easily read off the linear equivalence relations as each mono-
mial defines one particular sum of divisors,

R1 ∼ 3D11 +
∑

j,k

E1jk ∼ 3D12 +
∑

j,k

E2jk ∼ 3D13 +
∑

j,k

E3jk , (3.94)

and similarly for the divisors R2 and R3. In this way we recover the linear
equivalences from [47].
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3 GLSM description of Resolved Toroidal Orbifolds

The intersection ring With the divisors and linear equivalences at hand we
can determine the intersection ring in a GLSM manner. This allows us to prove
the results on the intersection ring in reference [47] which were obtained by
the means of an auxiliary polyhedron. For this we first obtain the intersection
numbers of three distinct divisors by counting the number of solutions of the
D- and F -term equations. Then we use linear equivalences to determine the
self–intersection numbers. In fact it is sufficient to give intersection numbers of
a real basis of divisors. Such a basis is given by the divisors Ra, a = 1, 2, 3 and
all Eijk. We will systematically derive their intersection numbers here in the
blow–up phase only. This phase is roughly determined by 0 < b ≪ a, where
b and a represent any FI parameter of the respective type. In this phase the
geometry is a smooth Calabi–Yau space for which intersection numbers can be
compared to the results of Lüst et. al. [47].

First of all, we find that in the blow–up regime, Ra does not intersect with
Eijk. To show this we take e.g. E111 and R1. We insert the condition x111 = 0
into the defining equation (3.93) for Ra and the F -term (3.86) and find the
conditions

z3
12

∏

j,k

x2jk = z3
13

∏

j,k

x3jk = 0 . (3.95)

Thus, in each monomial one field must be zero which gives us three different
classes of cases, roughly described by “z = z = 0”, “z = x = 0” or “x = x = 0”.
The first one is z12 = z13 = 0. Then, theD-term of U(1)E111

−U(1)R1
implies that

b111 > a1, which is beyond the blow–up regime. In the second class we choose
e.g. z12 = x311 = 0 to find that the D-term of U(1)E111

+ U(1)E311
− U(1)R1

implies b111 + b311 > a1, which again violates the blow–up phase condition. The
third class is handled analogously. In the same way we see that Ra and Dai do
not intersect. This by linear equivalences implies that Ra does not self-intersect.

Next we focus on the intersection R1R2R3. For this we impose three condi-
tions of the form (3.93), one for each torus. As argued above on Ra all xijk

have non–zero vevs, we fix their phases against the U(1)E gaugings, thus leav-
ing a Z3,orbi × Z3

3−vol symmetry acting on the zai. Then, the inherited divisor
constraints together with the three F -terms can be linearly combined to elim-
inate all za1 and we get three equations which are cubic in za2 and za3. Thus
they factorize into three pieces, giving three solutions each. Now we insert these
solutions into the original equations, which are cubic in za1 and thus again give
three solution for each za1. Altogether this gives 36 = 729 solutions. The discrete
symmetries identify them in groups of 34 = 81 each, such that the intersection
number is R1R2R3 = 9.

Furthermore, an intersection of Eijk and Ei′j′k′ where (i, j, k) 6= (i′, j′, k′) would
also lead to a violation of the blow–up phase condition. The argumentation goes
similarly to the one for RaEijk = 0. Finally, in the blow–up phase, we find the
intersection number D1iD2jD3k = 0, since at a common intersection the D-term
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

of U(1)Eijk
would contradict the blow–up condition bijk > 0. Inserting linear

equivalences shows,

27D1iD2jD3k =
(
R1 −

∑

β,γ

Eiβγ

)
·
(
R2 −

∑

α,γ

Eαjγ

)
·
(
R3 −

∑

α,β

Eαβk

)

= R1R2R3 − E3
ijk ,

(3.96)

which implies that E3
ijk = 9. Thus we have determined the complete intersection

ring.
To sum up, the non–vanishing intersection numbers of inherited and excep-

tional divisors in the blow–up phase (0 < b≪ a) are

E3
ijk = 9 , R1R2R3 = 9 . (3.97)

Intersection numbers containing ordinary divisors are obtained using linear equiv-
alences. Hence, in the GLSM we have rigorously confirmed the intersection
numbers obtained in [47].

Minimal Model

For the T 6/Z3 orbifold one can construct a minimal fully resolvable model by
just having one exceptional gauging U(1)E111

with coordinate x111. The model
obtained this way was used in [51] for cohomology computations. The charge
assignment is the same as in table 3.5, but with αβγ only being equal to (1, 1, 1).
In this case the geometry is the same as in the maximal model, but the way it
is organized is quite different. The geometric F -terms are

F ∗
C1

= z3
11x111 + z3

12 + z3
13 , (3.98a)

F ∗
C2

= z3
21x111 + z3

22 + z3
23 , (3.98b)

F ∗
C3

= z3
31x111 + z3

32 + z3
33 , (3.98c)

whereas the D-terms are a subset of the maximal model D-terms. In general
one could now allow for mixed monomials betweed za2 and za3, but a GL(2,C)
rotation can always bring it back to the form (3.98). In particular, such mixed
terms would not change the complex structure of the torus. For b111 < 0 the
coordinate x111 must not vanish. Then one can use U(1)E111

to rotate it to the
positive real axis, leaving a Z3 ambiguity, and the associated D-term fixes its
length. Therefore the geometry is described just by the coordinates zaρ with
the leftover Z3 acting on them as za1 7−→ ζza1. The fixed points are clearly at
z11 = z21 = z31 = 0. Inserting these in the F -terms, we find that they factorize
into three pieces, stating that there are three separated solutions to each of
them, za2 = −ζkza3, k = 1, 2, 3. So we have found 27 fixed points which are all
described by the zero locus of the same homogeneous coordinates.
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3 GLSM description of Resolved Toroidal Orbifolds

In the blow-up regime, where 0 < b111 ≪ aa, the singularities are removed
and replaced by the exceptional divisor E111 = {x111 = 0}. Inserting the divisor
equation into the F -terms yields the same factorization so we deduce that the
divisor consists of 27 separated pieces, each replacing one of the singularities. In
section 3.3.2 we will focus a bit more on the precise phase structure of this model
and in particular explore what happens if one overshoots the blow-up procedure.

Although topologically the target spaces of the minimal and maximal models
are the same, the nomenclature for the divisors is quite different. We already saw
that the one exceptional divisor in the minimal model represents the union of all
exceptional divisors in the maximal model. Due to the asymmetric roles which
the coordinates za1 and zaρ, ρ = 2, 3 play, their zero locus divisors will also be
different. For Da1 = {za1 = 0} we find that the ath F term factorizes in the same
way as before. So this divisor consists of three pieces, each of which is located in
the ath torus at one of the former fixed point loci. Comparing this to the maximal
model, it represents the sum over all three inherited divisors in this torus. Finally,
the coordinates za2 and za3 are of the same charge, thus we can construct a
divisor as the zero locus of a two term polynomial D̃a = {t2za2 + t3za3 = 0}. The
coefficients tρ can be varied continuously thus moving the divisor around on the
ath torus. This shows that the divisor is indeed to be interpreted as an inherited
divisor, which in the maximal model required a more elaborate polynomial. We
summarize the correspondence.

minimal model divisor maximal model divisor
E111

∑
αβγ Eαβγ

Da1

∑
ρDaρ

D̃a
∼= Da2

∼= Da3 Ra

The linear equivalences between these divisors, as shown in equation (3.94) are
also valid here. To express them in the minimal model language, one has to sum
over the index ρ and one indeed finds 3Da1 + E111 ∼ D̃a.

Models in Between

We have just presented two of the many models that can be constructed in this
way. The basic ingredient is always the six-torus with homogeneous coordinates
zaρ and the F -term equations. Then one could add in principle an arbitrary
subset of the coordinates xαβγ with associated gaugings, which would all result
in different T 6/Z3 orbifolds. This gives a total of 227 − 1 models5 so it is by
far not desirable to discuss all of them. Instead, due to the high symmetry of
the Z3 orbifold, we can find a classification of all these models. The result is
summarized in table 3.6.

5The one which is subtracted represents the case without x fields at all. This is simply the
six-torus.

56



3.3
(2,2)

M
o
d
els

of
R

esolved
T
oroid

al
O

rb
ifold

s

Exceptional
Discrete Group

FP Sets
Lattice

Fully resolvable

coordinates Groups Singular by adding

x111 – 1 × 27 0 A2 ×A2 × A2 –

x111, x211

Z3 3 × 9 9

A2 ×A2 × A2 x311

x111, x221 F4 ×A2 x331

x111, x222 E6 x333

x111, x211, x121

Z3 × Z3 9 × 3 18

A2 ×A2 × A2
x131, x221, x231,

x311, x321, x331

x111, x221, x112 F4 ×A2
x113, x222, x223,

x331, x332, x333

x111, x221, x212 no Lie lattice
x123, x133, x232,

x313, x322, x331

x111, x211, x121, x112 Z3 × Z3 × Z3 27 × 1 23 A2 ×A2 × A2 rest

Table 3.6: This table summarizes the structures that can be obtained upon inclusion of exceptional gaugings. The first
column specifies which exceptional fields xαβγ have to be introduced for each class. The second column gives the number
of discrete Z3 actions which are induced in addition to the orbifold action. The third column specifies how the 27 fixed
points are grouped and how many of these cannot be blown up and thus stay singular. The fourth column specifies the Lie
lattice underlying the torus in the various cases. In the fifth column, we specify which additional exceptional coordinates
have to be included in order to be able to completely blow-up the geometry.
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3 GLSM description of Resolved Toroidal Orbifolds

As a central criterion in the classification we take the discrete symmetries
which remain from the U(1)Er when xr 6= 0, after fixing the xr value, and act
on the zaρ. So for the classification we take all models in the orbifold phase. In
principle each such U(1)Er generates a Z3 symmetry, but it can come quickly to
redundancies as one increases the number. The limit of such discrete symmetries
is in the maximal model, where we found a Z3,orbi × Z3

3−vol. Thus each model
in between has a subgroup of this. Since the Z3−vol only arise from two or more
exceptional gaugings simultaneously, the group is always of the form Z3,orbi ×Zk

3−vol where k = 0, 1, 2, 3. For k = 0 one finds only the minimal model, up to
equivalence.

To study the k = 1 models, we first add one more exceptional coordinate, so
w.l.o.g. we use the coordinates x111 and xαβγ for fixed αβγ. This generates oneZ3−vol with element θ111θ

2
αβγ so for the classification one has to analyze how it

acts.

• If only one of the indices αβγ differs from one, the Z3−vol shifts in just one
torus. We find again the factorizable orbifold, but now the fixed points
can be distinguished by their locus in the first torus. Such a model could
describe a theory with one Wilson line switched on.

• If two indices αβγ differ from one, we get a shift in two tori simultaneously,
which allows for the following interpretation. If one starts with the factor-
izable torus and first mods out this Z3−vol on obtains a non-factorizable
torus. Thus, modding out the Z3,orbi will result in a non factorizable orb-
ifold. In appendix B we show that this is the orbifold based on the Lie
algebra lattice A2 ×F4. Furthermore we show that this lattice can contin-
uously be deformed to the A3

3 lattice while preserving the Z3,orbi symmetry
by varying the off-diagonal Kähler moduli. We will refer to such an orb-
ifold as non-factorized, as opposed to truly non-factorizable orbifolds, for
which such a deformation is not possible.

• If all indices αβγ differ from one, we find a situation similar to the one
above, just that the Z3−vol shifts in all three tori simultaneously. In ap-
pendix B we show that this results in an orbifold on the E6 lattice, which
also turns out to be just non-factorized. We will get back to this example
when we analyze the moduli spaces in section 3.3.2, since it possesses a
nice self-duality.

With the knowledge at hand we can analyze the fixed point structures of these
models. We do this in terms of the homogeneous coordinates zaρ, after fixing
the xr. There are 27 fixed points of θ111 at z11 = z21 = z31 = 0 which are
identified in nine triplets by Z3−vol. Similarly, there are 27 fixed points of θαβγ

at z1α = z2β = z3γ = 0, which also get identified to nine triplets each. In
addition, we find that the element θ111θαβγ has fixed points, which arise after
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

U(1)Ra rotations, at z1,2−α = z2,2−β = z3,2−γ = 0, where the indices are to be
taken modulo three. One can again check that these are again 9 tupels of Z3−vol

orbits. The remaining elements of the discrete group have no fixed points or are
the inverses of the ones discussed. Thus we find 27 fixed points, independent
of the alignment of αβγ, which confirms that all these orbifolds are off-diagonal
deformations of the factorizable one. The fixed points of θ111 and θαβγ can be
resolved by varying the FI parameters b111 and bαβγ , respectively. The remaining
fixed points, however, can never be resolved, since there is no D-term which
would forbid them. Thus such models can be used to describe a situation in
which some fixed points stay singular while others get resolved. To make these
models fully resolvable, one would have to add the coordinate x2−α,2−β,2−γ with
the appropriate gauging. This is then a next-to-minimal, fully resolvable model.

For k = 2 we again find three ways in which the Z2
3−vol can be aligned, see table

3.6. One needs at least three exceptional coordinates for these cases. The fixed
points will be organized in nine sets of three equivalent ones per set. Therefore,
to make them fully blowable, one needs exactly nine exceptional coordinates.
The three cases are a factorizable orbifold, where one can now switch on two
Wilson lines, and two non factorized ones, which are F4 × A2 and a lattice that
does not fit into the Lie algebra classification.

Finally, k = 3 describes the maximal models where each fixed point has its
own set of zaρ coordinates to be the zero locus thereof. Here one can start with
just four coordinates and go up to all 27 ones to get the maximal fully resolvable
model.

3.3.2 Moduli Spaces

In Kähler geometry one can write down the formula for the volumes of curves,
divisors and of the whole space. Using (3.9) and inserting the Z3 intersection
numbers we find for example for the maximal model,

Vol(X) = 9a1a2a3 −
3

2

∑

αβγ

b3αβγ ,

Vol(D1α) = 3a2a3 −
3

2

∑

βγ

b2αβγ ,

Vol(Eαβγ) =
9

2
b3αβγ ,

Vol(D1αD2β) = a3 −
∑

γ

bαβγ .

(3.99)

These formulæ tell us that that the Calabi–Yau has a “swiss cheese” geometry.
It means that as one continues blowing up the exceptional divisors, i.e. when
the br increase, the volume of the whole space becomes smaller and smaller.
Thus one can think of the exceptional divisors as holes in a piece of swiss cheese.
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Figure 3.1: This picture displays the different phases that the minimal fully
resolvable GLSM possesses.

Also the ordinary divisors Daρ and the curves in which they intersect show that
structure. Thus we can qualitatively say that at some point the smooth geometry
picture must break down. The volumes (3.99) suggest that this happens first
when the curves DaρDbσ shrink to zero. Since the string theory should be well
behaved when one crosses such a transition, one can ask what the theory would
look like beyond this regime. The GLSM offers a tool to study these issues.
Since (2, 2) models are ensured to be well behaved, we can use them to study
the theories there. As was already studied in [19], the GLSM is a perfect tool
to study the transition to such arbitrary phases. However, we will for simplicity
not choose the maximal model, but rather the minimal one. In addition we will
show that the moduli space of the fully blowable E6 model has an unexpected
symmetry. Here we will focus on the classical moduli spaces only. The relation
of quantum moduli spaces to the classical ones for complete intersection Calabi–
Yaus is discussed in [20].

Phases of the Minimal Model

In the minimal model we have four FI parameters, three for the volumes of
the two-tori aa and one which blows the exceptional divisors up and down, b.
For simplicity we will assume that all aa are equal and will just call them a.
This means that we study a two-real-dimensional subspace of the whole moduli
space6. There are two phases of this model which were already described quite

6The dimension of the true moduli space is of course much larger, and its structure more
complicated.
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

well and which also were the main purpose for constructing the models: the
orbifold phase, where b < 0 < a and the resolution phase for which 0 < b ≪ a
where the “≪” was so far unspecified. The discussion of these phases will not
be repeated.

For a full analysis of the phases, we need to write down all the F -terms, since
the field ca which in the orbifold / blow-up phases played the role of a Lagrange
multiplier for the hypersurface constraints, may become non zero and hence a
homogeneous coordinate of the new target spaces,

FCa = z3
a1 x+ z3

a2 + z3
a3 , FX = c1 z

3
11 + c2 z

3
21 + c3 z

3
31 , (3.100)

FZa1
= 3 ca x z

2
a1 , FZaρ = 3 ca z

2
aρ . (3.101)

It will turn out to be useful to write down the following linear combinations of
D terms, as the right hand sides flop sign at the boundaries of the phases,

∑

i

|zai|2 − 3 |ca|2 = a ,
∑

b

|zb1|2 − 3 |x|2 = b , (3.102a)

∑

j 6=1

|zaj |2 + 3 |x|2 −
∑

b6=a

|zb1|2 = a− b , (3.102b)

∑

b6=a,j 6=1

|zbj |2 + 3 |x|2 − 3
∑

b6=a

|cb|2 − |za1|2 = 2 a− b , (3.102c)

∑

j 6=1,a

|zaj |2 + 3 |x|2 − 3
∑

a

|ca|2 = 3 a− b . (3.102d)

Similarly to the orbifold–blow-up transition, the boundaries of the phases are
specified by what sets of coordinates are allowed to vanish simultaneously. Here,
at the transition at b = 0, theD-term (3.102a) states that either {x} or {z11, z21, z31}
must not vanish simultaneously. The other transitions can be understood in a
similar fashion. The whole phase structure is depicted in figure 3.1. Let us study
the phases in the following.

0 < a < b < 2a: Blow-Up II regime As assumed in the analysis of the Kähler
geometry, the smooth blow-up phase ends when the curves Da1Da2 shrinks to
zero. Equation (3.102b) tells us that this happens at a = b. Instead, the
exceptional divisor E starts to intersect with the inherited divisors, which here
are D̃a = {t2za2 + t3za3 = 0}. Thus the picture of separated singularities whose
resolution happens locally is lost. The coordinates ca are still required to vanish,
so one can think of the geometry as a deformation of the smooth resolution CY.

a,b < 0: Non-geometric regime Next we analyze a phases from the other
end. This regime can be understood by taking the orbifold, whose size is just
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3 GLSM description of Resolved Toroidal Orbifolds

given by the aa, and shrinking it down to a point. In fact we find that in this
phase, the D-terms require x 6= 0 and ca 6= 0 for all a. Then the only solution
to the F -terms is zaρ = 0 for all a, ρ. After imposing the D-term constraints
and fixing the U(1) gaugings, the resulting target space is just a point. This
phase describes what is called a Landau–Ginzburg model, or rather an orbifold
thereof, similarly to what was found in [19].

a < 0 < b: Singular Over-blow-up regime Here coordinates ca are not al-
lowed to vanish, which immediately implies zaρ = 0 for a = 1, 2, 3 and ρ = 2, 3.
The coordinate x on the other hand is required to be zero as can be seen from
(3.102d). Then only the F -term FX remains non-trivial. The D-terms simplify
to

|za1| − 3|ca|2 = |a| , |z11|2 + |z21|2 + |z31|2 = b . (3.103)

We find that the ca must not vanish, but are fixed by the D-terms and U(1)
gaugings, leaving a Z3

3 action on the za1. Analyzing the F -term, one can interpret
the non-vanishing ca as coefficients, and one would recover an elliptic curve as
degree three hypersurface in P2. The Z3

3 acts on it like a Z3,orbi × Z3−vol so
the target space looks like a T 2/Z3 with the fixed points at za1 = 0. This
target space should not be thought of as a compactification space in the classical
sense. Insted it gives a hybrid theory which is half geometric and half “Landau–
Ginzburg-like”. Due to the apparent simplicity of the target space, one might
wonder if there is a description of it in terms of a solvable CFT, which could
be a hybrid of an orbifold CFT and a Landau–Ginzburg model which is fibered
over the orbifold.

0 < 3a < b: Over-blow-up regime Coming from the singular over-blow-up
phase, we can understand this phase as an analog of the resolution of the orbifold
singularities. The target space divides up into various component.

• When all ca 6= 0, one still finds za2 = za3 = x = 0, and the component can
be thought of a deformation of the target space in the singular over-blow-up
regime, with the fixed points removed.

• If e.g. c1 = 0, however, we find that z12 and z13 no longer need to vanish.
Instead, (3.102d) implies that ca, a = 2, 3 must not vanish. The two new
non-vanishing coordinates come with one additional non-trivial F -term,
namely FC1

. One can fix the coordinates c2,c3,z21 and z31 using the D-
terms of U(1)E , U(1)R2

and U(1)R3
and the F -term FX and obtains a

target space description which can be viewed as a degenerate degree three
hypersurface in P2, i.e. something of complex dimension one. This can be
interpreted as a component replacing the fixed point which was removed
from the first component.
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Figure 3.2: This picture displays the different phases of the fully resolvable
GLSM that possesses a duality symmetry between the torus radii aa and the
blow–up cycle radii bi.

One maybe can interpret this geometry locally as having a “squirrel-like” shape,
where the body and the tail of the squirrel are both one-dimensional and intersect
in a lower dimensional locus, here at c1 = z12 = z13 = 0. As before, one should
not think of it as classical compactification space but some sort of hybrid theory
instead. This regime can be understood as the analogue of the blow-up regime
just when coming from the singular over-blow-up phase.

0 < 2a < b < 3a: Critical regime Finally we discuss the leftover regime, how-
ever not in that much detail. When coming from the over-blow-up regime, one
can understand it as shrinking the c1, c2, c3 6= 0 component to zero size. In-
stead a component comes up where c1 = c2 = c3 = 0 which is three-complex-
dimensional. When shrinking b further down, this will become the target space
of the blow-up and orbifold phases. The components where just one ca is non
vanishing still exist but shrink down as b ↓ 2a.

Phases of the E6 Model

The fully resolvable model on the E6 lattice, with three exceptional coordinates
xρ = xρρρ has an extraordinary property. Its moduli space has a symmetry
which interchanges the two-torus radii aa and the blow-up moduli bρ. To make
it manifest, we look at the D-terms ,

∑

ρ

|zaρ|2 − 3 |ca|2 = aa ,
∑

a

|zaρ|2 − 3 |xρ|2 = bρ , (3.104)
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and the superpotential,

W =
∑

a,ρ

CaZaρXρ , (3.105)

and find that the symmetry is given by ,

Ca ↔ Xρ , Zaρ ↔ Zρa , aa ↔ bρ . (3.106)

From this duality we immediately know what the singular over-blow-up and the
over-blow-up phases are. They correspond to a target space which is also a
T 6/Z3 based on the E6 lattice and the resolution thereof. The boundary of the
blow-up phase is found to be at a = 3b, so we immediately know the boundary
of the over-blow-up phase at a = b/3. The situation is depicted in figure 3.2.
This has an interesting consequent on the whole moduli space of the standard
embedding Z3 orbifold. Since each such resolution is deformable to the non-
factorizable E6 orbifold, this duality should spread out over the whole moduli
space. In particular we find that, if the off-diagonal Kähler moduli from the blow-
up regime remain flat directions when going to the over-blow-up regime, they
should correspond to moduli which take the three-dimensional “dual” resolution
to a one-dimensional hybrid theory in the minimal model.

3.3.3 Example: Resolution of T 6/Z4

In this section we present GLSMs for the T 6/Z4 orbifold and its resolution.
Since this orbifold has more structure than the Z3 case, we encounter a few
novel features: In the minimal model we need to introduce exceptional coor-
dinates and gaugings for the different types of fixed points. Secondly, even in
its fully resolvable GLSM there are two fixed tori that are not distinguished by
our procedure and therefore blown up/down simultaneously. Thirdly, using our
GLSM techniques we are able to describe truly non–factorizable T 6/Z4 orbifolds.

To illustrate these issues and our formalism in general, we first construct the
minimal fully resolvable GLSM on the factorized lattice D2

2 ×A2
1. Next we turn

to the maximal fully resolvable model and show that one pair of fixed points
remains indistinguishable. We conclude this section by explaining how we can
obtain GLSMs associated with non–factorizable lattices A3×D2×A1 and A3×A3.

The minimal T6/Z4 model on D2

2
× A2

1

The Z4 orbifold action on the three complex six–torus coordinates (u1, u2, u3) is
given by

θ : (u1, u2, u3) 7→ (iu1, i u2,−u3) . (3.107)
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Superfield Z1i Z13 Z2j Z23 Z3k C1 C2 C3 C′
3 X1,111 X2,ij

U(1) charges z1i z13 z2j z23 z3k c1 c2 c3 c′3 x1,111 x2,ij

R1 1 2 0 0 0 −4 0 0 0 0 0

R2 0 0 1 2 0 0 −4 0 0 0 0

R3 0 0 0 0 1 0 0 −2 −2 0 0

E1,111 δi1 0 δj1 0 2 δk1 0 0 0 0 −4 0

E2,αβ δαi 0 δβj 0 0 0 0 0 0 0 −2 δαiδβj

Table 3.7: The superfield content and charge assignment for the minimal fully resolvable GLSM of T 6/Z4. The indices
α, β, i, j run from 1 to 2 and k from 1 to 4.
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The only factorized lattice compatible with this action is of the form D2
2 ×A2

1,
i.e. the complex structure of the first two tori is fixed to τ = i, whereas the
complex structure of the third torus stays a modulus τ . The θ sector has 16
fixed points whose structure factorizes as 2 × 2 × 4. The θ2 element acts like aZ2 on the first two tori therefore naively we expect 16 fixed two–tori. But the θ
action folds four of them to T 2/Z2’s, whereas the remaining twelve get identified
pairwise, i.e. they give rise to six fixed two–tori.

To understand how to obtain a global resolution model, we briefly review the
local GLSM resolution of C3/Z4 with the local orbifold action θ(z1, z2, z3) =
(i z1, i z2,−z3). Then, to resolve the singularity we have to introduce two ex-
ceptional coordinates x1 and x2, together with two appropriate gaugings. The
charge table of the corresponding (2, 2) superfields reads:

U(1) charges Z1 Z2 Z3 X1 X2

E1 1 1 2 −4 0
E2 1 1 0 0 −2

When x1 6= 0, the U(1)E1
reduces to the Z4 orbifold action on the coordinates za.

However, by only introducing x1 a Z2 sub–singularity would remain. To make
it resolvable one has to add x2. The discrete action induced from U(1)E2

when
x2 6= 0 is a Z2 subgroup of Z4.

To construct the global models we first have to choose three appropriate elliptic
curves. Since the orbifold Z4 acts to fourth order in the first and second two–
torus, and to second order in the third torus, we write the factorized six torus
as T 6 = T 2

4 × T 2
4 × T 2

2 . Hence, we need the homogeneous coordinates z1i, z2j

with labels i, j = 1, 2, 3 and z3k with k = 1, . . . , 4. To enforce the hypersurface
constraints in the orbifold and blow–up regimes, we need four superfields C1, C2,
C3 and C′

3 which lead to the superpotential ,

Wtorus =C1(Z4
11 + Z4

12 + Z2
13) + C2(Z4

21 + Z4
22 + Z2

23) (3.108)

+ C3(κZ2
31 + Z2

32 + Z2
33) + C′

3(Z2
31 + Z2

32 + Z2
34) , (3.109)

for the corresponding superfields. Here κ encodes the complex structure modulus
τ in the elliptic curve description of the third torus.

In this formulation the orbifold action (3.107) acts on the homogeneous coor-
dinates as

θ : (z11, z21, z31) 7→ (i z11, i z21,−z31) . (3.110)

This orbifold action can be transferred to the other coordinates by using the
discrete U(1)Ra rotations,

θRa : (za1, za2, za3) 7→ (i za1, i za2,−za3) , a = 1, 2 , (3.111)

and the involutions α1, α2 and α3, α
′
3 of these two–tori defined in sections 3.1.2.
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

Next we investigate how many exceptional coordinates and gaugings we need
to construct the minimal fully resolvable model, which by definition should be
able to resolve all types of singularities. For the local resolution of a C3/Z4

singularity we need two exceptional coordinates x1,111 and x2,11 with gaugings
U(1)E1,111 and U(1)E2,11 , respectively, to resolve the Z4 fixed points. Their po-
sitions are determined by the equations z11 = z21 = z31 = 0. The FCa–terms
obtained from the superpotential (3.109),

z4
11 + z4

12 + z2
13 = 0 ,

z4
21 + z4

22 + z2
23 = 0 ,

κ z2
31 + z2

32 + z2
33 = 0 ,

z2
31 + z2

32 + z2
34 = 0 ,

(3.112)

have 2 · 2 · 2 · 2 = 16 roots, hence this corresponds to the 16 Z4 fixed points.
The additional six fixed two–tori are located at z11 = z22 = 0, z12 = z21 = 0 and
z12 = z22 = 0: For example, θ2θ2

R1
has fixed tori at z12 = z21 = 0. For those

the first two F -terms factorize in two times two roots. However θ identifies the
solutions pairwise, hence we find two true fixed two–tori. Similarly, there are two
fixed tori of θθ2

R2
at z11 = z22 = 0 and two θ2θ2

R1
θ2

R2
fixed tori at z12 = z22 = 0.

Hence, to resolve all six fixed two–tori we need three additional exceptional
coordinates x2,ij and U(1)E2,ij

with (i, j) = (2, 1), (1, 2), (2, 2). All these together
define the minimal fully resolvable model; the superfield content and the charge
assignment are displayed in Table 3.7.

To show that this is indeed the minimal fully resolvable GLSM, we have to
confirm that indeed all the fixed points get resolved in the blow–up regime. In
this regime we have br > 0, yet sufficiently smaller than all the torus radii aa

to avoid running into the critical or over–blow–up regimes. From the charges in
Table 3.7 we find the following D-terms

|z11|2 + |z12|2 + 2|z13|2 − 4 |c1|2 = a1 ,

|z21|2 + |z22|2 + 2|z23|2 − 4 |c2|2 = a2 ,

|z31|2 + |z32|2 + |z33|2 + |z34|2 − 2 |c3|2 − 2 |c′3|2 = a3 ,

|z11|2 + |z21|2 + 2 |z31|2 − 4 |x1,111|2 = b1,111 ,

|z1i|2 + |z2j |2 − 2 |x2,ij|2 = b2,ij , i, j = 1, 2 .

(3.113)

These equations clearly forbid setting z11 = z22 = 0, z21 = z21 = 0 or z12 = z22 =
0, because b1,111, b2,ij are all positive in the blow–up phase. Consequently, all
the orbifold fixed points have been removed and replaced by the corresponding
exceptional divisors E1,111 := {x1,111 = 0} and E2,ij := {x2,ij = 0}.

To show that these are glued in at the appropriate positions, we look at the
F -terms in blow–up. In this regime the b1,111, b2,ij are sufficiently smaller than
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Superfield Z1i Z13 Z2j Z23 Z3k C1 C2 C3 C′
3 X1,ijk X2,ij

U(1) charges z1i z13 z2j z23 z3k c1 c2 c3 c′3 x1,ijk x2,ij

R1 1 2 0 0 0 −4 0 0 0 0 0

R2 0 0 1 2 0 0 −4 0 0 0 0

R3 0 0 0 0 1 0 0 −2 −2 0 0

E1,αβγ δiα 0 δjβ 0 2 δkγ 0 0 0 0 −4 δiαδjβδkγ 0

E2,αβ δiα δ3α δjβ δ3β 0 0 0 0 0 0 −2 δαiδβj

Table 3.8: The superfield content and charge assignment for the maximal GLSM model of T 6/Z4. The indices k, γ run
from 1 to 4. The indices i, j, α, β run from 1 to 2 for x1,ijk and U(1)E1,ijk

, and from 1 to 3 for x2,ij and U(1)E2,ij
.
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

aa, such that the F–terms associated with zai force ca = 0. Hence the only
remaining F -terms are:

z4
11 x1,111x2,11x2,12 + z4

12 x2,21x2,22 + z2
13 = 0 ,

z4
21 x1,111x2,11x2,21 + z4

22 x2,12x2,22 + z2
23 = 0 ,

κ z2
31 x1,111 + z2

32 + z2
33 = 0 , z2

31 x1,111 + z2
32 + z2

34 = 0 .

(3.114)

Thus in blow–up one recovers the resolved Z4 singularities by setting x1,111 = 0.
The factorization of the F -term (3.114) then shows that there are the same 16
components as in the orbifold case discussed above. Similarly, by setting x2,ij = 0
with (i, j) = (2, 1), (1, 2), (2, 2), we find the roots associated with the Z2 fixed
two–tori. This confirms that this model indeed resolves all singularities of the
T 6/Z4 orbifold.

The Maximal T6/Z4 model on D2

2
× A2

1

In the maximal model we have 16 separate exceptional coordinates x1,ijk with
gaugings U(1)E1,ijk

, where i, j = 1, 2 and k = 1, . . . , 4 in the Z4 sector, see
Table 3.8. In addition, we have 9 coordinates x2,ij and gaugings U(1)E2,jk

with
i, j = 1, 2, 3 in the Z2 sector. The resulting D-terms are given by

|z11|2 + |z12|2 + 2|z13|2 − 4 |c1|2 = a1 ,

|z21|2 + |z22|2 + 2|z23|2 − 4 |c2|2 = a2 ,

|z31|2 + |z32|2 + |z33|2 + |z34|2 − 2 |c3|2 − 2 |c′3|2 = a3 ,

|z1i|2 + |z2j |2 + 2 |z3k|2 − 4 |x1,ijk|2 = b1,ijk ,

i, j = 1, 2 , k = 1, . . . , 4 .

(3.115)

In the orbifold and blow–up phases the F -terms reduce to

z4
11

∏

j

x2
2,1j

∏

j,k

x1,1jk + z4
12

∏

j

x2
2,2j

∏

j,k

x1,2jk + z2
13

∏

j

x2,3j = 0 ,

z4
21

∏

i

x2
2,i1

∏

i,k

x1,i1k + z4
22

∏

i

x2
2,i2

∏

i,k

x1,i2k + z2
23

∏

i

x2,i3 = 0 ,

κ z2
31

∏

i,j

x1,ij1 + z2
32

∏

i,j

x1,ij2 + z2
33

∏

i,j

x1,ij3 = 0 ,

z2
31

∏

i,j

x1,ij1 + z2
32

∏

i,j

x1,ij2 + z2
34

∏

i,j

x1,ij4 = 0 .

(3.116)

As expected in the maximal model each Z4 fixed point has its own exceptional
coordinate and gauging. Indeed, in the blow-down regime we find Z4 fixed
points at z1i = z2j = z3k = 0, i, j 6= 3, and in blow–up their exceptional divisor
counterparts x1,ijk = 0.
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3 GLSM description of Resolved Toroidal Orbifolds

However, some of the Z2 fixed tori at z1i = z2j = 0 cannot be uniquely
identified. As long as (i, j) 6= (3, 3), for each i, j we obtain a single fixed torus in a
similar manner as above for the Z4 fixed points. Contrary, in the case z13 = z23 =
0 we find two distinct solutions to the relevant F -terms. To see this, we first fix all
the values of all the non–zero x in the orbifold regime. It is then easy to see that
each F -term has four solutions, za1 = in+1/2za2, n = 1, 2, 3, 4, i.e. 16 solutions
altogether. The discrete actions in each of the two tori (za1, za2) 7→ (i za1,−i za2)
identify the solutions in four quadruplets. The orbifold Z4 further identifies pairs
of them, so that in the end we still have two independent solutions. This shows
that two Z2 fixed two–tori remain indistinguishable. This can be understood
by inspecting the space group of the orbifold. The fixed points/lines are in one
to one correspondance to conjugacy classes with non-trivial twist. The GLSM
just sees the Abelianization of the space group which is the point group times
the involution group. Such indistinguishable fixed points/tori occur precisely if
multiple conjugacy classes are mapped to one element of the Abelianization.

Non–Factorizable T6/Z4 models

In the previous subsections we have discussed the minimal and maximal fully
resolvable GLSMs of the T 6/Z4 orbifold on the factorized lattice D2

2×A2
1. As for

the T 6/Z3 it is possible to construct a variety of models which have more gaugings
than the minimal, yet less than the maximal models. Since the classification of
all Z4 models is straightforward but a little more complicated than for the Z3

case, we refrain from presenting it here. Instead we demonstrate that in two
special cases a novel possibility arises which was not present for the Z3 models:
We can construct Z4 models on truly non–factorizable lattices.

For both orbifolds the construction of non–factorized lattices is the same: We
choose exceptional gaugings that generate n-volutions which act on more than
one two–torus simultaneously. As we discussed in subsection 3.3.1 in the Z3 case
it is always possible to find an off–diagonal Kähler deformation to bring the non–
factorized lattice back to a the factorized form. In the Z4 case there are some
non–factorized lattices that cannot be deformed to a factorized version, because
the required off–diagonal Kähler deformations simply do not exist. Hence, these
are genuinely non–factorizable. As a consequence, these models have a different
amount of fixed tori than the factorizable case, and thus correspond to truly
different topologies.

Below we present two GLSMs which yield Z4 orbifolds based on the lattices
A3 ×D2 × A1 and A3 × A3. In particular we show that as the lattice becomes
less factorizable the number of fixed tori decreases, whereas the amount of fixed
T 2/Z2’s and Z4 fixed points stays the same. Together with the factorizable case
on D2

2 × A2
1 we thus can realize all Z4 orbifolds classified in theorem 1 of [21]

(see also Table 2.1 of [47]).
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3.3 (2,2) Models of Resolved Toroidal Orbifolds

Non–factorizable GLSM on A3 ×D2 × A1

In the first model we just add one extra coordinate to the minimal model: We
choose the coordinates x1,111 and x1,122 with their U(1) gaugings. Moreover, in
order to resolve the Z2 singularities we also need all x2,ij with i, j = 1, 2 plus
gaugings, even though they do not introduce further discrete symmetries. In
this setup we focus on the action of θ1,111θ

3
1,122:

α1 = θ1,111θ
3
1,122 : (z21, z22, z31, z32) 7−→ (i z21,−i z22,−z31,−z32) . (3.117)

This is a freely acting Z2 element on the homogeneous torus coordinates, thus
a simultaneous shift in the second and third torus. In appendix B we show
that modding it out of the torus results in the root lattice of the Lie algebra
A3×D2×A1. Contrary to the Z3 orbifold, the off–diagonal Kähler modulus which
would mix the second and third torus is not orbifold invariant and thus does not
exist. Therefore, in this case our construction gives a truly non–factorizable
lattice.

The topology of the resulting non–factorizable orbifold is indeed different from
its factorized counterpart. To show this, we inspect the fixed point and fixed
torus structure. There are eight θ1,111 fixed points at z11 = z21 = z31 = 0 and
eight θ1,122 fixed points at z11 = z22 = z32 = 0. The fixed tori in the Z2 sector
are described by the same zero loci as in the minimal model. The factorization
of the F -terms shows that there are two fixed tori at z11 = z21 = 0 and two
at z11 = z22 = 0, but just one at z12 = z21 = 0 and z12 = z22 = 0 each. One
can easily convince oneself that there are no more fixed points when θ2 actions
are combined with U(1)R rotations. This is exactly the right amount of fixed
tori expected on this lattice, see e.g. [47]. Note that due to the presence of
the coordinates x2,ij , all fixed tori can be blown up, thus this model is fully
resolvable.

Non–factorizable GLSM on A3 ×A3

In the case discussed above we went from the minimal model on the factorized
lattice D2

2 × A2
1 to the non–factorizable case A3 ×D2 ×A1 by modding out one

discrete Z2 element. We can repeat this operation again to obtain a Z4 orbifold
on the A3 × A3 lattice. The GLSM realization of this, as a fully resolvable
model, requires the fields x1,111, x1,122, x1,213 and x1,224. Again, resolving the Z2

singularities requires the coordinates x2,ij with i, j = 1, 2, which are the same
ones as for the minimal model.

Let us look at the discrete symmetries that get induced on the zak in this
setup. They form a Z4 × Z2 × Z2 group, generated by θ1,111, α1 as defined in
(3.117) and

α2 := θ1,111θ
3
1,213 : (z11, z12, z31, z33) 7−→ (i z11,−i z12,−z31,−z33) . (3.118)
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3 GLSM description of Resolved Toroidal Orbifolds

The θ1,224 induced by a vev of x1,224 is generated as θ1,111α1α2 together with
some U(1)R rotations. Therefore, including x1,224 does not enhance the discrete
symmetry group. Rather the U(1)E1,224 gauging is necessary to be able to resolve
the fixed points which would be present at z12 = z22 = z34 = 0 otherwise.

The topology of this non–factorizable orbifold is again different from the pre-
vious case. Inspecting the F -terms we find a multiplicity of four for each of these
fixed points, i.e. again there are 16 fixed points altogether. Furthermore, we find
fixed tori of the various θ2

1,ijk actions, with (i, j, k) = (1, 1, 1), (1, 2, 2), (2, 1, 3)
and (2, 2, 4), at z1i = z2j = 0, respectively. Each of them has multiplicity one,
i.e. there are four fixed tori, each of which is orbifolded to T 2/Z2 by the residualZ2. One can check that there are indeed no further fixed tori than the ones
identified here. This again agrees with the results on this lattice by [47].

3.4 (2,0) Models

In (2, 2) models one always obtains target space theories with gauge group E6 ×
E8 and with the number of 27 and 27 given by the Hodge numbers h1,1 and h2,1.
Since E6 contains the SM gauge group in a nice chain of GUT subgroups, and the
decomposition of the 27 representation contains all required matter and Higgs
multiplets, one could take such a theory as a starting point for realistic models.
The further gauge symmetry breaking could e.g. be realized by free discrete
symmetries and the associated free Wilson lines. However, such a situation is
difficult to find, and in heterotic orbifold resolutions the net number of 27s,
which is half the Euler number, is too high to reduce it to the required three
families by dividing out free symmetires. Thus it is phenomenologically more
appealing to study (2, 0) models which allow for a wider class of vector bundles
and thus for four-dimensional spectra. However, many nice properties of the
(2, 2) models are lost like the automatic anomaly freedom and stability of the
bundle. These things have to be checked explicitely in (2, 0) constructions which
makes them much harder to study. In particular, for good phenomenological
models one has to switch on almost all of the Wilson lines, which implies that a
GLSM construction would require many U(1) gaugings and thus be restricted by
many anomaly cancellation conditions. One could try to cure this with the WS
GS mechanism presented in section 3.2.2 but this would deform the geometry
such that the smooth connection to the singular orbifold theory, which is well
defined, would be lost. Here we will not be able to show a fully consistent (2, 0)
model. Instead we present how a possible line bundle model would look in the
GLSM realization. One problem of such a line bundle would be that it does
not provide additional chiral fields whose charges are opposite to the coordinate
chiral fields. Thus the Landau–Ginzburg phase, where the FI parameters take
negative values, of such models would not be defined. The hope is that a cure of
this problem could also cure the anomaly conditions, eventually in such a way
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3.4 (2,0) Models

that in the geometric regime no additional bundle dofs are generated besides the
line bundle. But this is left for future investigation.

3.4.1 Line and Vector Bundles

The GLSM offers a framework to construct vector bundles on the target space
in terms of the monad complex. The basic bundle dofs are the chiral-fermi
multiplets ΛA whose lowest component is a left-moving fermion. Having only
these fields one would describe a sum over line bundles where the charges QA

I =
QI(Λ

a) are the coefficients of its curvature, or equivalently its first Chern class,
in terms of the divisors,

FA = c1(O(QA
I )) =

∑

I

QA
I D̃

I , (3.119)

where D̃I are divisors whose defining polynomials are only charged under the
Ith U(1), as in section 3.1. Such a line bundle is rather easy to study since its
properties only depend on c1. In heterotic orbifold resolutions there is evidence
that such line bundles arise from single oscillatorless blow-up modes, as will be
discussed in section4.1.

Now there are two possibilities to restrict the bundle dofs. The first one is
to introduce chiral fields Φi whose charge is such that in the geometric regime
their bosonic components are not allowed to get vevs. This has to be ensured
by the F -terms of the chiral fermi fields ΛA by superpotential couplings of the
form (3.58). As discussed, this generates mass terms in which the left-moving
Λ fermionic components pair up with the right-moving fermions in Φ to build a
massive Dirac fermion which decouples in the IR limit. This results in a vector
bundle which is the kernel of the maps N(Ψ) in (3.58). If this kernel still has a
global sections, they need to be removed by introducing fermionic gaugings. In
these fermionic gaugings the holomorphic functions M(Ψ) represent the global
sections which are to be gauged away.

We in particular want to discuss the quantization conditions on the line bun-
dles which arise in heterotic models on resolved orbifolds. There are three differ-
ent approaches to these quantization conditions and we will show at an example
that they are all equivalent. The first one is the identification of the bundle vec-
tors with the local orbifold shifts. The second one is the SUGRA quantization
requirement, stating that the integral of the flux over each curve must lie in the
E8 × E8 lattice. This will be discussed in section 4.1. The third one comes from
the GLSM where one requires that the charges of the fields Λ must be quantized
in the same units as the coordinate fields Ψ.
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Superfield Z1i Z2j Z3k X1,jk X2,ik X3,ij C1, C′
1 C2, C′

2 C3, C′
3 , ΓA

U(1)R1
1 0 0 0 0 0 −2 0 0 0

U(1)R2
0 1 0 0 0 0 0 −2 0 0

U(1)R3
0 0 1 0 0 0 0 0 −2 0

U(1)E1,βγ
0 δβj δγk −2δβjδγk 0 0 0 0 0 QA

E1,βγ

U(1)E2,αγ δαi 0 δγk 0 −2δαiδγk 0 0 0 0 QA
E2,αγ

U(1)E3,αβ
δαi δβj 0 0 0 −2δαiδβj 0 0 0 QA

E3,αβ

Table 3.9: The superfield content and charge assignment for the maximal fully resolvable GLSM of T 6/Z2 × Z2. The
indices α, β, γ and i, j, k run from 1 to 4. As this is a (2, 0) model, the Z and X fields are (2, 0) chiral fields, whereas the
C and ΓA are chiral fermi.
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1 1 1

τ1 τ2 τ3

× ×

Figure 3.3: Geometry of the Z2 × Z2 orbifold The dots show where the fixed
lines are located in each torus. The product of two points corresponds to a fixed
torus. The product of three dots is a point in which fixed tori intersect.

The Model: Line Bundles on Z2 × Z2 on A6
1

As a model to study these issues we choose the T 6/Z2 × Z2 orbifold on a fac-
torizable lattice A6

1. First we review the classical construction. The torus is
based on a factorizable lattice where the complex structure τa in each torus is
unconstrained, i.e. each two-lattice is spanned by 1 and τa. The point group acts
on the coordinates ua as

θa : ub 7−→ −(−1)δabub , a, b = 1, 2, 3 , (3.120)

i.e. θa rotates all coordinates by π except ua. In other terms, the twist vectors
are

v1 = (0, 1/2,−1/2) , v2 = (−1/2, 0, 1/2) , v3 = (1/2,−1/2, 0) . (3.121)

Each θa has 16 fixed lines called Fa,ρσ where

Fa,ρσ = {ub = uρ
b , uc = uσ

c } , with a 6= b < c 6= a ,

~ud = (0 , 1/2 , τd/2 , (1 + τd)/2) .
(3.122)

Thus altogether there are 16 fixed lines F1,βγ , F2,αγ and F3,αβ. These lines in-

tersect at 64 fixed points given by (uα
1 , u

β
2 , u

γ
3). The Abelianization of the space

group is a group isomorphic to Z8
2, where, as usual, a Z2 × Z2 factor represents

the point group, whereas the other Z2’s represent the six lattice basis vectors.
Therefore, the orbifold CFT has two independent shift vectors V1 and V2 and six
Wilson line W1, . . . ,W6, each of them being of order two.

On the GLSM side we use the maximal GLSM construction for this in order
to obtain maximal independent data. It has precisely 51 U(1) gaugings which
divide into three corresponding to the untwisted (1, 1) forms dua ∧ dūa, and 48,
one for each twisted sector, so it does not miss any (1, 1) form on the resolution.
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3 GLSM description of Resolved Toroidal Orbifolds

The charge assignment is shown in table 3.9. The D-terms for this case are

4∑

ρ=1

|zaρ|2 − 2|ca|2 − 2|c′a|2 = aa , a = 1, 2, 3 , (3.123a)

|z2,β|2 + |z3,γ|2 − 2|x1,βγ|2 = b1,βγ , β, γ = 1, 2, 3, 4 , (3.123b)

|z1,α|2 + |z3,γ |2 − 2|x2,αγ|2 = b2,αγ , α, γ = 1, 2, 3, 4 , (3.123c)

|z1,α|2 + |z2,β|2 − 2|x3,αβ|2 = b3,αβ , α, β = 1, 2, 3, 4 . (3.123d)

We will work in the blow-up regime where 0 < b1,βγ , b2,αγ , b3,αβ ≪ aa to ensure a
smooth geometry. We define the divisors

Da,ρ := {za,ρ = 0} , Ek,ρσ = {xk,ρσ = 0} ,
Ra :=

{∑
caρz

2
aρ

∏
x2 = 0

}
, (3.124)

where the “
∏
x2” stands for an appropriate monomial in the xk,ρσ in order to

make the polynomial neutral under the U(1)Ek,ρσ
. The Ra are not rigid, but

rather the caρ encode the information on their locus. For the Z2 × Z2 case the
topology of the resolution is not unique. Instead, for each local resolution there
are four possible triangulations which are related by flop transitions. To see this,
for fixed and dropped indices αβγ, we look at the following linear combinations
of the D-terms:

(3.123b) + (3.123c) − (3.123d) :

2
(
|x3|2 + |z3|2 − |x1|2 − |x2|2

)
= b1 + b2 − b3 , (3.125)

(3.123b) − (3.123c) + (3.123d) :

2
(
|x2|2 + |z2|2 − |x1|2 − |x3|2

)
= b1 − b2 + b3 , (3.126)

− (3.123b) + (3.123c) + (3.123d) :

2
(
|x1|2 + |za|2 − |x2|2 − |x3|2

)
= −b1 + b2 + b3 . (3.127)

These D-terms look like conifold D-terms and thus we can identify flop tran-
sitions. E.g. at b1 + b2 > b3 we find that the curve E1E2 exists and the curve
D3E3 does not, whereas for b1 + b2 < b3 it is the other way around. In [41] it was
shown that when identifying the br and aa with the Kähler parameters of the
Kähler form, then the flops occur at exactly the same positions which one can
view as a hint for a linear relation between them. For more details on the local
phase structure we refer to [41] and [44]. Here we will just need the intersection
numbers to perform further calculations in the classical geometric regime.
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3.4 (2,0) Models

In [41] they were obtained by the means of an auxiliary polyhedron which was
introduced in [47]. Here, however, we can deduce the intersection numbers in a
rigorous way from the GLSM setup. Although the method of [47] reproduced
the correct intersection numbers for the factorizable orbifold, it was not able
to construct the correct intersection numbers for non-factorizable orbifolds. For
example, the intersection numbers on the resolved Z2×Z2 orbifold on the A3×A3

1

lattice, which is equivalent to the quotient of the factorizable case divided by
a freely acting involution, as will be presented in 3.4.2, cannot be obtained.
Instead they were calculated in [41], and these calculations are confirmed using
the GLSM constructions introduced here.

After we identified the boundaries of the phases, we can label them by

Name Condition
“E1” b1 > b2 + b3
“E2” b2 > b1 + b3
“E3” b3 > b1 + b2

“symm” else

Going back to the global picture, this would give an enormeous bunch of
different triangulations. Naively, for each of the 64 choices of αβγ there are four
possible triangulations so one would expect a total number of 464, when one
does not consider symmetries. However, in the GLSM approach one can show
that not all of these phases exist. The reason is that the GLSM reveals that the
phases are controlled by the FI parameters br, thus only phases are realized for
which one can find a choice of FI parameters which reproduces it. For example,
consider the following triangulation.

Fixed Point (αβγ) Triangulation Condition
(1, 1, 1) “E1” b1,11 > b2,11 + b3,11

(1, 2, 1) “E2” b2,11 > b1,21 + b3,12

(2, 2, 1) “E1” b1,21 > b2,21 + b3,22

(2, 1, 1) “E2” b2,21 > b1,11 + b3,21

When we add up these conditions, we obtain b3,11 + b3,12 + b3,22 + b3,21 < 0, which
contradicts the full resolution condition for which all br have to be positive. It is
very hard to tell how many of the 464 phases are realized, since performing the
counting would be an exorbitant effort. But this at least tells that if one works
in a particular global triangulation, one should first check if it is indeed allowed
for some choice of FI parameters.

For simplicity we will work in phases where the triangulation is the same for all
local resolutions (αβγ). This is easily achieved by equalizing all FI parameters
of the same type, i.e. b1,βγ ≡ b1, b2,αγ ≡ b2 and b3,αβ ≡ b3. Then we are left with
four smooth phases. The intersection numbers of the Er and Ra divisors are
given in table 3.10. The intersection numbers involving the divisors Da,σ can be
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h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

hh

Int(S1S2S3)
Triangulation

“E1” “E2” “E3” “symm”

E1,βγE2,αγE3,αβ 0 0 0 1

E1,βγE
2
2,αγ , E1,βγE

2
3,αβ −2 0 0 −1

E2,αγE
2
1,βγ, E2,αγE

2
3,αβ 0 −2 0 −1

E3,αβE
2
1,βγ , E3,αβE

2
2,αγ 0 0 −2 −1

E3
1,βγ 0 8 8 4

E3
2,αγ 8 0 8 4

E3
3,αβ 8 8 0 4

R1R2R3 2

R1E
2
1,βγ, R2E

2
2,αγ , R3E

2
3,αβ −2

Table 3.10: The upper part gives the intersection numbers when using the same
triangulation at all 64 fixed points. The lower part gives the triangulation-
independent intersection numbers.

obtained from them using the linear equivalence relations among them. These
linear equivalence relations are found by taking the definition of the inherited
divisors in (3.124) and taking the limit caρ → δρσ. Then the defining equation
for Ra factorizes and we find

R1 ∼ 2D1α +
∑

γ

E2,αγ +
∑

β

E3,αβ ,

R2 ∼ 2D2β +
∑

γ

E1,βγ +
∑

α

E3,αβ ,

R3 ∼ 2D3γ +
∑

β

E1,βγ +
∑

α

E2,αγ .

(3.128)

Next, we put a sum of line bundles on the resolved space. In the GLSM this is
done by adding chiral fermi fields ΛI = λI + . . . with I = 1, . . . , 16 with charges
QI

r . These charges need to be specified a bit more. Since our intention is to
get contact to an orbifold CFT in blow-down, we have to reproduce the correct
transformation behavior under the space group. The fermionic formulation of
the heterotic string, we have 16 left-moving fermions λI which under a space
group element transform as λI 7→ e2πiV I

g λI , where Vg is the local shift. In the
blow-down limit of the orbifold in the GLSM description we do not recover the
whole space group, but rather its Abelianization. In particular, the class of the
space group element g which creates the fixed point Fk,ρσ = {ziρ = zjσ = 0},
where i 6= j 6= k 6= i, precisely corresponds to the Z2 group which is generated
by breaking the U(1)Ek,ρσ

by the vev of xk,ρσ. Applying this on the left-moving
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3.4 (2,0) Models

fermion on both sides we find the identification

QI
Ek,ρσ

= 2V I
g mod 2 . (3.129)

The charges w.r.t. to U(1)Ra are chosen to be zero since they would be visible
on the orbifold in terms on non-trivial flux on the two-tori. Altogether, this
provides some link between the orbifold CFT data in terms of shift vectors and
Wilson lines, and the GLSM charges of the chiral fermi fields.

Modular Invariance versus Anomaly

On both, the CFT and the GLSM side we have consistency conditions in form
of quadratic equations. On the orbifold side, they come from one-loop diagrams
where the worldsheet is described as a genus one Riemann surface, i.e. a two-
torus. The invariance of the one-loop partition function under the modular group
SL(2,Z) implies conditions on the shift vectors and Wilson lines, which can be
summarized as

2 ·
(
V 2

g − v2
g

)
= 0 mod 2 for all local twists Vg and v2

g = v2
a = 1/2 .

(3.130)

The fact that these conditions are mod conditions reflects that the shifts and
Wilson lines need only be specified up to ΛE8×E8

lattice vectors7. The (2, 0)
gauge anomaly conditions on the other hand are

∑

m

qm
r q

m
s −

∑

µ

Qµ
rQ

µ
s = 0 . (3.131)

Here m runs over all chiral fields, µ runs over all chiral fermi fields and r and
s run over all U(1) factors. These conditions are much more stringent since on
the one hand they are no longer mod conditions, and on the other hand they
also involve mixed products. In particular, using such line bundles only it is not
possible to solve all anomaly conditions simultaneously, since e.g. the anomalies
involving the U(1)Ra are not addressed at all. Writing down a fully anomaly free
(2, 0) GLSM with just line bundles and a connectability to an orbifold CFT is
a yet unsolved problem which is subject to future investigation. However, the
conditions for the pure U(1)2

Ek,ρσ
anomalies are

6 −
∑

A

QA
Ek,ρσ

QA
Ek,ρσ

= 0 , (3.132)

where now the sum runs only over the fields ΛA, so using the identification
(3.129) they indeed reproduce the modular invariance conditions.

7In fact, shifting Va and Wα by a lattice vector can lead to a modification of the projection
conditions in the twisted sectors. This corresponds to switching on discrete torsion phases
[24] which in turn can be used to undo this shift. Thus one can say that Va and Wα defined
up to lattice vectors if one considers discrete torsion.
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3 GLSM description of Resolved Toroidal Orbifolds

Flux Quantization in the GLSM

One could ask the question if one can allow for line bundles on resolved orbifolds
which do not allow for an identification like (3.129). This is equivalent to the
question, what the quantization conditions are on the charges of the chiral fermi
fields. For a well defined transformation property on the target space, the fermion
charges must be quantized in the same units as the coordinate fields. In other
words, they may only take values in the lattice spanned by the charges of the
chiral fields. For the maximal Z2 × Z2 it might look like all integer charges are
allowed since each U(1) has a field with charge one, however this is not the case.
The U(1) basis shown in table 3.9 is chosen such because it is nicely symmetric
in the fixed points (αβγ) and, from its structure, it reveals the interpretation
of the target space as (resolved) orbifold. But we can identify certain ”mixed“
U(1)s which are fractional linear combinations of the given U(1)’s but still all
chiral fields have integral charges, and thus also the ΛA must so. In principle one
must also include the chiral fermi fields Ca, C′

a in the quantization conditions, but
this is trivially fulfilled since their charges are chosen such that they neutralize
a homogeneous polynomial of the chiral fields. Let us inspect such fractional
mixed U(1)s. First, we find 64 of the form,

1

2

(
U(1)E1,βγ

+ U(1)E2,αγ + U(1)E3,αβ

)
. (3.133)

They imply quantization conditions,

QA
E1,βγ

+QA
E2,αγ

+QA
E3,αβ

= 0 mod 2 . (3.134)

Furthermore, involving also the U(1)Ra , one finds 24 more such mixed U(1)s,
namely

1

2

(
U(1)R1

+
∑

β

U(1)E3,αβ

)
,

1

2

(
U(1)R1

+
∑

γ

U(1)E2,αγ

)
,

1

2

(
U(1)R2

+
∑

α

U(1)E3,αβ

)
,

1

2

(
U(1)R2

+
∑

γ

U(1)E1,βγ

)
,

1

2

(
U(1)R3

+
∑

α

U(1)E2,αγ

)
,

1

2

(
U(1)R3

+
∑

β

U(1)E1,βγ

)
,

(3.135)

where the unsummed index runs from 1, . . . , 4. They imply that
∑

β

QA
E3,αβ

= 0 mod 2 ,
∑

γ

QA
E2,αγ

= 0 mod 2 ,

∑

α

QA
E3,αβ

= 0 mod 2 ,
∑

γ

QA
E1,βγ

= 0 mod 2 ,

∑

α

QA
E2,αγ

= 0 mod 2 ,
∑

β

QA
E1,βγ

= 0 mod 2 .

(3.136)
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There is a further condition on the charges. In order to result in an E8 × E8

string theory, the first Chern class of the bundle must be an even class. This
implies that

∑
I Q

I
r = 0 mod 2 for all r, i.e. the Qr must be root vectors of

SO(16). Vectors in the spinor lattice of SO(16) are not realizable this way,
but for many models one can perform a Weyl reflection in the E8 × E8 lattice
such that they all lie in the SO(16) root lattice. In appendix C we show that
the conditions (3.134) and (3.136) imply that the charges must indeed fulfill
the conditions (3.129). Thus, in this context one finds no obstruction that all
consistent GLSM models can be traced back to orbifold models formulated as
free CFTs. Later, in section 4.1 we will observe that the same conditions arise
from the flux quantization in the SUGRA theory.

3.4.2 Freely Acting Discrete Symmetries

In typical Calabi–Yau models one needs a freely acting discrete symmetry for a
hypercharge preserving SU(5) GUT breaking [52]. The model we constructed
in [40, 41] is such an example which builds up on a Z2 × Z2 orbifold on which
an involutive Z2free acts, and a blow-up is performed in a way which preserves
the Z2free. By modding out a discrete freely acting symmetry G obtains a
non-simply connected manifold where the fundamental group is equal to G.
By extending the G action into the gauge degrees of freedom one obtains the
possibility to switch on discrete Wilson lines, to which we will refer as free Wilson
lines. Now a theorem in algebraic geometry states that a complete intersection
in a toric variety is always simply connected, if it is not an elliptic curve or a
product thereof. This means that by standard GLSMs with it is not possible to
generate such freely acting discrete symmetries as remnants of U(1) gaugings.
We will demonstrate this for the Z2 × Z2 orbifold where we can identify a huge
group of torus involutions, however, only those can be generated by broken U(1)s
which preserve the simply-connectedness. However, such symmetries can still be
identified but then must be modded out by hand, which might lead to linear
identifications between the coordinates and gaugings.

Example: Z2 × Z2 × Z2,free

As a first example we demonstrate the freely acting Z2free symmetires in a
factorizable Z2 × Z2 orbifold. The lattice identifications are

ua ∼ ua + 1 ∼ ua + τa , a = 1, 2, 3 , (3.137)

τa being the complex structure modulus in each torus, and the point groups acts
as

θa : zb6=a 7−→ −zb , za 7−→ za , a = 1, 2, 3 . (3.138)
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3 GLSM description of Resolved Toroidal Orbifolds

The fixed point structure is the following. Each θa leaves the ath plane invariant
and acts to second order in the other two planes, which results in 4 × 4 = 16
fixed lines, which get twisted by the remaining Z2. Altogether this results in
3×16 = 48 fixed lines which are labeled by (1, βγ), (2, αγ) and (3, αβ). To make
this more concretely, we show the maximal GLSM model for this geometry. The
field content with charges is shown in table 3.9. In the orbifold limes, when all
FI parameters b1,βγ , b2,αγ and b3αβ are negative, we obtain a map to the flat
coordinates ua by the Weierstrass identifications done in section 3.1.2.

The action of the Z2free on the flat coordinates is given by

θfree : (u1, u2, u3) 7−→
(
u1 +

τ1
2
, u2 +

τ2
2
, u3 +

τ3
2

)
. (3.139)

Using the Weierstrass map which was established in section 3.1.2, we can trans-
late the θfree action to the homogeneous coordinates. It acts like β2 in equation
(3.45) on all coordinates zai simultaneously. However, when interpreting equa-
tion (3.45) for this case, the values of the x fields have already been set to one
against the C∗ scalings. Thus, on order to make θfree a symmetry of the whole
theory, we have to extend it on the other objects in the theory. From the action
on the zai we see that θfree basically permutes the indices αβγ as 1 ↔ 3 and
2 ↔ 4. Thus, we have to identify the exceptional coordinates and gaugings, and
in the GLSM also the FI parameters, in the same way,

(
x1βγ , U(1)E1βγ

, b1βγ

)
↔
(
x1,β+2,γ+2, U(1)E1,β+2,γ+2

, b1,β+2,γ+2

)
, (3.140)

(
x2αγ , U(1)E2αγ , b2αγ

)
↔
(
x2,α+2,γ+2, U(1)E2,α+2,γ+2

, b2,α+2,γ+2

)
, (3.141)

(
x3αβ , U(1)E3αβ

, b3αβ

)
↔
(
x3,α+2,β+2, U(1)E3,α+2,β+2

, b3,α+2,β+2

)
, (3.142)

where the addition of the indices is taken modulo four. In the symplectic quotient
there might appear some factors in the identifications in order to make the D-
terms invariant. However, in the holomorphic quotient construction the map
always works without prefactors if the fan possesses the required symmetry.
One drawback of such a construction would be that the Z2,free enters a semidirect
product with the U(1) gaugings on the worldsheet, thus making the group non–
Abelian.

Another possibility would be to start with the minimal model of the Z2 × Z2

orbifold and identify the Z2,free action there. Since on the Z2 × Z2 orbifold the
geometry of all fixed tori and their intersection points is the same, we only need
one set of exceptional coordinates to obtain a fully resolvable model. The field
content and the charges can be obtained from the maximal model by reducing
the exceptional coordinates and gaugings such that the indices just are α = β =

82



3.4 (2,0) Models

γ = 1 and thus can be dropped. Then the F -terms become

κ1z
2
11x2x3 +z2

12 +z2
13 = 0 ,

z2
11x2x3 +z2

12 +z2
14 = 0 ,

κ2z
2
21x1x3 +z2

22 +z2
23 = 0 ,

z2
21x1x3 +z2

22 +z2
24 = 0 ,

κ3z
2
31x1x2 +z2

32 +z2
33 = 0 ,

z2
31x1x2 +z2

32 +z2
34 = 0 .

(3.143)

On the fixed points, z11 = z21 = z310 ,the F terms become quadratic equation in
two (homogeneous) variables and thus factorize into two solutions each. Thus it
immediately describes all 64 fixed points which lie at za3/za2 = ±1, za4/za2 = ±1.
In fact we have a Z6

2 involutive symmetry which interchanges all the fixed points
and acts precisely by sign flips of the homogeneous coordinates. Thus the Z2,free

can be realized as a subgroup of this an modded out by hand. One realization
of this would be

θfree(za1, za2, za3, za4) 7−→ (−za1, za2,−za3, za4) , (3.144)

for all a simultaneously. In fact we saw that if one adds more exceptional coor-
dinates and gaugings, part of this involution group can indeed be modded out.
The extreme case was the maximal model where the whole involution group is
modded out. Thus one could hope that this freely acting symmetry is realizable
in some intermediate model. However, one can argue that this is not possible.
As a first argument, the involutions one creates this way always arise due to
multiple exceptional gaugings U(1)Ek,ρσ

in the same sector k which differ in the
indices ρ and σ which belong to the two tori. Therefore such involutions always
act in one or two tori simultaneously, but never in three as is required for θfree.
Another argument is that the resulting space, if it is blown up, is a smooth com-
plete intersection CY in an ambient toric variety. Now a theorem states that
such spaces are always simply connected, whereas the θfree, as a freely acting
element, creates a non-simply connected space. However, these constructions
can still be used to deduce the intersection ring on the resolved spaces and use
it for SUGRA models.
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4 Phenomenology on Orbifold
Resolutions

After having put so much effort in constructing the resolutions of toroidal orb-
ifolds, it is our intention do study the physics which comes out of the compactifi-
cation of heterotic string. In particular we are interested in what happens during
the resolution process to see how the observable parameters depend on the geo-
metrical moduli. Now the only framework where we can perform the resolution
process continuously is the GLSM, but there it is very hard to get precise state-
ments about properties of the target space theory. Instead we take the GLSM
as a confirmation that such an interpolation is possible and will only work in
the limiting regions where we can more easily do calculations. These regions are
on the one hand the full string orbifold CFT which was introduced in chapter 2.
The second theory is compactification of heterotic ten-dimensional supergravity
on a smooth Calabi–Yau manifold with line bundles. The situation is depicted
in figure 4.1. In fact, in cases where the resolution is not unique as Z2 × Z2,
there will be a whole bunch of resolution theories. Since the SUGRA theory is
an approximation in the string length, stringy effects will a priori not be visible.
One can think of these theories being valid approximations to string theories if
the radii of the compactification space are large compared to the string length.
We will find that the comparison of the various SUGRA limits with each other
and the orbifold CFT will reveal concrete hints for stringy effects that would not
have been visible in the theories themselves.

4.1 Effective SUGRA

Ten-dimensional heterotic supergravity is well known to an extend which is re-
quired here. The field content consists of the massless string modes, namely the
graviton gMN , the Kalb–Ramond field BMN , the dilaton φ and 496 gauge bosons
Aa

M of E8 ×E8. The fermions are not mentioned here explicitely since their con-
tent follows from supersymmetry. The action up to second order in derivatives
is roughly

S10D ∼
∫

∗R +H3 ∧ ∗H3 + dφ ∧ ∗dφ+ trF2 ∧ ∗F2 +B2 ∧X8 . (4.1)

Here R is the curvature scalar, H3 = dB2 + trΩ1 ∧ R2 − trA1 ∧ F2, where Ω1

is the spin connection, R2 its curvature, and X8 is a polynomial in F2 and R2.
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b
∞−∞

Λ
∞

Gauged Linear Sigma Model

Orbifold

free CFT

SUGRA

approximationYou are here!

Figure 4.1: The theories we are working with, plotted in a plane spanned by the
GLSM mass scale Λ and the blow-up parameter b. The interpolation between
singular orbifold and smooth resolution is doable in the GLSM framework at
finite Λ. The string theories / SUGRA approximations are conformal Λ = ∞ but
only work for limiting cases of b. A realistic theory, however, will lie somewhere
in between.

The first four terms can be interpreted as kinetic terms for the bosons. The last
term is required for Green–Schwarz anomaly cancellation in ten dimensions.

In the compactification to four dimensions we have to split the fields according
to the decomposition of representation under the reduction of the Lorentz group
SO(1, 9) → SO(1, 3) × SO(6). We assume compactification on a Calabi–Yau
manifold X with a stable vector bundle V on it. The Bianchi identity of H3,
i.e. the exactness of dH3 imply topological conditions on the bundle, which can
be summarized In terms of the Chern characters as ch2(TX) = ch2(V ). In
section 3.2.2 we showed that in a GLSM setup, these conditions follow from
(2, 0) anomaly freedom.

The Calabi–Yau property implies h1,0(X) = h2,0(X) = 0 and the existence
of a holomorphic non vanishing three form, i.e. h3,0(X) = 1. Furthermore, the
stability of the bundle implies that h0(V ) = 0, where V is the bundle in any
representation. The fields have to be expanded in eigenmodes of the internal
Laplacian, in the spirit of Kaluza–Klein. In fact, we will only be interested in
the zero modes corresponding to massless particles, since we are interested in an
effective theory at energies smaller than the inverse compactification scale. These
zero modes are precisely the harmonic forms which furthermore are in one to one
correspondence with cohomology groups. Thus the amount of massless modes
can be deduced purely from the topological properties of the compactification
space. As a last step, one has to specify the background values for the four-
dimensional scalar fields. They correspond to the moduli of the internal space
and the vector bundle. Let us focus a bit more on the splitting. For this, notice
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10 d component

field reduction multiplicity name

10d graviton

gµν h0(X) = 1 4d graviton

gµm 2h1,0(X) = 0 -

gmn
2h2,1(X) complex structure moduli

h1,1(X) Kähler moduli

Kalb–Ramond

Bµν h0(X) = 1 universal axion

Bµm 2h1,0(X) = 0 -

Bmn h1,1(X) axions

dilaton φ h0(X) = 1 dilaton

10d vector boson Aµ h0(O) = 1 4d vector boson

(1, ad(H)) Am h1(O) = 0 -

10d vector boson Aµ h0(End(V )) = 0 -

(ad(G), 1) Am h1(End(V )) bundle moduli

10d vector boson Aµ h0(VR) = 0 -

((R,R′) Am h1(VR) chiral matter

Table 4.1: Decomposition of 10d bosonic fields into 4d fields and multiplicities.

87



4 Phenomenology on Orbifold Resolutions

that the E8 × E8 gets split into G × H where G is the structure group of the
gauge bundle and H is its commutant. Accordingly, the vector bosons in the
adjoint will split as

248 7−→ (ad(G), 1) ⊕ (1, ad(H)) ⊕
⊕

(R,R′) . (4.2)

Thus we will distinguish if the bosons are in the adjoint of G, in the adjoint
of H or in any other representation. The decomposition of the fields and their
multiplicities are shown in table 4.1. To sum up, from the 10d gravity multiplet
we get a 4d gravity multiplet together with some chiral fields which fall into
three categories

• h2,1(X) complex structure moduli, which by themselves are complex ,

• h1,1(X) complexified Kähler moduli, αr + iar, r = 1, . . . , h1,1(X) where
ar are the Kähler moduli and αr are axions originating from the Kalb–
Ramond field ,

• One axion-dilaton, auni +iφ, where the universal axion is dual to the Kalb–
Ramond field in four dimensions, dauni = ∗4dB2. .

From the 10d gauge multiplets we get the 4d gauge multiplets of the commutant
H of the bundle, a bunch of H neutral bundle moduli and chiral fields transform-
ing in non-trivial representations of H and chiral fields transforming in both the
bundle structure group and the four dimensional gauge group. The only thing
one has to do to get their amount is to compute the dimensions of cohomology
groups. The easiest of them are hp,q(X) which can in the resloved orbifold case
be done by counting the untwisted and twisted contributions separately. For the
bundle cohomologies, these calculations are doable [54], but it turns out that
their difficulty increases exponentially with the number of gaugings, which in
the maximal models is roughly h1,1(X). Thus for generic orbifold resolutions
in terms of maximal models they are not feasible. Instead, the computation of
the net multiplicity can in the be done in a much easier way. Using the bundle
stability and Serre duality we find

χ(V ) = h0(V ) − h1(V ) + h2(V ) − h3(V ) (4.3)

= 0 − h1(V ) + h1(V ∨) − 0 (4.4)

= #antichirals − #chirals . (4.5)

The Euler number χ(V ) can be computed by an index theorem as a topological
integral over X. In the cases we study here, the vector bundle will simply be a
sum over line bundles. In these cases, the field strength is equal to the bundle
first Chern class and can thus be expaned in a basis of divisors,

F =
∑

r

ErV
I
r H

I , (4.6)
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where the HI can be seen as generators of the Cartan subalgebra of E8×E8, and
the coefficients V I

r are called bundle vectors. For line bundles, the statement
that the commutant of the bundle structure group in E8 × E8 stays unbroken
is not quite correct. Since line bundles are Abelian bundles, one would expect
from SUGRA that their structure-U(1)’s remain unbroken, since they commutes
with themselves. However, the coupling of the Kalb–Ramond field to the gauge
fields via the Chern–Simons term generates a Stückelberg mechanism in four
dimensions which gives mass to the gauge boson. To see this, we expand B2 in
the internal (1, 1) forms with the parameters being the four-dimensional axions,

B2

∣∣
X

=
∑

r

Erβr . (4.7)

We do the same for the three-form flux H3 including the gauge Chern–Simons
term and insert the line bundle,

H3 ⊃ dB2 − trA ∧ F ⊃
∑

r

Er ∧
(
d4βr − V I

r A
I
)
. (4.8)

Under an Abelian gauge transformation δAI = d4ϕ
I with gauge parameter ϕI , in

order forH3 to be inert, the axion must transform with a shift δβr = V I
r ϕ

I . Then
one can gauge βr away and its kinetic term becomes a mass term for the vector
boson A, with the mass being proportional to the axion scale. So one can raise
the question, how to obtain a massless U(1) gauge theory in such a smooth CY
compactification . One can either try to find a bundle with structure group G ⊂
E8 × E8 such that its commutant contains a U(1) factor which is orthogonal to
G, but, in the context of MSSM-like models, no such working case is known yet.
Another possibility is to construct a CY with a non–trivial fundamental group.
Then one can wrap Wilson lines around the non-contractible cycles. Since the
fundamental group of such a CY is typically finite, the Wilson lines are discrete.
They can then used to break some non–Abelian group down to something with
U(1) factors for which there are no axions making them massive. This is a
famous scenario for SU(5) GUT breaking to assure an unbroken hypercharge. In
the context of orbifold and resolutions we encountered this in [40, 41].

For the case of an orbifold resolution where one insists on the interpretation
as the blow-up of a singular orbifold theory, we choose the sum to run over the
exceptional divisors only, since there the two-tori are free of flux. Then one can
argue that the bundle vectors must be equal to the local shift vectors, up to
E8 × E8 lattice vectors, as was done in [37, 39],

Vr = Vg mod ΛE8×E8
. (4.9)

In a line bundle scenario, the index theorem takes a rather simple form,

χ(V ) =

∫

X

(
1

6
F 3 − 1

24
trR2 · F

)
, (4.10)
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Flux quantization in triangulation “E1”

E1,βγE2,αγ 2V2,αγ
∼= 0 D1,αE1,βγ V1,βγ − V2,αγ − V3,αβ

∼= 0

E1,βγE3,αβ 2V3,αβ
∼= 0 D1,αE2,αγ 4V2,αγ −

∑
β

V1,βγ
∼= 0

E2,αγE3,αβ 0 D1,αE3,αβ 4V3,αβ −
∑
γ

V1,βγ
∼= 0

D2,βE1,βγ −∑
α

V3,αβ
∼= 0 D3,γE1,βγ −∑

α

V2,αγ
∼= 0

D2,βE2,αγ 0 D3,γE2,αγ −∑
β

V1,βγ
∼= 0

D2,βE3,αβ −
∑
γ

V1,βγ
∼= 0 D3,γE3,αβ 0

RiEi,ρσ 2Vi,ρσ
∼= 0 RiRj 0

RiDj,ρ −∑
σ

Vi,ρσ
∼= 0 (i 6= j)

Table 4.2: The flux quantization
∫

C
F on curves C using triangulation “E1” at

all Z2 × Z2 orbifold fixed points.

which is also called multiplicity operator. An alternative, more physics related
approach to the multiplicity operator is by extracting it from the reduction of the
ten-dimensional anomaly polynomial to the four-dimensional one [35]. There it
appears as prefactor of the contributions of the chiral fields and thus only knows
about the net multiplicity.

Flux Quantization on resolution Calabi–Yau

In section 3.4.1 we showed that the integrality condition on the GLSM charges
of the chiral fermi multiplets is equivalent to the conditions stemming from the
identification with the orbifold CFT in the blow-down limes. If one works in
the target space theory on the resolution one can study the relation between
the flux quantization conditions and the identifications with the orbifold local
shifts. This, however, has to be done case by case. Here we do the analysis
for the factorizable Z2 × Z2 orbifold and show that these conditions are indeed
equivalent. For a line bundle (4.6) the flux quantization conditions take the form

∫

C

F ∼= 0 , (4.11)

where C is any integral curve on the CY manifold and here ∼= means equal up
to E8 × E8 lattice vectors. A priori, these conditions depend on the amount of
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4.1 Effective SUGRA

Flux quantization in triangulation “S”

E1,βγE2,αγ −V1,βγ − V2,αγ + V3,αβ
∼= 0 D1,αE1,βγ 0

E1,βγE3,αβ −V1,βγ + V2,αγ − V3,αβ
∼= 0 D1,αE2,αγ

∑
β

V3,αβ
∼= 0

E2,αγE3,αβ V1,βγ − V2,αγ − V3,αβ
∼= 0 D1,αE3,αβ

∑
γ

V2,αγ
∼= 0

D2,βE1,βγ

∑
α

V3,αβ
∼= 0 D3,γE1,βγ

∑
α

V2,αγ
∼= 0

D2,βE2,αγ 0 D3,γE2,αγ

∑
β

V1,βγ
∼= 0

D2,βE3,αβ

∑
γ

V1,βγ
∼= 0 D3,γE3,αβ 0

RiEi,ρσ 2Vi,ρσ
∼= 0 RiRj 0

RiDj,ρ −
∑
σ

Vi,ρσ
∼= 0 (i 6= j)

Table 4.3: The flux quantization
∫

C
F on curves C using the triangulation

“symm” at all Z2 × Z2 orbifold fixed points.

curves on the space and should be studied for each non-equivalent topology case
by case. For an orbifold resolution, they might change between the different
triangulations. We show in the example of the Z2 × Z2 resolution that in all
triangulations we recover the same set of conditions. Taking the intersection
numbers from table 3.10 and the line bundle ansatz (4.6), we can compute these
conditions. The results for the triangulations “symm” and “E1” are written
down in tables 4.2 and 4.3. First we observe that for each bundle vector Vr we
get the condition that is is a half E8×E8 lattice vector. Then, we find conditions
of the form

V1,βγ + V2,αγ + V3,αβ
∼= 0 , (4.12)

∑

ρ

Vk,ρσ
∼=
∑

σ

Vk,ρσ
∼= 0 . (4.13)

These conditions look very similar to the GLSM quantization conditions found
in equations (3.134) and (3.136), and thus also imply the orbifold identifications,
as shown in appendix C.

The fact that for this the bundle the bundle vectors have to be identified with
the GLSM charges, Qr/2 ∼= Vr, is not surprising. In fact, we have expanded
the bundle vectors in a basis of Er = {xr = 0} divisors, which can be seen as
duals of the U(1)Er gaugings, since the fields xr are only charged under U(1)Er .
The factor in the identification comes from the charge −2 of xr, so the exact
identifications are Vr = −Qr/2.
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4 Phenomenology on Orbifold Resolutions

First Identification of States

In an ideal picture of a blow-up procedure, one starts at the orbifold point and
moves along a flat directions in moduli space. In general a non-vanishing FI
term of the orbifold anomalous U(1) will drive this process. What happens from
this point of view is comparable to the standard model Higgs mechanism. The
gauge symmetries, under which the moduli fields are charged, get broken. At the
same time the vevs might generate mass terms in the superpotential for pairs
of chiral fields which thus disappear from the low energy spectrum. Having
brought such a theory to a point where the volumes are large and one can take
the SUGRA approximation to describe the theory. We assume to have one blow-
up mode at each fixed point which should lead to a line bundle model on the
resolution. There the things look a bit different. Here the breaking of the gauge
symmetry comes from a Stückelberg mechanism involving the axions βr. One
can understand this by identifying the blow-up mode Ψr, i.e. the field that gets
a vev, with the complexified Kähler modulus Tr = br + iβr as

Ψr = eTr . (4.14)

This is motivated by the fact that the blow-up mode is a field transforming
linearly under gauge transformations, so here we identify the bundle vector to
be its charge. Then the expansion around the vev of the kinetic term gives
precisely the axion coupling, with the axion scale being determined by b. In
[39,41] we showed that the Bianchi identities often force the blow-up modes to be
oscillatorless states by fixing the length on V 2

r . In the GLSM one can show that
this is always the case. For this assume a very simple setup of just a local C3/ZN

singularity where we just focus on one particular sector corresponding to the
twist θ = diag(e2πim1/N , e2πim2/N , e2πim3/N ), with 0 ≤ mi < N andm1+m2+m3 =
N . The GLSM for just this sector with a line bundle reads:

field Z1 zZ2 Z3 X ΛA

U(1) charge m1 m2 m3 −N QI

Then the bundle vector of charge of the blow-up mode is V I = QI/N . The U(1)2

gauge anomaly cancellation reads

m2
1 +m2

2 +m2
3 +N2 =

∑

I

(
QI
)2
. (4.15)

Dividing this by N2, we obtain a formula for the length of the blow-up mode
charge vector. Inserting it into the orbifold mass equation (2.11) we indeed find
that the blow-up mode can only be massless if all oscillators are switched off.

A next difficulty in the matching are the charges of the twisted chiral fields.
On the resolution all chiral fields come from the adjoint of E8 × E8 and thus
their charges are the E8 × E8 roots. The charges of orbifold twisted states, on
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4.2 Stringy Effects

the other hand, are shifted by the local shift Vg and are in particular no longer
in the root lattice. For this to be repaired, one find that the states have to be
redefined by the blow-up modes,

Ψorbifold = ef(Tr)Ψblow−up . (4.16)

where f(Tr) is a linear polynomial. The naive assumption would be to use
f(Tr) = Tr when Ψ comes from the twisted sector corresponding to r. In the
examples we studied in [41, 45] we show that this is not always the case, but
rather more general linear polynomials must appear. This will be elaborated in
to some more detail in the next section.

4.2 Stringy Effects

We want to shed a light in stringy effects which are not seen from the pure
SUGRA theories, but rather are revealed by comparing the theories at different
points in moduli space. For example, as the multiplicity operator is a topological
integral, it might happen that the multiplicity of certain states jumps during a
flop transition. From a pure SUGRA point of view this would just correspond
to two different theories, since going through a flop, the geometry would become
singular and the pure field theory on it would be ill defined. However, if one
views the SUGRA theory as an approximation to an underlying string theory,
then both sides of the flop should be connected since the string can deal with
singularities. Such a stringy smooth interpolation of different SUGRA theories
was first studied in [19] in the context of type II theories. There it was observed
that an infinite number of worldsheet instantons could smoothly extrapolate
between Yukawa couplings calculated in the SUGRA regimes on the two sides
of the flop.

Furthermore, a matching with the orbifold states can be performed. The states
at this point and their interactions are known. In the example we present, we
will observe that there are massless states in the SURGA theory, which have no
orbifold counterpart and thus cannot be perturbative orbifold states. From the
SUGRA point of view these states have to dissappear in the blow-down limit,
which can only be explained by including non-perturbative stringy corrections.

Example: A Z2 × Z2 Model with Flop Transitions

A concrete and simple setup to study this phenomenon is the standard embed-
ding on the Z2 × Z2 orbifold. The orbifold model is specified by the shifts

V1 =
(
0,

1

2
,−1

2
, 05
)(

08
)

and V2 =
(
− 1

2
, 0,

1

2
, 05
)(

08
)

(4.17)

and vanishing Wilson lines Wi = 0, i = 1, . . . , 6. The resulting 4d model has E6×
U(1)2 ×E8 gauge group and the charged matter spectrum consists of 3(27, 1) +
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4 Phenomenology on Orbifold Resolutions

U sector θ1-sector θ2-sector θ3-sector

(27, 1)(−2,−2) (27, 1)(2,2) 16(27, 1)(2,0) 16(27, 1)(−1,1) 16(27, 1)(−1,−1)

(27, 1)(−2,2) (27, 1)(2,−2) 16(1, 1)(−6,0) 16(1, 1)(3,−3) 16(1, 1)(3,3)

(27, 1)(4,0) (27, 1)(−4,0) 32(1, 1)0,2 32(1, 1)(3,1) 32(1, 1)(3,−1)

(1, 1)(6,−2) (1, 1)(−6,2) 32(1, 1)(0,−2) 32(1, 1)(−3,−1) 32(1, 1)(−3,1)

(1, 1)(6,2) (1, 1)(−6,−2)

(1, 1)(0,4) (1, 1)(0,−4)

Table 4.4: The massless spectrum of the Z2 × Z2 standard embedding orbifold
model with gauge group E6 × U(1)2 × E8.

51(27, 1) and 246 singlets (charged under U(1)2). It is listed in detail in table
4.4.

The blow-up model is obtained with the bundle vectors

V1,βγ =
(
0,−1

2
,−1

2
, 1, 0, 0, 0, 0

)(
0, 0, 0, 0, 0, 0, 0, 0

)
, (4.18)

V2,αγ =
(
− 1

2
, 0 − 1

2
, 0, 1, 0, 0, 0

)(
0, 0, 0, 0, 0, 0, 0, 0

)
, (4.19)

V3,αβ =
(
− 1

2
,−1

2
, 0, 0, 0, 1, 0, 0

)(
0, 0, 0, 0, 0, 0, 0, 0

)
, (4.20)

which fulfill the Bianchi identities for any triangulation. This corresponds to
choosing the blow-up modes in three different directions inside 27 of E6 which
induces a gauge symmetry breaking E6 × U(1)2 → SU(3) × SU(2) × U(1)5. (In
detail: The blow-up modes associated to V1,βγ lead to a breaking to SO(10)×U(1)
and all 27 are branched to 16 + 10 + 1. The blow-up modes associated to V2,αγ

acquire a VEV in the 16. This induces further breaking SO(10) → SU(5)×U(1),
and the 16 branches to 10 + 5 + 1. And finally the blow-up modes associated
to V3,αβ branches the 10 of SU(5).) Since we chose the same blow-up mode in
each fixed plane of a given twisted sector, the discussion is the same for all 64
local resolutions. Thus, here we may drop the fixed point labels α, β and γ.
The U(1)’s are chosen such that the charge vectors of the blow-up modes are
Q(φ1) = (10, 0, 0, 0, 0), Q(φ2) = (0, 10, 0, 0, 0) and Q(φ3) = (0, 0, 10, 0, 0). In this
way the axions corresponding to the blow-up modes have no effect in anomaly
cancellation for the last two U(1) factors. In fact, these U(1)’s have no anomaly
at all, as can be checked by directly inspecting the anomaly polynomial. This
matches with the fact that the two U(1)’s present in the orbifold model are non-
anomalous, but notice that the non-anomalous U(1)’s in the orbifold and those
in the resolution cannot be identified with each other directly, since the blow-up
modes are generically charged under the orbifold U(1)’s.
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4.2 Stringy Effects

In table 4.5 we list the twisted spectrum of the standard embedding model,
after branching it in representations of SU(3) × SU(2), and we match it with
the spectra obtained in the resolutions “E1” and “S”. The untwisted spectrum
has no chiral counterpart in the resolution, so we do not consider it. Note that
some orbifold states are not listed here since they recieved a mass term from
Yukawa couplings with the blow-up mode, which becomes large in the SUGRA
regime. We provide the U(1) charges in the basis discussed above, that differs
from the basis used in table 4.4 for the reasons explained above. In what follows
we also face the details of the matching in the specific case of states in (1, 2)
representations, but the mechanisms at work for the other representation are
essentially the same.

Flopping states: the (1, 2) case

To face the phenomenon of extra states appearing on the resolutions, we discuss
here as an example the matching and appearance of novel states for the SU(2)
doublets di listed in table 4.5. We focus in particular on the states named d1

and d2. The multiplicities of the orbifold states and of the states appearing in
each of the four triangulations of the 64 Z2 ×Z2 fixed points are shown in table
4.5. As the charges of the orbifold states and the states on the resolution do not
completely match we need to perform field redefinitions of the orbifold states
using the blow-up modes of the respective sectors given by:

di,BU = e2πTrdi,orbi for i = 1 . . . 6 and d7,BU = e−2πTrd7,orbi . (4.21)

Table 4.5 indicates that orbifold and resolution multiplicities of the states
d1 and d2 are identical, except for resolution “E2”, where the multiplicity is
−48 rather then 16. The negative multiplicity is interpreted such that on that
resolution one does not see the d1 and d2 states, but rather their charge con-
jugates which we call d1 and d2. In order to explain this we first consider the
(lowest order) superpotential terms for d1 and d2 that can be written from the
orbifold perspective, namely W = d1,orbid2,orbiφ2. This term indicates that all
states get a mass term in blow-up. From the blow-up perspective the cor-
responding superpotential can be obtained after field redefinition, and reads
W = d1d2e

−2π(U1+U3−U2). We observe that in all triangulations but “E2” the con-
ditions on the blow-up moduli are such that we can interpret this superpotential
term as instantonic mass terms. Thus, d1 and d2 have the same multiplicity both
in the orbifold point and in resolution, since they are massless modes in a per-
turbative expansion of the theory, receiving instantonic mass corrections. When
we pass to triangulation “E2” from any other triangulation, the twisted moduli
fulfill the condition b2 > b1 + b3 and the d1d2 mass term cannot be thought of as
an instantonic correction to a well defined perturbative theory any more.

In other words, the supergravity construction fails as soon as b2 is not smaller
than b1 + b3, and we loose control on the “perturbative” computation of the
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4 Phenomenology on Orbifold Resolutions

spectrum: the non-perturbative corrections take over, and a new “perturbative”
computation comes at hand, i.e. the supergravity construction made in resolu-
tion “E2”, where the states d1 and d2 indeed disappear from the spectrum. This
argument holds in the very same way for the pairs d3, d4 and d5, d6, disappearing
in resolution “E1” and “E3”, respectively. For the d7 states the orbifold mass
term is such that in no triangulation it can be seen as an instantonic correction
to a perturbatively massless set of states: in supergravity, independently of the
resolution type, these states have a large O(Ms) mass and are removed from the
massless spectrum.

We explained the fate of the orbifold states when passing in blow-up and
when passing from one triangulation to the other. This is not all, since we have
underlined states to explain as well. Their fate is somewhat dual to that of non-
underlined states. Let us consider the d1 and d2 states in triangulation “E2”: it
is reasonable to assume that their superpotential is

W = d1d2e
2π(T1+T3−T2) (4.22)

and these states are present as massless states with instantonic mass terms only
if the moduli are chosen such that we are in triangulation “E2”, in all the other
cases the instantonic correction grows, a perturbative perspective is non-tenable,
and the underlined states drop from the massless spectrum.
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S
trin

gy
E

ff
ects

State Orb. Mult. Resolution Mult. U(1) charges

θ1 θ2 θ3 “E1” “E2” “E3” “S”

d1 16 16 -48 16 16 ( 7,-5, 3, 1, 2)

d2 16 16 -48 16 16 ( 3,-5, 7,-1,-2)

d3 16 16 16 -48 16 ( 3, 7,-5,-2,-1)

d4 16 16 16 -48 16 ( 7, 3,-5, 2, 1)

d5 16 -48 16 16 16 (-5, 3, 7, 1,-1)

d6 16 -48 16 16 16 (-5, 7, 3,-1, 1)

d7 16 16 16 -80 -80 -80 -80 (-5,-5,-5, 0, 0)

t1 16 16 -48 -48 -48 ( 8,-4,-4, 1, 1)

t2 16 16 32 -32 -32 -32 ( 2,-6,-6,-1,-1)

t3 16 -48 -48 16 -48 (-4,-4, 8, 0,-1)

t4 16 16 -32 -32 32 -32 (-6,-6, 2, 0, 1)

t5 16 -48 16 -48 -48 (-4, 8,-4,-1, 0)

t6 16 16 -32 32 -32 -32 (-6, 2,-6, 1, 0)

t7 16 16 16 16 16 ( 6, 2, 2, 2, 2)

t8 16 16 16 16 16 ( 2, 6, 2,-2, 0)

t9 16 16 16 16 16 ( 2, 2, 6, 0,-2)

q1 16 16 16 16 16 (-7, 1, 1, 1, 1)

q2 16 16 16 16 16 ( 1,-7, 1,-1, 0)

q3 16 16 16 16 16 ( 1, 1,-7, 0,-1)

φ1 16 1st Blow-up mode (10, 0, 0, 0, 0)

φ2 16 2nd Blow-up mode ( 0,10, 0, 0, 0)

φ3 16 3rd Blow-up mode ( 0, 0,10, 0, 0)

s1 16 16 16 16 16 ( 6, 2, 2,-3,-3)

s2 16 16 16 16 16 ( 2, 6, 2, 3, 0)

s3 16 16 16 16 16 ( 2, 2, 6, 0, 3)

s4 16 -16 -64 0 64 0 (-8, 0, 8, 1, 2)

s5 -64 0 0 0 (-2,10, 2,-1,-2)

s6 0 0 -64 0 ( 2,10,-2, 1, 2)

s7 16 -16 -64 64 0 0 (-8, 8, 0, 2, 1)

s8 -64 0 0 0 (-2, 2,10,-2,-1)

s9 0 64 0 0 ( 2,-2,10, 2, 1)

s10 16 -16 0 -64 64 0 ( 0,-8, 8,-1, 1)

s11 0 -64 0 0 (10,-2, 2, 1,-1)

s12 0 0 64 0 (10, 2,-2,-1, 1)

Table 4.5: Orbifold and resolution multiplicities of the states in the standard embedding (but in non-standard blow-up).
The first column lists the labels of SU(3)×SU(2) representations: “dx” for (1, 2), “tx” for (3, 1), “qx” for (3, 2), φx for the
blow-up modes, and “sx” denote the singlets. An overlined label indicates the corresponding conjugate representation. In
giving the multiplicities in the orbifold we indicate the twisted sector to which they belong (θ1, θ2, and θ3).
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5 Conclusions and Outlook

Motivated by the success in the approaching the standard model of particle
physics from heterotic orbifold compactifications, we studied how such models
behave when going away from the orbifold point in moduli space in order to get
a more realistic vacuu. One important step was to find a framework in which
the moduli spaces are accessible without loosing control of the theory. This
was realized in terms of GLSMs by describing toroidal orbifolds as complete
intersections. This way we could rigorously obtain the topological data of the
resolved geometry in order to be able to study the SUGRA approximation.

We studied the behavior of (2, 2) models in different corners of moduli space
and discovered new phases with interesing interpretations as hybrid theories.
To our knowledge this is the first example of complete intersection Calabi–Yaus
that posess a limit with a fully geometric sovable CFT description. It would be
interesting to study the phases which seem to allow for CFT descriptions, like
the non-geometric phases and singular over-blow-up phases, in order to get more
perspectives on the physics which happen at low energies.

The GLSM resolution models might also be applied in the context of type
II theories. For this one has to elaborate how to formulate the open string
boundary conditions to study D-brane models in this setup.

In the context of (2, 0) models which are required for a realistic compactifica-
tion, we found that it is very hard to write down a fully consistent model with an
orbifold limit. Here there is still a lot of potential to be discovered. For example
one try to describe line bundles in a less naive way than how it was done here,
such that the gauge anomalies cancel. Then one could not only see the bundle
moduli in a GLSM fashion as superpotential parameters, but one might also get
an impression of how the associated (2, 0) moduli spaces look. Furthermore, the
realization of more general vector bundles and their relation to the orbifold point
is of particular interest.

The observation of states with jumping multiplicities showed that the spec-
trum computation in SUGRA theories is subject to string corrections. Since in
realistic models the compactification scale cannot be too far away from the string
scale, such corrections have high impact on the low energy theory and cannot
be ignored. Here a (2, 0) version of quantum cohomology [55], which includes
such non-perturbative corrections, might be helpful. A more distant goal is to
deduce more physical statementd directly from the GLSM, so that one can make
statements at any point in moduli space.
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A Discrete Actions on elliptic
Curves and Tori

In this appendix we show the equivalence of some discrete group actions on
elliptic curves and translations on tori they correspond to. We focus here on theZ3, Z4 and Z2 tori discussed in section 3.1.2. To establish this equivalence the
following addition formulae for the Weierstrass function and its derivative are of
crucial importance:

℘(u1 + u2) =
1

4

(℘′(u1) − ℘′(u2)

℘(u1) − ℘(u2)

)2

− ℘(u1) − ℘(u2) ,

℘′(u1 + u2) = −1

4

(℘′(u1) − ℘′(u2)

℘(u1) − ℘(u2)

)3

+ 3
℘′(u1) − ℘′(u2)

℘(u1) − ℘(u2)
℘(u2)

+ ℘′(u1) − 2℘′(u2) .

(A.1)

Z3 Torus

On the flat torus the orbifold map is θ : u→ ζu. We find

℘(ζu) = ζ℘(u) , ℘′(ζu) = ℘′(u) , (A.2)

thus, using (3.24) and (3.26) we find that θ1 : z1 → ζz1 is indeed the orbifold
action . Next we want to identify the Wilson line action. For this, we first look
at the fixed points of θ. They are precisely at

u1 = 0 , u2 = ω1 ·
e2πi/3 − 1

3
, u3 = ω1 · 2

e2πi/3 − 1

3
. (A.3)

The Wilson line action identifies these three fixed points so it is a shift by
a := ω1 · e2πi/3−1

3
. Using the formula (A.1) togehter with the identities ℘(a) = 0

, ℘′(a) = −i, we find

℘(u+ a) =
℘′(u)2 + 2i℘′(u) − 1 − 4℘3(u)

4℘(u)2

=
2℘(u)

−i℘′(u) − 1
.

(A.4)
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Now lets take a look at what we assume are our Wilson line actions on the
algebraic torus. There the free WL action was

θWL : (z1, z2, z3) 7→ (z1, ζ
2z2, ζz3) . (A.5)

mapping this to the coordinates (x, y, v) yields

θWL :

(
y
v

)
7→ −1

2

(
1 3i
i 1

)(
y
v

)
, x 7→ x (A.6)

Togehter with our Weierstrass identification (3.26) this gives

℘(u) =
x

v
7→ x

− i
2
y − 1

2
v

=
−2x

v

iy
v

+ 1
=

−2℘(u)

i℘′(u) + 1
, (A.7)

which is exactly the same as we found on the flat torus. This proofs that the
Wilson line action on the algebraic torus (A.5) is the Wilson line action on the
flat torus.Z4 Torus

On the flat torus the simplest choice for Z4,Orbi would be u 7→ iu. However, we
find that via the map given above the Orbifold action rotates around the fixed
point ufix = e1

2+2i
, i.e. it acts as θ : u 7→ iu+ e1

2
. This we show using the identites

℘(e1/2) =
1

2
, ℘′(e1/2) = 0 , ℘(iu) = −℘(u) , ℘′(iu) = i℘(u) ,

(A.8)

here:

℘(u) 7→ ℘(iu+ e1/2)

=
1

4

(
℘′(iu) − ℘′(e1/2)

℘(iu) − ℘(e1/2)

)2

− ℘(iu) − ℘(e1/2)

=
1

2

℘(u) − 1/2

℘(u) + 1/2

(A.9)

Now lets look at the Z4,Orbi action on the algebraic torus which is given by
(z1, z2, z3) 7→ (iz1, z2, z3). Translating it via (3.30) yields

θ :

(
x
v

)
7→ 1 + i

2

(
1 −1/2
2 1

)(
x
v

)
, y 7→ y (A.10)

which using the identifications above gives,

℘(u) =
x

v
7→ x− v/2

2x+ v
=

1

2

x/v − 1/2

x/v + 1/2
=

1

2

℘(u) − 1/2

℘(u) + 1/2
, (A.11)
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as expected.
Next we investigate in the Wilson line action. On the flat torus it is given by

u 7→ u+ e1+e2

2
. Here we need the identities

℘((e1 + e2)/2) = 0 , ℘′((e1 + e2)/2) = 0 , (A.12)

which quickly show

℘(u) 7→ ℘(u+ (e1 + e2)/2)

=
1

4

(
℘′(u) − ℘′((e1 + e2)/2)

℘(u) − ℘((e1 + e2)/2)

)2

− ℘(u) − ℘((e1 + e2)/2)

=
−℘(u)

4℘(u)2
=

−1

4℘(u)
.

(A.13)

On the algebraic torus our free Z2,WL acts as (z1, z2, z3) 7→ (iz1,−iz2, z3) which
via (3.30) translates into

θ :

(
x
v

)
7→
(

0 −1/2
2 0

)(
x
v

)
, y 7→ y (A.14)

so we find,

℘(u) =
x

v
7→ −v/2

2x
=

−v
4x

=
−1

4℘(u)
, (A.15)

so this agrees with the Wilson line action on the flat torus.

Generic two–Torus

The generic Weierstrass equation is

y2 = 4v(x− ǫ1 v)(x− ǫ2 v)(x− ǫ3 v) . (A.16)

To establishes that the discrete actions on the elliptic curve and the flat torus
are identical we first consider the effect of the translations on the Weierstrass
function and its derivative using (A.1) and the fact that the ǫi define the zeros
of ℘′:

℘
(
u+

1

2
ei

)
=
ǫi℘(u) + ǫi+1ǫi+2 + ǫ2i

℘(u) − ǫi
, (A.17a)

℘′
(
u+

1

2
ei

)
= −(ǫi+1ǫi+2 + 2 ǫ2i )

℘′(u)

(℘(u) − ǫi)2
(A.17b)
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A Discrete Actions on elliptic Curves and Tori

where e1 = 1, e2 = τ and e3 = 1 + τ . Using the mapping

℘(u) =
x

v
, ℘′(u) = 2

y

v2
, (A.18)

one can show that these actions on (x, y, v) are given by

αi :

(
x
v

)
7→ 1√

−ǫi+1ǫi+2 − 2 ǫ2i

(
ǫi ǫi+1ǫi+2 + ǫ2i
1 −ǫi

)(
x
v

)
, αi : y 7→ −y ,

(A.19)

The fixed point mappings follows from applying (A.19) to the factors in (A.16).
In detail we have

αi : v 7→ x− ǫiv√
ǫi+1ǫi+2 + 2 ǫ2i

, x− ǫi 7→
√
ǫi+1ǫi+2 + 2 ǫ2i · v ,

(A.20a)

αi : x− ǫi+1v 7→
gvei − ǫi+1√
ǫi+1ǫi+2 + 2 ǫ2i

(x− ǫi+2v) , x− ǫi+2v 7→
ǫi − ǫi+2√

ǫi+1ǫi+2 + 2 ǫ2i
(x− ǫi+1v) .

(A.20b)

This show how the factors and therefore the zeros are pairwise permuted.Z2 Torus

We want to translate the maps (A.20b) to the P3[2, 2]/Z2 × Z2 torus, i.e. the
T 2(Z2). For this we define the mapP2

1,2,1[4] → P3[2, 2]/Z2 × Z2 : (x, y, v) 7→ (z1, z2, z3, z4) , (A.21)

as follows: On P3[2, 2]/Z2 ×Z2 we have three sign ambiguities, one from U(1)R

and two from Z2 × Z2. Thus we can define

z1 =
√

(ǫ3 − ǫ1)v , z2 =
√
−x+ ǫ1v , z3 =

√
x− ǫ2 , z4 =

−iy
2z1z2z3

.

(A.22)

One could also define z4 = ±√
x− ǫ3v where the sign has to be chosen such that

y = 2iz1z2z3z4, as there are no more sign ambiguities. This way we find that the
discrete Z2 ×Z2 shifts, given in (A.20b) translate to the actions given in (3.45).
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B Compactification Lattice
Analyses

The T 6/Z3 Orbifold

The aim of this Appendix is two–fold: i) We briefly describe the factorized Lie–
algebra lattice A3

2, and non–factorized lattices, underlying the T 6/Z3 orbifolds
encountered in Section 3.3.1. To this end we work out in detail how dividing out
the free discrete actions on the torus induce refined and often non–factorized
lattices. ii) When possible we classify the result lattice as some Lie algebra
lattice. iii) And finally, we show that each of the non–factorized ones can be
obtained from the factorized A3

2 lattice by a change of Kähler structure.
In our conventions for Z3 compatible tori defined in Section 3.1.2, the lat-

tice underlying two–tori to be spanned by 1 and the complex structure τ = ζ .
Therefore, our reference basis vectors e1, . . . , e6 for the lattice A3

2 in R6 are given
by

e1 =




1
0
0
0
0
0



, e2 =




−1
2√
3

2

0
0
0
0



, e3 =




0
0
1
0
0
0



, e4 =




0
0
−1

2√
3

2

0
0



, e5 =




0
0
0
0
1
0



, e6 =




0
0
0
0
−1

2√
3

2



.

These basis vectors have norm squared 1 rather than 2, which is the conventional
choice for simple roots.

The basis vectors, which is obtained by dividing out the free discrete actions,
are referred to as ê1, . . . , ê6. Where necessary we include normalization factors, to
ensure that we can identify the Lie algebra the lattice corresponds by computing
the Cartan matrix

Amn =
2 êm · ên

êm · êm

, (B.1)

where x · y denotes the standard inner product on R6.
To establish that the refined (non–factorized) lattice can be turned A3

2 lattice
by a Kähler deformation, we have to find a basis of this lattice such that the Z3
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B Compactification lattice analyses

action on it, looks like the standard Z3 action

e2a−1 7→ e2a , e2a 7→ −e2a − e2a−1 , (B.2)

with a = 1, 2, 3 on A3
2 basis vectors e1, . . . , e6. We refer to ẽ1, . . . , ẽ6. To discuss

Kähler deformations we define the inner product

〈x, y〉G = xT Gy , x, y ∈ R6 , (B.3)

w.r.t. a metric G; the standard inner product x · y is obtained when the metric
G is taken to be the identity. To establish that the basis vectors ẽ1, . . . , ẽ6 of
the non–factorized lattice is equivalent to our standard A3

2 basis up to a Kähler
deformation, we need to show that there is a Kähler metric G such that

〈em, en〉G = ẽm · ẽn , (B.4)

for all m,n = 1, . . . , 6.
To make (B.4) explicit, we write out our reference basis and give a general

parameterization of a Kähler metric G. To construct the general metric G that
includes all Kähler moduli, we start from a generic Kähler form

J =
i

2
Jab dūa ∧ dub . (B.5)

Its reality condition reads Jab = J̄ba, so we rewrite it in terms of real parameters
defined as

Jaa = ba , Jab = cab + idab for a < b . (B.6)

Then, decomposing into real coordinates, ua = x2a−1 + ix2a the metric becomes

G =




b1 0 c12 d12 c13 d13

0 b1 −d12 c12 −d13 c13
c12 −d12 b2 0 c23 d23

d12 c12 0 b2 −d23 c23
c13 −d13 c23 −d23 b3 0
d13 c13 d23 c23 0 b3



. (B.7)

The inner product of the A3
2 lattice vectors ei using this metric reads

〈em, en〉G =




b1 − b1
2

c12 − c12−
√

3d12

2
c13 − c13−

√
3d13

2

− b1
2

b1 − c12+
√

3d12

2
c12 − c13+

√
3d13

2
c13

c12 − c12+
√

3d12

2
b2 − b2

2
c23 − c23−

√
3d23

2

− c12−
√

3d12

2
c12 − b2

2
b2 − c23+

√
3d23

2
c23

c13 − c13+
√

3d13

2
c23 − c23+

√
3d23

2
b3 − b3

2

− c13−
√

3d13

2
c13 − c23−

√
3d23

2
c23 − b3

2
b3




.

(B.8)
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We obtain the standard A3
2 metric · is of course obtained for bi = 1, cij = dij = 0.

The free discrete Z3 action αa (given in (3.27)) acts on the torus coordinates
as

ub 7→ ub +
ζ − 1

3
δab . (B.9)

Therefore, modding out such free actions, lead to a refinement of the A3
2 lattice:

This lattice gets replaced by a lattice spanned by the A3
2 basis vectors e1, . . . , e6

and the corresponding combinations of the vectors

α̂1 =
1

3
(e2 − e1) , α̂2 =

1

3
(e4 − e3) , α̂3 =

1

3
(e6 − e5) , (B.10)

corresponding to α1, α2, α3, respectively. Using this technique we will construct
each of the non–factorized Z3 lattices below and compute the standard inner
products of all its basis vectors and thereby simply read off the metric G using
(B.8).

The F4 × A2 Lattice

When the discrete action (B.9) acts in two of the three tori (e.g. the first and
the second), this results in a new non–factorized lattice with basis vectors

ê1 := − e2√
2
, ê2 :=

1

3

(e2 − e1√
2

+ e4 − e3

)
, ê3 := −e4 , ê4 := e3 + e4 ,

(B.11)

and ê5 = e5, ê6 = e6. In order to match the resulting lattice to a Lie lattice,
we have changed to normalization of the basis vectors in the first two–tori, to
obtain the Lie lattice of F4 × A2.

Next we demonstrate that it is possible to factorize this non–factorized F4×A2

lattice into factorized A3
2 lattice. To do so, we have to find a basis of F4 × A2

lattices such that the Z3 action looks like (B.2). Taking the vectors (B.11) such
a basis is given by

ẽ1 :=
√

2 ê2 , ẽ2 :=
√

2(ê1 + ê2 + ê3) , ẽ3 := ê3 + ê4 , ẽ4 := −ê3 . (B.12)

In this case we find the product matrix

ẽi · ẽj =




1 −1
2

− 1√
2

1√
2

0 0

−1
2

1 0 − 1√
2

0 0

− 1√
2

0 1 −1
2

0 0
1√
2

− 1√
2

−1
2

1 0 0

0 0 0 0 1 −1
2

0 0 0 0 −1
2

1




. (B.13)

This we can obtain from (B.8) by setting bi = 1, c12 = −1/
√

2, d12 = 1/
√

6, and
the rest to zero. Thus, we obtain the F4 × A2 lattice from the A3

2 lattice upon
switching on some of the off–diagonal Kähler moduli.
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B Compactification lattice analyses

The E6 Lattice

When the discrete action (B.9) acts in all three tori simultaneously, we obtain a
new lattice with basis vectors

ê1 := e3 + e4 , ê2 := −e4 , ê3 := 1
3
(−e1 + e2 − e3 + e4 − e5 + e6) ,

ê4 := −e6 , ê5 := e5 + e6 , ê6 := −e2 ,
(B.14)

we find their metric to be (one half times) the Cartan matrix of E6.
Here we demonstrate that it is possible to factorize the E6 lattice into A3

2. To
do so, we have to find a basis of the E6 lattice such that the Z3 action looks like
(B.2). Taking the vectors (B.14) such a basis is given by

ẽ1 := ê1 + ê2 , ẽ2 := −ê2 , ẽ3 := ê3 ,

ẽ4 := ê3 + ê2 + ê4 + ê6 , ẽ5 := ê4 + ê5 , ẽ6 := −ê4 .
(B.15)

In this case we find the product matrix

ẽi · ẽj =




1 −1
2

−1
2

0 0 0
−1

2
1 1

2
−1

2
0 0

−1
2

1
2

1 −1
2

−1
2

1
2

0 −1
2

−1
2

1 0 −1
2

0 0 −1
2

0 1 −1
2

0 0 1
2

−1
2

−1
2

1



. (B.16)

This we can obtain from (B.8) by setting bi = 1, c12 = c23 = −1/2, d12 = −d23 =
−1/(2

√
3), and the rest to zero. Thus, we obtain the E6 lattice from the A3

2

lattice upon switching on some of the off–diagonal Kähler moduli.

A non–Lie Lattice

It is also possible we have two discrete actions (B.9). The first one mixes first
and second two–torus and the second one mixes the second and third two–torus.
Each action by itself is similar the F4 case, but they get “intermingled” in such
a way that this lattice does not correspond to any Lie algebra lattice.

From the two free discrete actions we obtain two new lattice vectors

ê1 :=
1

3

(e2 − e1√
2

+ e4 − e3) , ê2 :=
e2√
2
, ê4 := e4 , (B.17)

ê3 :=
1

3

(e6 − e5√
2

+ e4 − e3

)
, ê5 :=

e5√
2
, ê6 :=

e6√
2
. (B.18)
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As in the F4 case, we have scaled the first and the third torus via (e1, e2, e5, e6) 7→
1/
√

2(e1, e2, e5, e6).
Here we demonstrate that it is possible to factorize the non–Lie lattice into

SU(3)3. To do so, we have to find a basis of the non–Lie lattice such that the
Z3 action looks like (B.2). Taking the vectors (B.18) such a basis is given by

ẽ1 := ê1 , ẽ2 := ê1 − ê2 − ê4 , ẽ3 := ê3 ,

ẽ4 := ê3 − ê4 − ê6 , ẽ5 := ê5 , ẽ6 := ê6 .
(B.19)

In this case we find the product matrix

ẽi · ẽj =




1 −1
2

2
3

−1
3

0 0
−1

2
1 −1

3
2
3

0 0
2
3

−1
3

1 −1
2

−1
2

1
2

−1
3

2
3

−1
2

1 0 −1
2

0 0 −1
2

0 1 −1
2

0 0 1
2

−1
2

−1
2

1



. (B.20)

This we obtain from (B.8) by setting bi = 1, c12 = 2/3, c23 = −1/2, d23 =
1/(2

√
3), and the rest to zero. Thus, we obtain the non–Lie lattice from the A3

2

lattice upon switching on some of the off–diagonal Kähler moduli.

Non–factorizable Lattices for the T 6/Z4 Orbifold

In this appendix we describe the non–factorizable lattices we find for Z4 orbifolds
in section 3.3.3. We start with the factorizable lattice D2

2 × A2
1. The torus

T 2(Z4) × T 2(Z4) × T 2I(Z2) obtained from it is mapped to the elliptic curves
as described in Appendix A. When we add exceptional coordinates and U(1)
gaugings, we induce discrete actions on this torus which we can identify on the
torus as we did for the Z3 orbifold. Let us describe the factorizable lattice by
the lattice vectors ei , i = 1, . . . , 6. The inner product of this basis is1

G =




b1 0 c12 d12 0 0
0 b1 −d12 c12 0 0
c12 −d12 b2 0 0 0
d12 c12 0 b2 0 0
0 0 0 0 b3 0
0 0 0 0 0 b3



. (B.21)

The Z4 acts as

e1 7→ e2 , e2 7→ −e1 , e3 7→ e4 ,

e4 7→ −e3 , e5 7→ −e5 , e6 7→ −e6 .
(B.22)

1We neglect possible complex structure deformations in the third torus since they are not
relevant here.
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B Compactification lattice analyses

The A3 ×D2 ×A1 Lattice

In the first truly non–factorizable model we find the discrete action

θ̃1 : (z21, z22, z31, z32) 7−→ (iz21,−iz22,−z31,−z32) . (B.23)

Via the Weierstrass map to the torus it translates into a shift by e3+e4+e5

2
, i.e. a

shift in two two–tori simultaneously. For the non–factorizable torus obtained in
this way we choose a basis

ê1 :=
e3 + e4 + e5

2
, ê2 :=

−e3 + e4 − e5
2

, ê3 :=
−e3 − e4 + e5

2
, (B.24a)

ê4 := e1 , ê5 := e2 , ê6 := e6 . (B.24b)

On the first three basis vectors their inner product reads

êi · êj =



b2/2 + b3/4 −b3/4 −b2/2 + b3/4

−b3/4 b2/2 + b3/4 −b3/4
−b2/2 + b3/4 −b3/4 b2/2 + b3/4


 . (B.25)

This product cannot be given a factorized structure. Choosing b3 = 4 and b2 = 2
it becomes the Cartan matrix for the Lie algebra A3. The Z4 acts as

ê1 7→ ê2 , ê2 7→ ê3 , ê3 7→ −ê1 − ê2 − ê3 , (B.26)

i.e. as a rotation of the extended Dynkin diagram.

The A3 ×A3 Lattice

Analogously to the case above, we find here in addition the discrete action

θ̃2 : (z11, z12, z31, z33) 7−→ (iz11,−iz12,−z31,−z33) . (B.27)

which translates into a shift by e1+e2+e6

2
. Now the basis consists of êi, i = 1, 2, 3

as defined in (B.24a) but we replace (B.24b) by

ê4 :=
e1 + e2 + e6

2
, ê5 :=

−e1 + e2 − e6
2

, ê6 :=
−e1 − e2 + e6

2
. (B.28)

Altogether this gives the inner product,

êi · êj =
1

2




b2 + b3/2 −b3/2 −b2 + b3/2 c d −c
−b3/2 b2 + b3/2 −b3/2 −d c d

−b2 + b3/2 −b3/2 b2 + b3/2 −c −d c
c −d −c b1 + b3/2 −b3/2 −b1 + b3/2
d c −d −b3/2 b1 + b3/2 −b3/2
−c d c −b1 + b3/2 −b3/2 b1 + b3/2



,

(B.29)

which for b3 = 4, b1 = b2 = 2 and c = d = 0 becomes the Cartan matrix of
A3 ×A3.
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C Flux Quantization

We show that on the factorizable Z2 × Z2 orbifold resolution the identification
of the bundle vectors with the local orbifold shifts is equivalent to the resolution
flux quantization conditions for all triangulations, which in turn is equivalent to
the GLSM condition by the identifications 2Vr = Qr.

The orbifold identifications read,

V1,βγ
∼= V1 + n3,βW3 + n4,βW4 + n5,γW5 + n6,γW6 , (C.1a)

V2,αγ
∼= V2 + n1,αW1 + n2,αW2 + n5,γW5 + n6,γW6 , (C.1b)

V3,αβ
∼= V3 + n1,αW1 + n2,αW2 + n3,βW3 + n4,βW4 , (C.1c)

using

n1,α = (0, 0, 1, 1) , n2,α = (0, 1, 0, 1) , (C.2a)

n3,β = (0, 0, 1, 1) , n4,β = (0, 1, 0, 1) , (C.2b)

n5,γ = (0, 0, 1, 1) , n6,γ = (0, 1, 0, 1) , (C.2c)

We also give the flux quantization conditions for the triangulations “S” and
“E1”, see tables 6. and 7. in our paper. These conditions are summarized to
three types of conditions. The first one,

2Vk,ρσ
∼= 0 , k = 1, 2, 3 , ρ, σ = 1, . . . , 4 , (C.3)

just states that all flux vectors are of order two. These conditions are always
found on the curves RkEk,ρσ. The second conditions read

(∗, α, β, γ) : V1,βγ + V2,αγ + V3,αβ
∼= 0 , α, β, γ = 1, . . . , 4 . (C.4)

We will refer to them as (∗, α, β, γ). In the symmetric triangulation these con-
ditions are found on any of the compact curves EiEj . Now if the fixed point
(α, β, γ) has another triangulation, say “E1”, then this condition is found of the
curve D1,αE1,βγ . The third conditions are of the form

(∗∗, k, σ) :
∑

ρ

Vk,ρσ
∼=
∑

ρ

Vk,σρ
∼= 0 , k = 1, 2, 3 , σ = 1, . . . , 4 . (C.5)

These conditions live e.g. on the triangulation independent curves RkDj,σ are
will be refered to as (∗∗, k, σ).
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C Flux Quantization

Constructive Proof

First of all we define the orbifold data, i.e. the shift vectors and Wilson lines, in
terms of the flux vectors.

V1 := V1,11 , V2 := V2,11 , V3 := V3,11 , (C.6)

W1 := V2,31 − V2,11 , W2 := V2,21 − V2,11 , (C.7a)

W3 := V3,13 − V3,11 , W4 := V3,12 − V3,11 , (C.7b)

W5 := V1,13 − V1,11 , W6 := V1,12 − V1,11 . (C.7c)

This way the Vk andWi are automatically order two. (∗, 1, 1, 1) then immideately
implies that V3

∼= V1 + V2. In the following we show that with these definitions
we can express all flux vectors like (C.1c).

We start with the conditions (∗∗, k, 1). For e.g. k = 1 we find

V1,11 + V1,12 + V1,13 + V1,14
∼= 0

⇒ V1 + (V1 +W6) + (V1 +W5) + V1,14
∼= 0

⇒ V1,14
∼= V1 +W5 +W6 , (C.8)

and analogous expressions for V2,41 and V3,14.
Up to now the Wilson lines are just related to just one twisted sector. So

we use the conditions (∗, ρ, 1, 1), ρ = 2, 3, 4, underline denotes permutations, to
relate them to the others. As an example we take (∗, 1, 2, 1) and find,

V1,21 + V2,11 + V3,12
∼= 0

⇒ V1,21 + V2 + V3 +W4
∼= 0

⇒ V1,21
∼= V1 +W4 . (C.9)

So with these relations we are able to express all Vk,ρσ as (C.1c) if ρ = 1 or σ = 1.
In the last step we show the general case. For this we take the conditions

(∗, ρ, σ, 1) for ρ, σ = 2, 3, 4. Again we demonstrate this with an example, say
(∗, 1, 3, 4),

V1,34 + V2,14 + V3,13
∼= 0

⇒ V1,34 + (V2 +W5 +W6) + (V3 +W3) ∼= 0

⇒ V1,34
∼= V1 +W3 +W5 +W6 . (C.10)

This way we have shown that all bundle vectors Vk,ρσ are expressable in terms
of the orbifold data V1, V2 and Wi , i = 1, . . . , 6.
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