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Chapter 1

Introduction

Almost four centuries ago, Newton’s theory of gravity transformed our understanding of Na-
ture. Newton’s idea seems today very simple: the force that makes an apple fall from a tree
on the Earth is exactly the same that describes the movement of the planets around the Sun.
All at once, Newton unified the natural laws on the Earth with those of the cosmos. It was the
first time that someone found out that two phenomena, apparently so different, have indeed
a single origin. However, this would not be the last time. By the end of the 19th century,
Maxwell found out that electricity and magnetism are affections of the same fundamental
force. Furthermore, the success of the electroweak theory, a model that unifies electromag-
netic and weak interactions, appears to indicate as well that most of the phenomena in Nature
could have a universal explanation.

One of the current goals of theoretical physics is to formulate a theory which explains all
observed forces simultaneously. In this sense, the Standard Model (sM) of particle physics [1-3]
is one of the major breakthroughs in physics of the last century. Including three of the four
known fundamental forces through local SU(3). x SU(2); x U(1)y gauge invariance, the sm
describes with great precision the interactions between particles at currently probed energies
(~ 100 GeV). It also predicts the existence of an SU(2) doublet, called Higgs boson, which
gives masses to all quarks and leptons once it acquires a vacuum expectation value (VEV).
Although the Higgs boson is still to be discovered, there are good reasons to believe that this
will occur in the next collider generation.

Despite its predictive power, from a theoretical point of view, the sSM leaves still some open
questions, such as the stability of the electroweak scale (hierarchy problem), the large number
of free parameters, the source of the accelerated expansion of the universe (dark energy),
the origin of the observed repetition of families and, of course, the absence of a quantum
description of gravity. These issues indicate that the sM is not a fundamental theory, but
rather an effective limit of more general physics at higher energies. Thus, it results imperative
to investigate physics beyond the sMm.

A natural (theoretical) extension of the SM is the introduction of a symmetry between
bosons and fermions, known as supersymmetry (SUSY) [4-7]. SUSY explains elegantly how a
reasonable Higgs mass can be protected from (quadratically divergent) quantum corrections
without fine-tuning the parameters of the theory. Therefore, the Higgs mass remains of the
order of the electroweak scale, ensuring the stability of this scale even if the theory is valid
up to very high energies. Apart from providing a plausible solution to the hierarchy problem,
it also predicts unification of all gauge couplings at the unification scale Mgy ~ 2 x 1016

1



2 CHAPTER 1. INTRODUCTION

GeV. However, SUSY requires new particles associated to those already known. The so-called
superpartners of the sM particles differ only by their spin, so that the superpartner of a
fermion is a boson and vice versa. Since no superpartner has been detected so far, SUSY must
be broken. Yet one can argue that its breakdown occurs in a fashion such that some of the
properties of SUSY influence low energies physics.

There exist good reasons to think that all fundamental forces accept a unified description.
For example, the running of the couplings and the symmetries of the particle content of the Sm
suggest a unified picture of strong and electroweak interactions through grand unified theories
(cuts) [8,9]. The fundamental feature of these theories is that, at the scale Mgy, all gauge
interactions of the (non)supersymmetric SM are gathered together in a single and bigger gauge
group, such as SU(5), SO(10) or Eg. This situation seems much more natural in the minimal
supersymmetric extension of the sM (MssM) as the couplings do meet at Mgyr in such a
model, stressing the key role that SUSY might play in physics beyond the Sm.

One particularly appealing GUT is the SO(10) unified model [10,11], in which one genera-
tion of matter is accommodated in a single spinor representation, according to

16 = (372>1/6+(§71)72/3+(§71_)1/3+(172)71/2—’_(171)1 +(171)0 ) (1 1)
q u d Y4 € U ’

where quantum numbers with respect to SU(3). x SU(2)z, are shown in parentheses and the
subscript denotes hypercharge. A remarkable prediction of this theory is the existence of right—
handed neutrinos, which were not expected in the sM' and can be used to explain massive
left-handed neutrinos. Moreover, the embedding of the hypercharge in SU(5) < SO(10)
predicts the weak mixing angle 6,, and provides thereby an explanation of the electric charge
quantization.

Beside their attractive properties, GUTs introduce some problems of their own and leave
some questions unanswered. A puzzling feature is that, while matter generations are described
by complete GUT representations, Higgs and gauge bosons appear only as incomplete or split
GUT multiplets. In addition, questions like why there are three families in the sM, why their
mass eigenstates mix as they do, what the explanation for dark energy is, are still riddles that
await their resolution in these scenarios. Some proposals such as incorporating additional
discrete (family) symmetries might answer some of these questions. However, we have still
to deal with the fact that gravity —whose description by general relativity has been also very
well tested— is very different in nature and cannot be directly described along with the other
interactions.

Unification of gravity with the rest of the fundamental forces into a single theory led Kaluza
and Klein to introduce a fifth spatial dimension compactified on a minute circle [12,13]. Their
proposal consisted in extending general relativity to a five-dimensional spacetime. The result-
ing theory contains surprisingly a set of equations equivalent to those of general relativity, and
another set equivalent to Maxwell’s equations. That the fifth dimension escapes to our obser-
vations was justified by reducing its size. This mechanism introduces an infinite set of heavy
particles (modes) termed Kaluza-Klein tower. Despite its beauty, this early attempt revealed
soon not to be appropriate for the unified description of gravity and electromagnetism, since
the resulting theory cannot be quantized. Therefore, with the growing success of quantum
mechanics, the interest in Kaluza-Klein compactifications receded considerably. However, this

'Right-handed neutrinos, however, can be naturally embedded in the SM.
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Figure 1.1: (Super)string theories are connected by a web of dualities.

idea came again to life several years later in a theory that, with its evolution, turned into a
good candidate to unify consistently all known forces: string theory.

String Theory

String theory arose by attempting to describe the strong interactions, but, once it was noted
that string theory includes a spin 2 particle corresponding to the graviton, it became clear
that its purpose was very different.

String theory is a perturbative quantum theory in which ordinary point particles are
replaced by one-dimensional objects, whose various vibrational modes at the string scale Mg,
can be identified at low energies with different particles. These extended objects, named
strings, cover a two dimensional space called worldsheet, in which many of its properties acquire
a description through conformal field theory. Depending on their boundary conditions, they
can be closed or open.

Not only does string theory contain the graviton as one of the vibration modes of the
strings, but it indeed reduces to Einstein’s theory of gravity at low energies and, due to
the extended nature of the string theoretical graviton, this theory also avoids the ultraviolet
divergences of graviton scattering amplitudes. Therefore, a quantized description of gravity is
possible in string theory [14-16].

Several constraints are inherent to the quantum nature of strings. For instance, requiring
that quantum anomalies do not spoil Lorentz invariance of the theory constrains the dimension
of the spacetime in which the strings can consistently propagate. This is a striking theoretical
achievement because no theory before offered a prediction about the dimensionality that our
spacetime must have. At the same time, this poses a major challenge since, as we will see,
no consistent string theory describes a spacetime with four dimensions like the one that is so
familiar to us.

Historically, the first string theory discovered was the bosonic string, that is consistent
in 26 dimensions. This theory was immediately discarded for it contains unphysical particles
with imaginary rest mass (negative square mass) called tachyons. Furthermore, this theory
clearly cannot yield a description of our universe because the particles composing the observed
matter are fermions.

Consistent tachyonic-free string theories require (local worldsheet) SUSY at very high en-
ergies [17,18] and predict a ten-dimensional spacetime. There exist only five consistent (su-
per)string theories: type ITA, type IIB, type I, and the EgxEg and SO(32) heterotic theories.
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These theories are connected by a web of (conformal) dualities and thought of as different
limits of an underlying 11-dimensional theory (M-theory) [19,20], as we depict in fig. 1.1.

The type I and the heterotic string theories are attached to a remarkable discovery, namely
that the SO(32) gauge symmetry of the type I and SO(32) heterotic string as well as the EgxEg
gauge group of the other heterotic theory [21,22] follow from anomaly cancellation [23,24].
In contrast to these theories, both type II string theories do not consist of nonabelian gauge
groups. This is why most of the early works on string theory were mostly focused on the Egx Eg
heterotic string which, as we shall confirm, seemed from the beginning the most promising
candidate to be a theory capable to describe physics at low energies. It was only after the
discovery of extended higher dimensional objects called D-branes [25-27] that type II theories
regained interest.

Ever since the discovery of the five consistent string theories, one of the most important
issues for string theory has been to make contact with reality. In fact, this is the primary
motivation of this thesis. There are, unfortunately, many aspects of string theory that make
difficult to believe that it has something to do with the observed universe. Apart from the fact
that the sm gauge group does not appear automatically in these theories, the most disturbing
feature is that all superstring theories predict a ten-dimensional spacetime. Happily, the old
idea of Kaluza and Klein can be adapted effectively in string theories to obtain a consistent
reduction from ten to four dimensions.

String Compactifications

Consistent string theories are formulated in ten dimensions. In order to make contact with
our four dimensional world, one has to get rid of six of these dimensions. To do it, one usually
chooses them to be small and compact enough to escape experimental detection. Notwith-
standing their undetectability, they can influence the physics of our observable universe.

Some of the schemes proposed in order to obtain four-dimensional models are Kaluza-Klein
(KK) compactifications and D-brane worlds [28]. Let us spend some words on their general
properties.

KK compactifications are a natural extension of the five-dimensional KK approach.
One considers the ten dimensional spacetime M0 of the string to be a direct product of a
four-dimensional flat (Minkowski) spacetime M3! and some unknown compact manifold M9,
ie. M9 =M3! x M5, Further, one assumes that the metric of the space is block-diagonal,
such that

ds® = giy) (x) dadz” + g8 (y) dy™dy", (1.2)
where gfﬁ) is the Minkowski metric and gﬁszl is the metric of the compact internal space.

The expansions of the ten-dimensional fields in the modes of the internal manifold M
yield the theory in four dimensions. As a result of these expansions, an infinite tower of massive
modes appears in the lower-dimensional theory. The masses of these four-dimensional states
depend inversely on the size of the extra dimensions. If one chooses the size of the internal
manifold to be sufficiently small, the massive KK states become heavy and thus decouple from
the spectrum.

Not every six-dimensional manifold is admissible as internal manifold MS. In particular, if
one insists on preserving (some) sSUSY in the four-dimensional theory, the internal space must
have SU(3) holonomy. Furthermore, it is necessary to choose the six-dimensional manifold
to be Ricci flat, i.e. such that the Ricci tensor vanishes everywhere. Manifolds with these



properties are called Calabi- Yau manifolds [29]. Unfortunately, in compactifications on Calabi-
Yau manifolds, the computation of important quantities and properties of the resulting four-
dimensional models can be very difficult (if not impossible).

An option to circumvent this problem is provided by compactifying on orbifolds, which will
be the main focus of this thesis. Orbifold compactifications [30-34] are very similar to Calabi-
Yau manifolds in the sense that both of them can lead to supersymmetric four-dimensional
theories. Orbifolds are defined to be the quotient of a six-dimensional torus divided by a
discrete set of its isometries. In comparison to Calabi-Yau manifolds, the advantage of orbifolds
is that these are Riemann flat, with the exception of a finite set of points, where the curvature
of the space concentrates. Therefore, the metric, which for (almost) all Calabi-Yau manifolds
is still unknown, can be easily computed in orbifolds. Moreover, in these constructions it is
comparatively straightforward to investigate phenomenological properties, such as the low—
energy gauge symmetry, the particle spectrum, the Yukawa couplings and the Kahler potential,
among others. For these reasons, orbifold compactifications are a rich and natural source of
inspiration for phenomenological investigations.

In D—-brane world scenarios, D-branes play a crucial role. They are subspaces of the
ten-dimensional spacetime on which open strings can end. This property equip them in gen-
eral with a nonabelian gauge symmetry. Filling the space with several stacks of D—branes
intersecting at angles in the type II string theory can reproduce not only the gauge group of
the MssM, but also its matter content. Matter then lives on a four-dimensional hypersurface
while the mediators of gravity propagate in the full ten dimensions. In that sense, brane world
constructions do not really compactify the spacetime. Apart from a number of ad hoc assump-
tions, such as the placement of the fields on the branes and the number of branes involved
in the stacks, a disadvantage of these constructions compared to orbifold compactifications is
that GuTs like SO(10) or Eg cannot be realized in these setups.

The Road to the MssM

Although there are only five consistent ten-dimensional string theories, there is a huge number
of four-dimensional string compactifications [35, 36|, too big to be ever computed precisely.
This leads to the picture that string theory has a vast landscape of vacua [37,38], and that
the vacuum we are living in is, from a top—down point of view, as good as many others.

To obtain useful predictions from string theory one might employ the following strategy:
first seek vacua that are consistent with observations and then study their properties. Opti-
mistically, one might then be able to identify certain characteristics common to all realistic
vacua, which would lead to predictions. Even if this is not the case, one might still be able
to assign probabilities to certain features, allowing to exclude some patches of the landscape
on a statistical basis. It turns out, however, that the first step of obtaining realistic models is
highly nontrivial. For instance, in the context of orientifolds of Gepner models, the fraction of
models with the chiral matter content of the sM is about 10712 [39-41]. Based on a statistical
approach [42], the probability of getting something close to the MSSM in the context of inter-
secting D-branes in an orientifold background is about 10716 [43] (if one allows chiral exotics,
this probability is 107 [44,45]). However, some patches of the landscape have received less
attention. This is the case of orbifold compactifications.

In this thesis, we will focus on orbifold compactifications of the heterotic string theory
(for recent reviews, see [46-48]). As it was very early noticed, it is preferable to consider the
heterotic string with EgxEg gauge group since, on the one hand, it includes naturally the
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so-called chain of GUTs
Gsy C SU(B) € SO(10) € E¢ C Eg

sometimes also labeled as “Ey” “Eg” Eg Es

(1.3)

and, on the other, the presence of spinors like the 16—plet of SO(10) is more frequent than in
the SO(32) theory. This particular fact facilitates enormously the task of getting models with
SM generations.

In spite of its relative simplicity, orbifolds have not been systematically studied yet. Fur-
thermore, although it is known that models resembling the MSSM exist [34,47,49-51], attempts
to accommodate simultaneously all properties of the MSSM in isolated models might fail. One
is thus encouraged to turn to a more general strategy that might serve as guiding principle
through the search for realistic models.

In order to get phenomenological viable models from orbifold compactifications, one can
draw on the insight gained from grand unified theories by introducing the concept of local
GUTs [50,52-54]. In scenarios with local GUTs, there are special (fixed) points in the internal
space where the gauge symmetry is locally that of certain GUTs while the four-dimensional
gauge symmetry is that of the sM (up to additional gauge factors that compose the hidden
sector). If matter fields are localized at such special points, they form complete GUT repre-
sentations. This applies, in particular, to a 16-plet of a local SO(10). On the other hand,
bulk fields form incomplete GUT multiplets. In the particular case of SO(10), from the four-
dimensional viewpoint, the localized states are complete matter generations whereas the bulk
fields can adopt the form of, say, Higgs doublets (an incomplete representation of SO(10)).
This might offer an intuitive explanation for the observed family structure of the sM and, at
the same time, a solution to the so-called doublet-triplet splitting problem.

If there are orbifolds models that get close to the MssM, addressing their phenomeno-
logical viability is of utmost importance. Different questions can be posed in this direction.
One challenge is, for instance, to verify whether these models admit supersymmetric vacuum
configurations, that is, whether a combination of fields can attain vacuum expectation values
(VEVs), such that exotic particles that might be in the spectrum decouple along D-flat (and
Fflat) directions. Vacuum configurations are further constrained by the requirement that the
Fayet—Iliopoulos (FI) term produced by the anomalous gauge U(1), intrinsic to many orbifold
models [55,56], cancels. If such a vacuum configuration is realized, the corresponding model
is a “good” MSSM candidate, where SUSY is present at very high energies and has eventually
to be broken.

There are different mechanisms to break supersymmetry in string theory, such as composite
goldstinos, instantons and gaugino condensation. Perhaps the simplest and most beautiful
method is gaugino condensation. The basic notion in this mechanism is that of asymptotic
freedom of QCD. At a given (intermediate) scale, usually labeled by A, interactions of a
particular gauge group become infinitely strong. This can happen in any nonabelian gauge
group, including those that appear in the hidden sector of orbifold models. The only requisite
is that the gauge theory be of pure Yang-Mills type, that is, that contain (almost) no matter
(and that couple to gravity). In this scenario, a couple of gauginos A and )\ condense together
and acquire a VEV (A\) proportional to A3.

A remarkable observation is that gaugino condensation can induce breakdown of sSUsYy [57—
59|. The gravitino mass is related to the gaugino condensation scale A by

(1.4)



where Mp; denotes the Planck mass scale ~ 10'8 GeV. Notice that if the condensation scale
is ~ 10" GeV, we obtain SUSY breaking in the phenomenological favored interval, around 1
TeV. It might be, of course, interesting to investigate if such scenarios are possible in orbifold
constructions.

Another essential property of the MsSsSM that a realistic model must exhibit is R-parity. It
is attached to fundamental issues such as recognizing a suitable candidate for dark-matter and
suppressing rapid proton decay. Obtaining a conserved R-parity in string constructions sets
frequently an insurmountable hurdle, which must however be overcome in order to reach the
MsSM. One possible route is provided by first identifying a U(1) g1, gauge symmetry and then
giving VEVs to some SM singlets that break U(1)p_; to an unbroken discrete Z, symmetry,
frequently called family reflection symmetry or matter parity [60], which forbids dangerous
R-parity violating operators of dimension three and four.

The smallness of neutrino masses may be also a powerful probe of string constructions.

The seesaw mechanism [61-63| is perhaps the most attractive way to explain the smallness of
the neutrino masses. Its essential ingredients are heavy Majorana (right-handed) neutrinos
and their Yukawa couplings to the left-handed neutrinos. Difficulties arise when one attempts
to embed this attractive mechanism in string theory [64]. One of the problems is that string
GUTs usually do not allow for large GUT representations, which are frequently required for the
seesaw mechanism. Other obstacles are posed by string selection rules for the superpotential
couplings which forbid some of the necessary couplings in certain models [65]. For some string
models one can obtain Dirac neutrino masses [66,67]. Recently, large Majorana masses have
been obtained from instanton effects [68-70] as well as from higher order operators [71] and
small Majorana masses from large volume compactifications [72|. However, it turned out to
be very difficult to obtain the standard seesaw mechanism in consistent string models which
lead to the gauge group and the matter content of the MSSM.
Can string theory with 1059 vacua make any prediction relevant for the LHC? There are
certainly many arguments in favor and many more against this idea. However, like in every
new theory, one has to work out all the details before being able to give a definitive answer.
It is clear that the beauty and mathematical consistency of string theory is very appealing.
It is also true that in the past theories with such properties, like quantum mechanics, have
brought surprising predictions and technological applications that affect our everyday life.

The ultimate goal of physics beyond the SM is still to identify a theory that can reproduce
our current knowledge and improve our understanding of physics. Unification provides doubt-
less a framework where physics beyond the SM takes an appealing form. Adopting this idea
into more elaborated theories, such as orbifold compactifications of the heterotic string, can
certainly shed light on some of the puzzles of contemporary science. In the present work, we
utilize the beauty and mathematical consistency of string theory as a tool in order to build a
bridge between confirmed or foreseeable physics and a theory possibly capable to describe all
fundamental forces in a unified way.

Overview

To guide the reader through the present work, let us provide some details about the contents
of the chapters included.
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Chapter 2. After a brief introduction to the heterotic string, we proceed to explain the
details of abelian orbifold compactifications of the heterotic string. This chapter intends to be
as general as possible. Hence, we do not focus particularly on any of its two variants, EgxFg
and SO(32). We also consider both Zy and Zy x Zjps orbifolds on the same footing. The
effect of the choice of the six-dimensional compactification lattice as well as the constraints
on the orbifold parameters are given. We present then in all detail how to compute the
massless matter spectrum of orbifold models with and without Wilson lines and illustrate
the method with a simple example. Discrete torsion is introduced as an additional degree
of freedom which, contrary to previous claims, can also appear in Zpy orbifolds even in the
absence of Wilson lines. We propose an interpretation of models with discrete torsion and
a special type of gauge embeddings. To close the chapter, we provide a succinct discussion
about Yukawa couplings on heterotic orbifolds. In particular, the selection rules determining
the nonvanishing couplings are enumerated.

Chapter 3. Due to the enormous number of redundancies in string constructions, it is
always recommendable to have a useful method to classify these constructions, that is, to
determine all different parameters leading to inequivalent orbifold models. We summarize in
this chapter two methods. The first one goes by the name of Dynkin diagram strategy for it
makes extensive use of the properties of the Dynkin diagram of a Lie algebra to determine
all admissible gauge embeddings. The second method of classification consists in suggesting
a suitable ansatz that describes all shifts and/or Wilson lines of a given order, minimizing
duplicities. We discuss their advantages and drawbacks and give examples of their application.
Some of the topics discussed in this chapter were presented in refs. [73,74].

Chapter 4. We describe a general strategy we proposed in ref. [75] to obtain orbifold
models that resemble the MSSM, using as guiding principle the concept of local GuTs. Our
search is performed by compactifying the EgxEg heterotic string on the Zg-1I orbifold, since
it has shown to house some models with realistic properties. After providing the criteria
comprising our search strategy, we analyze the results obtained. We find that our approach,
as opposed to a random scan, is successful and that a considerable fraction of the models with
SO(10) and Eg local GUT structures passes our criteria. In particular, out of about 3 x 10*
inequivalent models with two Wilson lines, 223 can serve as an ultraviolet completion of the
SM. In comparison to similar searches in different scenarios, we observe that the probability
to find models with realistic features here is much larger. We consider this to be one of the
central results of this thesis.

Chapter 5. The study of some aspects of the phenomenology of our MssM candidates is
presented in this chapter, following our previous discussions from refs. [76-78]. To illustrate
our results, we describe one characteristic model with the exact spectrum of the MssMm. In
that example, we find that the top quark can acquire a heavy mass while the proton cannot
decay due to dimension four operators at trilinear level. This means that proton decay is
generically suppressed. We also note that all vectorlike exotics can acquire masses in a SUSY-
preserving vacuum configuration. This model is used all through the chapter to illustrate other
phenomenological properties also treated here. We point out that these qualities are shared
by all models and therefore a statistical analysis can yield some string theoretical predictions
about low—energy physics. In that spirit, we investigate the scale of sUSY breaking typically
realized in orbifold models with realistic features. We find that this kind of models favors
hidden sector gauge groups such as SU(4) and SO(8), implying low—energy SUSY breaking
in the context of gaugino condensation. We continue then with the discussion of a crucial
issue in any MssM-like model: R-parity. Many models with realistic properties admit the



definition of U(1)p_r, whose spontaneous breakdown can yield matter parity and thereby
proton stability. However, to avoid rapid proton decay due to dimension five operators is still
a challenge beyond the scope of this thesis. We conclude this chapter with another interesting
question, namely, the viability of the seesaw mechanism in string-derived models. We argue
that, even though large representation such as 126 of SO(10) do not appear in this class of
models, all the necessary ingredients for the seesaw mechanism are present. These results are
very important for future investigations and, therefore, we would like to stress them as our
main findings.
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Chapter 2

Orbifold Compactifications

In this chapter, we study the heterotic string theory compactified on orbifolds. We
start by reviewing briefly the heterotic string. Then we explain one method to
get four-dimensional supersymmetric models based on abelian orbifold compactifica-
tions. Our discussion is abstract at some level, but it is addressed to people willing
to get acquainted with orbifold constructions. We also introduce here the notation
to be used along the entire work.

2.1 Heterotic String

It is well known that in closed-string theories left- and right-moving modes are decoupled [21,
22]. This offers the possibility of a new consistent string theory in which left- and right-movers
are of different types. The heterotic string arises as the result of combining a ten-dimensional
right-moving superstring |79, 80] (ensuring thereby space-time supersymmetry) with a 26-
dimensional left-moving bosonic string.

Right-movers

The right-moving bosonic and fermionic degrees of freedom of the superstring are denoted by
X}i% and \I”]é, respectively, where ¢ = 1, ..., 10. We can assume that the first four coordinates
correspond to the observed minkowskian spacetime. This situation is depicted in fig. 2.1.
Since not all these degrees of freedom are independent, we choose the light-cone gauge, in
which the coordinates corresponding to ¢ = 1,2 are fixed.

The masses of the right-moving states are given by

2
%:NR—GR, (21)

where Np counts the oscillator excitations of the states, and ap is the zero point energy,
which turns out to be 0 for states with (periodic) Ramond boundary conditions, and % for
states with (antiperiodic) Neveu-Schwarz boundary conditions. We are interested in physical
states that are massless at the string scale. From eq. (2.1), we observe that mpr = 0 for
states b | /2|0> r in the Neveu-Schwarz sector, and for d|0) g in the Ramond sector. The eight

transverse excitations b’ /2\0) r form the vectorial representation 8, of SO(8) and behave as
bosons from the spacetime perspective.

11
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Xi Xi
i i=1,...,4 ‘ foi=5,...,10 ‘
\IJR \IJR
Right Movers

M .

Xt i=1,....,4 |Xi, ¢:5,...,10|

T16

Left Movers

XI I=1,...,16
gauge degrees of freedom

Figure 2.1: The space of the heterotic string. The supersymmetric right-movers live in 10
dimensions whereas the bosonic left-movers, in 26 dimensions. The 16 additional bosonic
coordinates compactified on a torus 76 give rise to the gauge degrees of freedom. The first

four dimensions of the ten dimensional heterotic string correspond to the Minkowski space
M.

On the other hand, since the oscillators d)) obey the (Clifford) algebra
{i\@dé, i\/idg} — 2nid | (2.2)

the ground state d|0)g forms a spinorial representation with 16 real components. In order
to match the number of on-shell fermionic and bosonic degrees of freedom, one has to intro-
duce a GSO projection [17], which does not only reduce the number of massless degrees of
freedom by a factor %, but also ensures an equal number of bosons and fermions at each mass
level, as required by supersymmetry. After the GSO projection, we are then left with the 84
representation of SO(8) in the Ramond sector.

For convenience, |¢)r will denote the right-moving ground state for both sectors, where ¢
stands for the weights of the corresponding SO(8) representation in Cartan-Weyl labels

B |£1,0,0,0) ~ 8, NEVEU-SCHWARZ

Q)R =
|£3, 45, 5, +3)p ~ 8, RAMOND

(2.3)

where the spinor representation has an even number of plus signs. The underline denotes
permutation of the entries. In this notation, eq. (2.1) becomes

(2.4)
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Left-movers

The coordinates of the bosonic string are denoted by Xi i = 1,...,10, and Xi, I =
1, ..., 16. As for the right-movers, the coordinates corresponding to i = 1,2 are fixed by
the light-cone gauge. The evident mismatch in the number of spatial dimensions of left- and
right-movers is amended by compactifying the coordinates X j{ on a 16-dimensional torus 716
with radii as small as the string scale, as illustrated in fig. 2.1. As a result of this compact-
ification, the 16-dimensional internal momenta p are nonvanishing and proportional to the
winding of states in the compactified space.
The masses of the left-moving states after the compactification are given by

2
%Z%]F—i—N—l, (2.5)
where N counts left-moving oscillator excitations and —1 is the zero point energy of the
bosonic string. Each compactified dimension contributes with %(pl )2 to the mass.

Gauge and gravitational anomaly cancellation is guaranteed by one-loop modular invari-
ance. It imposes severe constraints on the theory. In particular, the underlying lattice A of
the 16-dimensional torus 7'® must be euclidean, even and self-dual. There are only two such
lattices in 16 dimensions: the root lattice of Eg x Eg and the weight lattice of Spin(32)/Zs.
Consequently, the (nonabelian) gauge group G of rank 16 provided by the compactification can
be either Eg x Eg or SO(32), depending on the choice of A. Each lattice yields an independent
consistent heterotic string theory.

According to eq. (2.5), at the massless level we have the following left-moving states:

a0y i=3,...,10, (2.6a)
al,]0) I=1,...,16, (2.6b)
Ip)L P’ =2 (2.6¢)

There are 480 internal momenta p fulfilling p?> = 2. As we will see below, it is not a
coincidence that the adjoint representation of G contains 480 charged bosons, too. In fact,
the states |p)r correspond to the left-moving part of the gauge bosons (and gauginos) of this
theory. For that reason, we will represent p by the vectors in Cartan-Weyl labels for the
corresponding charged bosons

((£1)2,09)(0%) , (0%)((£1)%,0%),
G =EgxEg: p € (2.7a)
(5% (0%) , (0%)((£3)%) , even # of +,

G =S0(32) : p € ((11)2,014) , (2.7b)

where the exponent of an entry counts the number of times that such an entry appears in the
16-dimensional vector, and the underline stands, as before, for all permutations.

Massless Heterotic Spectrum

Let us analyze the spectrum of the heterotic string. Physical states must fulfill the level
matching condition
m% =m?2 (2.8)
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which follows from the variation of the worldsheet metric. This constraint implies that, in
contrast to other string theories, in the heterotic string the GSO projection is not implemented
in order to avoid the presence of tachyons. Since the mass of the lowest energy left-moving
state (N = 0, p = 0) is m? = —1 whereas the mass of the right-moving (Neveu-Schwarz)
tachyon (Ng = 0) is m% = —1, then eq. (2.8) enforces the absence of states with negative
mass square in the spectrum of the heterotic string.

At the massless level, combining the right and left-moving states of egs. (2.3) and (2.6)
gives rise to the following states:

e a ten-dimensional N' = 1 supergravity multiplet
)r®& 0V, i=3,...,10, (2.9)

including the graviton ¢*, the dilaton ¢, the antisymmetric tensor B and their SUSY
par’cners;1

e 16 uncharged gauge bosons (and gauginos)
lyr®a’ 0, I=1,...,16 (2.10)
which comprise the set of Cartan generators H; of the gauge group G;

e 480 charged gauge bosons (and gauginos)

Wr®Ip)L,  PP=2, (2.11)
with p given by eq. (2.7).

Uncharged and charged gauge bosons together form the 496-dimensional adjoint represen-
tation? of the gauge group G. We notice that the effective theory with the massless content
provided before is N' = 1 supergravity in ten dimensions coupled to Yang-Mills. Such a theory
has a gravitational anomaly of 496 units, which can be cancelled by including the 496 gauginos
that we have at hand. This cancellation is not surprising because the heterotic string is, by
construction, modular invariant and thus anomaly free.

2.2 Compactification on Orbifolds

It is clear that the heterotic string by itself is not a theory which describes the observable
universe. A striking difference of this theory with respect to the four-dimensional spacetime
of everyday experience is that the heterotic string is ten-dimensional. Further, the gauge
symmetry group G is too big compared to the one of the SM or its minimal supersymmetric
version, the MSSM. Therefore, in order for the heterotic string theory to make contact with low—
energy physics, one has to introduce a mechanism in the theory ensuring that the additional
dimensions are as small as to escape detection.

Compactification of extra dimensions on circles and tori have been discussed since the
pioneering works by Kaluza and Klein [12,13]. However, if the heterotic string is compactified

!Notice that |¢)r represents both bosonic and fermionic degrees of freedom, according to eq. (2.3). Recall
also that the (bosonic) ¢ carries a spacetime index 3.
2The adjoint representation of Eg x Eg reads (248,1) @ (1, 248).
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—Tr r =0 T

Figure 2.2: Compactification of one dimension on an Zs orbifold. Points in the compactified
dimension S are identified by the Z, point group element 1J. Clearly, the points at = = 0
and x = 7 are left fixed by the Zs action. The fundamental region of S!/Z, is x € [0, 7.

to four dimensions on a six-torus, the resulting theory is far from being phenomenologically
acceptable. In torus compactifications no supersymmetry is broken, so one gets N' = 4
SUSY in four dimensions. In supersymmetric theories with A > 2, both vector and matter
supermultiplets transform according to the same gauge group representation. Hence, these
theories have the undesirable feature of being nonchiral.

Orbifold compactifications [30,31] are much more attractive. Orbifolds are very similar
to Calabi-Yau manifolds in the sense that both of them can lead to four-dimensional theories
with A/ = 1. The advantage of orbifolds is that they are Riemann flat, with the exception
of a finite set of points. Therefore, the metric, which for almost all Calabi-Yau manifolds
is still unknown, can be easily computed in orbifolds. Consequently, in these constructions
it is comparatively straightforward to investigate phenomenological properties, such as the
low—energy gauge symmetry, the particle spectrum, the Yukawa couplings and the Kahler
potential, among others.

In general, an orbifold is defined to be the quotient of a manifold by a discrete set of
its isometries, called the point group P. The simplest example is a one dimensional circle S*
divided by the point group P = Zs. Asillustrated in fig. 2.2, the points x and —x are identified
by Zs. This identification originates the space of points describing the complete orbifold to
lie on the interval x € [0, 7] (i.e. one half of S1), which we shall call the fundamental region
of the orbifold. A special feature of orbifolds is the appearance of singularities. In the case of
St /7., the points x = 0 and = = 7 are left invariant (or fixed) by the action of Zy. Although
not obvious in our one dimensional example, points left invariant under any nontrivial element
of P map to singular points of the orbifold.

2.2.1 Toroidal Orbifolds

To construct a heterotic orbifold, one first compactifies six dimensions on a torus 7°¢. The
six-torus is understood as the quotient RS /T, where I is the lattice of a semisimple Lie algebra
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of rank 6. Points in RS differing by lattice vectors are identified on the torus, i.e.
X ~ X' 4 ngel, na€%Z,i=5,...,10, (2.12)

where e, denote the basis vectors of the lattice I.
In a second step, one has to conceive a suitable point group P.? Considering only abelian
point groups, we are left with the cyclic groups

Iy = {9 =9k |0<k< N} and (2.13a)

Ty % Loy = {9:&’“&|0§k<N;0§6<M}, (2.13b)

where 9V = wM = 1, M is an integer multiple of N and k, ¢ € Z. The point group generators
¥ and w, also called twists, are discrete rotation generators acting crystallographically on the
torus lattice I'. All point groups of these kinds have been already classified [30,83]. It is
common to combine the action of the point group on I' with the identification of points due
to the torus compactification, eq. (2.12). The result is the so-called space group, defined by

S =PxT = {g=(0,nqe4) |0 € P, ng €Z}, (2.14)

where the sum over « is understood. Due to the properties of the semidirect product ‘x’, the
multiplication of two space group elements is given by

gi192 = (617 nocea)(027 mozea) = (01027naea + maalea) €S. (215)
One can also verify that the inverse of a space group element is given by
g7 = (6, naea) = (071, —nables). (2.16)

Moreover, the action of a space group element g = (6, nye,) on the six compact dimensions
is provided by ' ' A
X' L (0X) +nael,, i=5,...,10. (2.17)

Modular invariance requires the action of the space group S to be embedded into the 16
gauge degrees of freedom
S — G, (2.18)

where the gauge twisting group G is, in general, a subgroup of the automorphisms of the
Eg x Eg or SO(32) Lie algebras. Space group elements are mapped to elements of the gauge
twisting group, according to

Zn = (9%, naeq) — (kV, nqAq)

k, 0, ny, €7, 2.19
Zn X Zpr = (9FWh, ngeq) — (VL + Vs, ngAy) & Nar € ( )

where the 16-dimensional shift vectors V, V; parametrize the embedding automorphisms of
the respective twists.* The shifts A, represent Wilson lines [32,34,85|, i.e. they are gauge

3In principle, one could freely choose two different tori, T and TS, for left- and right-movers and, corre-
spondingly, two different point groups, Pr, and Pr. Orbifolds containing these elements are called asymmet-
ric [81,82]. In the present work, however, we will focus on the case of symmetric orbifolds, where TS =T
and P, L = P R-

1t is possible to embed the action of a space group element (6, e,) as (O, A,), where © denotes a rotation
in the gauge degrees of freedom [33,84].
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transformations associated to the noncontractible loops generated by e,. An element of the
gauge twisting group acts on the 16 gauge degrees of freedom of the heterotic string as

Zy : X' — X!+ kV!I4n, AL

)16 2.2
Zn x Ty o X' — XT+ RV + 0V +nn Al T (2.20)

Finally, we are in position to define a heterotic orbifold. A heterotic orbifold is made up
of the product of the quotient spaces of 7°/P and T'6/G:

0O =1TYPeT"%G =R/S TG, (2.21)

where we have made use of the definition of the space group.

Space Group Conjugacy Classes

Not all elements of the space group describe a distinct action on the orbifold. A useful concept
to gather those elements producing the same effect on the orbifold is that of conjugacy class.
Two space group elements g1, go € S are conjugate if there exists another space group element
h € S, such that

hh™ = g0 & g2, (2.22)
One says then that both g; and go belong to the same conjugacy class [g], defined by

lg] ={hgh™'|heS}, (2.23)

and are therefore equivalent.
With help of egs. (2.15) and (2.16), one can easily verify that conjugation of g = (6, nyeq)
under an arbitrary group element h = (0, mqae,) yields

hghfl — (eh, maea) ((9, naea) (0;1’ _maefjlea)

(2.24)
= (0, nabreq + (L — O)meeq) .
Thus, the conjugacy class (2.23) of a general space group element g becomes
[g] = {(97 nabpea + (]l - H)maea) | 0,0, € P} . (2'25)

It is evident that there are several different conjugacy classes. It is convenient to organize
them into two categories: a) # = 1 and b) § # 1. The conjugacy classes of the former case
compose the so-called untwisted sector, denoted U. Those of the second case constitute one or
more twisted sectors, denoted T} s, depending on the number of nontrivial 0s available. The
origin and meaning of the tags untwisted and twisted will be clarified in section 2.3.

Notice that the elements of the untwisted sector are just lattice translations, (1, nyeq).
The corresponding conjugacy classes, according to eq. (2.25), acquire then the form

(1, naeq)] = {(1, nabreq) | 0 € P} . (2.26)
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Point group P ‘ 6D Lattice I' ‘ Twist vector v ‘
73 Su(3)3 10, 1,1, —-2)
7, SU(4)?

SO(5) x SU(4) x SU(2) | (0, 1,1, —2)
SO(5)? x SU(2)?
Zg-1 G2 x SU(3) £(0,1,1, -2)
Zg-11 Go x SU(3) x SU(2)* | £(0, 1,2, =3)
SU(6) x SU(2) £(0, 2,1, -3)
SU(3) x SO(8)
SU(3) x SO(7) x SU(2)

Zr SU(7) 10,1, 2, —3)
Zig-1T SO(9) x SO(5) £(0, 1, =3, 2)
Zs-11 SO(10) x SU(2) 20, 1, 3, —4)

SO(9) x SU(2)?
Z1o-1 Es 10, 1, —5, 4)
Fy x SU(3)
Zp-11 Fy x SU(2)? 1(0, 1, 5, —6)

Table 2.1: Admissible six-dimensional crystallographic lattices [86] and twist vectors for Z
orbifolds. The order of the sublattices in each I' coincides with the order of the components
of the corresponding twist vector.

2.2.2 Consistency Conditions

We have seen in section 2.1 that the heterotic string has intrinsic theoretical constraints on
its geometry and spectrum. It is then natural to expect some requirements for the needed
parameters in orbifold compactifications. These constraints fall into three classes:

e N =1 susy;
e S — (G embedding conditions; and

e modular invariance.

N =1 susy

Compactification of the heterotic string is supposed to provide a theory capable of describing,
among other things, physics at low energies. As we have mentioned, theories with AV > 1
are nonchiral and thus unrealistic. On the other hand, models with no supersymmetry are
phenomenologically disfavored as they cannot alleviate some of the fundamental puzzles of
the standard model. Thus, a natural phenomenological requirement for orbifold models is to
have N’ = 1 susy. This can be guaranteed by an appropriate choice of the point group P.
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Point group P ‘ Twist vector v ‘ Twist vector vy ‘

Tio X o £(0,1,0, —1) | %(0,0,1, —1)
Ty x Ty $(0,1,0,-1) | 1(0,0, 1, —1)
Z3 x Z3 3(0,1,0, -1) | £(0,0,1, —1)
Zo X Zi-1 $(0,1,0,-1) | %(0,0, 1, —1)
Zy x Zg-11 $(0,1,0, -1) | %(0,1,1, —2)
Ty x Ty 1(0,1,0, -1) | (0,0, 1, -1)
Z3 x Zg 3(0,1,0, 1) | %(0,0, 1, —1)
Z x T 3(0,1,0,-1) | %(0,0,1, —1)

Table 2.2: Twist vectors for Zy x Zj; orbifolds leading to N’ = 1. Six-dimensional com-
pactification lattices can be found in e.g. [87,88] (see also appendix D).

In abelian orbifolds, the point group is, in general, a subset of the full holonomy group
(i.e. the group of rotations in six dimensions), P C O(6). Insisting on /' = 1 reduces the
holonomy group to SU(3), yielding therefore

P SU(3) c 0(6). (2.27)

Allowed point groups are the cyclic groups Zy, with N = 3,4,6,7,8,12, and Zy X Z s, with
N, M =2,3,4,6 and M an integer multiple of N. As we are about to see, it turns out that
the specific form of the twist ¥ is also constrained by N = 1.

To simplify the notation, the six compact coordinates of the torus X¢, i = 5,..., 10, are
conveniently combined into three complex coordinates
1 1 1
Z'= — (X°+iX%), Z?’=—(X"+iX%), Z'=— (X" +ix"). (2.28)

V2 V2 V2

In the light-cone gauge, the observable spacetime can be represented by Z° = % (X S +iX 4).

Further, we will assume the torus T to be factorizable,® i.e. it can be written as 76 =

T? ® T? ® T?. In the basis (2.28), the twist of a Zy orbifold is then a diagonal 3 x 3-matrix
of the form

¥ = diag (e%ivl, 2’ 62”1”3) . (2.29)

where v = (0, v!, v, v3) is called the twist vector and carries the full information of the point
group action.® The action of the point group on the complex compact coordinates is then
given by

79 2 exp{2niv®} 29, a=1,2,3, (2.30)
where we can include the trivial action of the twist on the observable spacetime plane Z°.

In N =1 susy there is only one gravitino. So, we need to determine what the form of the
twist vector must be so as to ensure that only one gravitino survives after compactification.

5Qrbifolds in nonfactorizable tori have been also extensively studied. For details, see e.g. [87,88]. A possible
relation between orbifolds on factorizable and nonfactorizable lattices was first conjectured in [74].
In Zn x Zpr orbifolds, there is one twist vector for each of the two point group generators, ¥ and w.
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a) SO(4) b) SU(3)

[ ] €s L]

/ 61

L] L] L]

Figure 2.3: A two-dimensional Z3 transformation a) does not act crystallographically on the
root lattice of SO(4). In contrast, b) the root lattice of SU(3) is mapped to itself under Zs.

The ten-dimensional gravitino contained in the supergravity multiplet (2.9) of the heterotic
string splits into four gravitini in four dimensions:
1 1 1 1

+ . i—,j:—,j:—> &
5 Ty Ty Eg )P0

0 >L, even # of + signs. (2.31)

The first component of the right-mover provides both chiralities for the gravitini. Due to the
compactification, the last three components are internal indices that account for a multiplicity
factor of four for each chirality. Since the left-mover carries lorentzian index, only the right-
mover transforms under the orbifold action

9 _omi(£lylaly241,3
[ R NS N S o U U LI [T TS ST S O

27 R 3 (2.32)

R
The spectrum of an orbifold contains only states that are invariant under the orbifold action.
Thus, in order to get N' = 1, the phase exp{—i (£v! £+ v? +v*)} must be trivial for one
gravitino. One notices that the condition +v; + vy + v3 = 0 for one combination of signs
assures the presence of solely one gravitino in the orbifold spectrum. Therefore, one can
choose the components of the twist vector to satisfy

vt 0?4+ 03 =0, (2.33)
so that |+ (; 2,2, 1)) ® @7,|0). be the surviving gravitino. Moreover, as the twist vector
v of Zy orbifolds corresponds to a twist 9 € P of order N (9" = 1), then its components
fulfill in general Nv® € Z, a = 1,2,3. Note that if one v® is zero (or integer), we obtain
N = 2 in four dimensions, implying that all components v® of a Zy orbifold twist vector must
be nontrivial. In the third column of table 2.1, we present our choice of twist vectors for all
admissible Z orbifolds.

In Zpn x Zps orbifolds, there are two twist vectors, v; and ve, that also fulfill eq. (2.33).
Only their combined action must lead to N' = 1. In this case, one can choose the twist vectors
as shown in table 2.2. Notice that each of the twist vectors leads to N' = 2, but their conjoint
action provides a theory with N = 1, as required.

A secondary effect of the restriction A/ = 1 occurs in the six-dimensional compactified
space. As already mentioned, the point group P has to act crystallographically on the root
lattice I' of a six-dimensional Lie algebra. In other words, the lattice of the torus 7° must
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be mapped to itself under the action of P. Provided a point group P, not any root lattice
is admissible. As an example, consider fig. 2.3: in two dimensions, the action of Zs can be
regarded as a rotation by 27/3. Clearly, whereas the root lattice of SU(3) is left invariant
under Zs, the root lattice of SO(4) is not. Suitable root lattices for Zy orbifolds are given
in table 2.1. We have also compiled a list of some allowed lattices for Zx X Zj; orbifolds in
table D.2.

S — G Embedding Conditions

The embedding of the space group into the gauge degrees of freedom imposes some conditions
on the shift vector(s) V' and the Wilson lines A,. First of all, embedding the twist satisfying
9V = 1 implies that the associated shift vector has to be also of order N, i.e.

NV e, (2.34)

where A is the 16-dimensional weight lattice of the corresponding heterotic string.

On the other hand, Wilson lines are subject to certain conditions depending on the com-
pactification lattice I'. Wilson lines are the embeddings of the six lattice generators e, there-
fore one might be enticed to think that there are six distinct Wilson lines A,. However, not
all directions e, are independent in the orbifold. Consider for example the two-dimensional
SU(3) lattice of fig. 2.3. One sees that a Zs transformation maps e; to ez, implying that the
corresponding Wilson lines A; and A, have to be equivalent in the orbifold. Consequently, in
Zs orbifolds with compactification lattice I' = SU(3)? (cf. table 2.1), one finds

o i) €at+1 — Ay~ AaJrl , a=1,3,5; ¥€Zs, (235)

where ‘~’ indicates that the Wilson lines are identical up to lattice translations in A.

In general, relations between the Wilson lines are effect of equivalences between space
group elements. As we have seen before, elements of a given conjugacy class are equivalent.
According to eq. (2.26), the conjugacy class of a lattice translation g = (1, nyes) is given by

(1, ngeq)] = {(1, nybe,) | 6 € P} (2.36)

and contains elements describing the same orbifold action. For example, in the case of Zs
orbifolds, the relation

(1, e1) = (9,0)(1,e1)(9,0) = (1, eq), (2.37)

implies that (1, e;) and (1, e2) are indistinguishable from the orbifold perspective. Then,
their embedding into the gauge degrees of freedom should also be identified. This restricts A;
and As to be equal up to lattice vectors, as we had already shown.

It is not hard to realize that also the order of the Wilson lines gets restricted by the choice
of I'. Consider in the Zs orbifold the following elements of the same conjugacy class:

(1, ez) = (9, 0)(1, ex)(®, 0) 1 = (1, —eq — e3). (2.38)
Embedding this relation into the gauge degrees of freedom and using A; ~ A, yields

Ay~ —A1 — Ay~ —-24y & 345 =0. (239)
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In other words, Ay (as well as A;) has to be a Wilson line of order 3, 345 € A. Similar
relations apply also for the other two SU(3) factors of the lattice I'. Hence, all in all, we
obtain

3A1 ~ 3A3 ~ 3A5 ~0; Al ~ Ag, A3 ~ A4, A5 ~ A6 . (2.40)

The number of independent Wilson lines A, and their order NNV, for admissible choices of T"
in Zy orbifolds are provided in table D.1.7 See table D.2 for constraints on Wilson lines of
ZN X ZM orbifolds.

Modular Invariance

Terms of the one-loop partition function of abelian orbifolds acquire in general a nontrivial
phase under modular transformations [89,90]. Demanding the partition function to be mod-
ular invariant safeguards the resulting theory from anomalies. Therefore, we are committed
to requiring the phase that arises from modular transformations to vanish. This imposes con-
straints on the orbifold parameters which, for Zy orbifolds without Wilson lines, are usually
expressed as [31,90,91]

N(V?—v*) =0 mod 2. (2.41)

In including Wilson lines (and a second twist of the point group in the case of Zy X Zjps
orbifolds), eq. (2.41) has to be replaced by [74]

(Vf—v%) = 0 mod 2, (2.42a)

M (Vi-v3) = 0 mod2, (2.42b)

M (Vy - Vz—’U1 v2) = 0 mod 2, (2.42c)
No (Aa-Vi) = 0 mod2, (2.424)

N, (42) = 0 mod2, (2.42e)

Qop (Aa-Ag) = 0 mod2 (a#p), (2.42f)

where N, corresponds to the order of the Wilson line A, (NoAq € A), and Qqp = ged(Na, Np)
denotes the greatest common divisor of N, and Ng. 8 For Zn orbifolds, onehas Vi =V, vy = v
and egs. (2.42¢) and (2.42d) are clearly unnecessary.

2.2.3 Orbifold Geometry

Fixed points appear naturally in orbifold compactifications due to the action of the twist on
the compact space. As an example, consider a one-complex-dimensional Zs orbifold on an
SU(3) torus lattice. Zs acts as a rotation by 27/3 on the complex plane. Evidently, the point
at the origin is not affected by the Z3 action and is therefore fixed. Furthermore, considering
torus translations, one finds that there are two additional fixed points inside the fundamental
cell of the torus. Observe the situation depicted in figure 2.4. The discrete rotation of those

points is counteracted by translations in the torus lattice, so that the points remain unaffected
in the orbifold.

"Notice that several typos of the literature have been corrected there.

8In the case of two different Z> Wilson lines we find that (2.42f) can be relaxed, i.e. gcd(Na, Ns) can be
replaced by N, Nz = 4, provided there exists no g € P with the property ge. # e but geg = eg. Imposing
the weaker condition leads, as we find, to anomaly-free spectra.
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Figure 2.4: Fixed points arise naturally by the action of a discrete symmetry on the torus.
In an SU(3) lattice, the action of Zj is counteracted by lattice translations, leaving three
points fixed.

Figure 2.5: The fundamental region of a one-complex-dimensional Zs orbifold is reduced
to one third of the fundamental cell of the SU(3) root lattice. Folding appropriately the
fundamental region, one can see that the Zs orbifold is a flat manifold everywhere except
at the three singularities corresponding to the fixed points.

Let us make two remarks. First, note that the three fixed points described above can
be related neither by further lattice translations nor by the repeated action of Zs. This
independence characterizes all fixed points on the orbifold.® Secondly, if one considers not
only the fundamental cell of the torus illustrated in figure 2.4, but the entire (infinite) root
lattice of SU(3), clearly, one finds an infinite set of fixed points. Yet all of them are identified
to the three fixed points on the orbifold by the conjoint action of Zs rotations and lattice
translations, that is, by the action of the space group. Hence, the fixed points belong to only
three different classes and, for describing all of them, it suffices to take one representative out
of each of these classes.

Orbifolds are generalizations of manifolds in the sense that they are smooth (almost)
everywhere, with exception of a constrained set of points, where the curvature concentrates;
i.e. orbifolds admit singularities. That can be realized in the last example, by observing the
space resulting after moding out the discrete group Zs. In that case, the entire space can be
described by one third of the area of the torus, the so-called fundamental region, as sketched in
figure 2.5. Then, one notices that points along the boundaries of the fundamental region of the
orbifold are identified under the action of the space group. To visualize the orbifold space, one
has to fold the fundamental region and paste the edges together. The outcome is a triangular
pillow-like object with sharp corners located at the fixed points. One can proof that such
corners are conical singularities that concentrate the curvature of the orbifold. This means

9As we will see, there are situations in which some points are fixed under the action of one point group
element, but are connected to other fixed points by the action of another one. In that case, not all fixed points
in the torus are independent fixed points on the orbifold.
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that only at the fixed points the holonomy group is nontrivial (generically, it is a subgroup of
Zy).

In any six-dimensional orbifold, fixed points are determined by considering the underlying
lattice and the space group action. To be more precise, consider an arbitrary space group
element g = (0, nyeq). Following from eq. (2.17), its action on the complex coordinates Z% is
given by

Z L5 07 + ngea, (2.43)

where the basis vectors e, of the six-torus are now expressed in the complexified basis
eq. (2.28), and @ denotes an arbitrary point group element taking the form § = 9% for Zy
orbifolds or § = 9% w’ for Zy x Zys orbifolds. A point Z ¢ in the compact space is said to be
fixed in the orbifold if it is invariant under the action of a particular space group element gy.
This means that fixed points satisfy

Zf :ngf:(ng+naea = (E—Q)Zf el (244)

for a given gy € S.

It is convenient to label a fixed point by the corresponding space group element g; instead
of by its spatial coordinates Z}’. The space group elements gy will be called constructing
elements. This notation is rather convenient for several reasons. We know that, even though
the number of solutions of eq. (2.44) is infinite, only a reduced finite number of points are
inequivalent in the orbifold. In fact, inequivalent points in the compact space are related to
space group elements from different conjugation classes. Secondly, we can say that points
expressed by g; = (1, naen) belong to the untwisted sector. Further, fixed points represented
by g5 = (6, naeq) with § # 1 ‘live’ in one of the twisted sectors. For example, fixed points left
invariant under the action of # = ¥* # 1 of a Z y orbifold are said to belong to the k-th twisted
sector (k=1,...,N —1). Analogously, invariant points under § = ¥*w’ # 1 in Zy x Zy; are
called fixed points of the (k, ¢)-th twisted sector.

The number of distinct (conjugacy classes of ) fixed points varies for different sectors of an
orbifold. One first notices that in the untwisted sector, every point of the space is evidently
invariant and g = (1, 0). Thus, we end up with a six-dimensional fixed torus without
singularities in the untwisted sector. A less boring situation appears in the twisted sectors.
There, the solutions of eq. (2.44) are either isolated fixed points or one-complex-dimensional
invariant surfaces, commonly called fized tori. The former case applies to points fixed under 6
such that 1 — 6 is nonsingular (i.e. det(1 —#) # 0). The latter appears when 1 — 6 is singular.
This is easy to understand because 1 — 0 is singular only if one of the eigenvalues of 0 is one
or, stated differently, only if one complex plane is left invariant under 6.

In case that det(1—6) # 0 and the lattice of the compact space is factorizable,'® the number
of isolated fixed points in the twisted sector corresponding to 6 is given by an (over)simplified
version of the Lefschetz fixed point theorem [92]

3
#Zp = det(1-0) = []4sin’(m"), (2.45)
a=1

where v* are the entries of the twist vector. Formula (2.45) is, at first sight, very appealing,
since it does not depend on the particular geometry of the underlying lattice I'. Nonetheless,

10j e. the six-dimensional lattice can be written as the product of three two-dimensional sublattices, each of
which corresponds to a complex plane with coordinate Z“ and a fixed.
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Figure 2.6: Fixed points of the 92 twisted sector on the torus spanned by the root lattice of
Go. The point group generator ¢ acts as a rotation by 27/6. Some points invariant under
¥? on the torus are identified on the orbifold by the action of ¥.

there are too few cases for which eq. (2.45) applies. For example, in most of the Zx orbifolds,
only the number of fixed points in the first twisted sector (§ = ¥') are determined by that
formula. Few other twisted sectors of both Z and Zxy x Zj; orbifolds can also be addressed
in this way.

In presence of fixed tori, that is, when det(1 —6) = 0, one might conjecture that it suffices
to extract the nontrivial two-complex-dimensional part of 6 and then to apply formula (2.45).
Unfortunately, the result obtained in that way is, in general, wrong. The reason can be
traced back to the origin of formula (2.45). In a more complex version, the Lefschetz fixed
point theorem!! states that the number of fixed points (or fixed tori) is given by the index
of the space of elements g; (associated to the fixed points) divided by the largest set of
(sub)symmetries of the space group relating fixed points among each other. Only if the set
of modded out symmetries comprises ezclusively lattice translations on the lattice I" (and T is
factorizable), then formula (2.45) (or a lower dimensional version of it) yields a correct result.

Let us examine more closely this situation in an example. In Zy orbifolds, 1 — @ is singular
only for higher twisted sectors corresponding to # = 9% with 1 < k < N. Suppose ¥ to be a
Zg generator and the compact space to be spanned by the root lattice of Go x SU(3) x SO(4).
As it will be detailed shortly, the action of 92 is trivial in the sublattice spanned by SO(4), so
that we get fixed tori in the second twisted sector. Now, focus on the sublattice spanned by
Go. The point group generator v acts as a rotation by 27/6 on the Go plane; therefore, fixed
points (tori) of the ¥? twisted sector are those points left invariant under a rotation by 120
degrees. In figure 2.6, we present the three points of the Gy sublattice left invariant by this
rotation. Notice that a one-complex-dimensional version of formula (2.45) also leads to three
invariant points:

3 V3

- — 11—

ZG: _ |q_ 2><27ri/6‘ _
#2 ‘ 22

9 3
- 242 = 3. 2.46
1T (2.46)

The points invariant under 92 in the Gy sublattice are represented by the space group elements
g1 = (9%,0), g2 = (¥2, e1) and g3 = (V2, 2e1). Nevertheless, to conclude that there are three
fixed points in the G2 plane of the second twisted sector is wrong. It is not hard to verify that

gs = (19, 61)92 (19, 61)_1, (2.47)

situation that is also depicted in figure 2.6. Then gs and g3 belong to the same conjugacy

"1See e.g. appendix A of ref. [93].
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Figure 2.7: The geometry of Zs3 orbifolds compactified on an SU(3)3 lattice. The 27 fixed
points of the 9! and ¥? twisted sectors are identical.

class, implying that only the conjugacy classes of ¢g; and go are independent. Therefore, only
two points (tori) are truly fixed under the action of the orbifold in the G2 sublattice.

Before proceeding to the details of two important examples, let us add a remark. The
compactification lattice plays a very important role in the number of fixed points. For exam-
ple, the usual Zs x Zs orbifold compactification on the factorizable lattice of SU(2)% admits
twice the amount of fixed tori of the same orbifold on the nonfactorizable root lattice of
SO(12) [94]. In fact, it is possible to state that the number of fixed points (or tori) of orbifolds
with factorizable compact space is, in general, bigger than that of the same orbifold with a
nonfactorizable lattice. Our discussion here will restrict to the factorizable case.

Standard Example: The Z3 Orbifold

The Zs orbifold has been long studied since the mid-eighties [30,32,95,96] mainly because it
is the simplest orbifold and because, even in that scope, there are chances to get semirealistic
models [34,49].

The compact space of the Z3 orbifold is spanned by the root lattice of SU(3)3. The twist
vector preserving N' =1 susy is given by

v = (0,1/3,1/3, —2/3), (2.48)

implying that the Zs point group generator ¢ acts as a simultaneous rotation by 27/3 on all
three SU(3) sublattices. The Zg3 orbifold has three sectors: the untwisted sector (9% = 1) and
two twisted sectors (9! and ¥?). In the untwisted sector the action of the point group is trivial
and, therefore, all points are invariant.

To find the points fixed under ¥, we use the fact that the underlying lattice is factorizable.
We have already studied the Zj action on a single SU(3) lattice. We have seen that three
independent points are left invariant by Zs. As an extension of that case, we find that each of
the three sublattices has three independent fixed points, so that the six-dimensional space of
the first twisted sector contains a total of 27 fixed points, displayed in figure 2.7. This result
can be verified by using formula (2.45).

The fixed points of the ¥? twisted sector are identical to those of the first twisted sector.
Therefore, there is no need to consider these two sectors separately. We will see in section 2.3
that this structure will be reflected in the matter spectrum of the orbifold. In any orbifold,
one can show that the fixed point structure of the sector 6 is equal to that of the sector 6.
Note that in the Zs case 92 = 971
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Figure 2.8: The geometry of Zg-II orbifolds compactified on a Go x SU(3) x SO(4) lattice.
Fixed points of the 9!, ¥? and ¥ twisted sectors are presented. The fixed points of the ¥4
and 1% twisted sectors are identical to those of the 9! and 92 twisted sectors, respectively.

The Zg-11 Orbifold

The Zg-11 orbifold was first studied in detail in ref. [47,97]. In those works, the structure of
the fixed points was suggested as a tool to get models with phenomenologically acceptable
features. Since the present thesis is based on the Zg-II orbifold, we discuss in detail the
structure of its fixed points. We illustrate our results in figure 2.8.
We will consider the compact space of the Zg-1I orbifold to be spanned by the factorizable
lattice!?
FZ(;*II = G2 X SU(?)) X SO(4) . (249)

An advantage of the lattice I'z,_r; being factorizable, is that we can find the fixed points
independently for each sublattice without loss of information, and then put them all together
in order to obtain the entire fixed point structure.

The point group Zg-1I is generated by ¢ which acts simultaneously as a rotation by 27/6
on the Gy plane, a rotation by 27/3 on the SU(3) plane, and a reflection on the origin of the
SO(4) sublattice. The action of ¥ is then described by the twist vector

v = (0,1/6,1/3, =1/2). (2.50)

127,6-11 orbifolds on nonfactorizable lattices can also lead to interesting results. Some of their properties are
briefly discussed in appendix C.
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There are five twisted sectors corresponding to the different powers of 9.

Let us consider the first twisted sector. Formula (2.45) tells us that there are 12 fixed
points. Their precise location in the compact space can however only be found by means of
eq. (2.44). The constructing elements corresponding to the fixed points are given by

g? € {(19, nses + TLGGG), (19, es + nses + n6€6)7 (19, e3 + e4 + nses + n6€6)} (2.51)

with ns,ng =0, 1.

The action of 92 is encoded in 2v = (0, 1/3, 2/3, —1). This means particularly that all
points of the SO(4) sublattice are left invariant. Therefore, the action of 92 on the compact
space introduces fixed tori. In this case, formula (2.45) does not count correctly the number of
fixed points. However, from previous discussions we know that, under a rotation of 2 x 27/3
on the SU(3) sublattice, three points are left fixed. Further, we have also seen that there are
only two inequivalent fixed points in the Go sublattice. All in all, we find 2 x 3 fixed tori in
the second twisted sector. The constructing elements are

9?2 € {(192’ 0)3 (292’ 61)’ (192’ 64)3 (292’ e+ 64)3 (292’ e3 + 64)’ (192’ e1 +e3 + 64)} : (252)

In the third twisted sector, the point group action, described by 3v = (0, 1/2, 1, —3/2),
acts trivially in the SU(3) sublattice, hence, we obtain fixed tori in this case too. It is easy to
see that eq. (2.44) leads to four invariant points under 1% in each of the other two sublattices.
However, the points out of the origin of the Gy sublattice are equivalent. Let us denote the
associated space group elements by g1 = (92, e1), g2 = (92, e; + e3) and g3 = (93, e3). It is
easy to verify that

g2, e1) g (9, e1) P =g2 and g2 = (9, 2e1 —e2) g2 (U, 2e1 +e2) P =g3, (2.53)

whence it follows that all three elements belong to the same conjugacy class. We are then left
with a total of 2 x 4 fixed tori, described by the following constructing elements:

9}93 € {(193, nses + n666), (193, e + nses + n666)} (254.)

with ns,ng =0, 1.

The fourth and fifth twisted sectors posses the structure of the second and first twisted
sectors, respectively. Therefore, it is enough to study the three twisted sectors depicted in
figure 2.8.

2.3 Strings on Heterotic Orbifolds

The final ingredient of orbifold compactifications is their spectrum of matter. Matter in
heterotic orbifolds is described by closed strings. A special feature of orbifold compactifications
is that they admit two types of closed strings: untwisted and twisted strings (see figure 2.9).
Untwisted strings fulfill the following boundary conditions:

Z(r,o+7)=Z(1, 0) + ngeq - (2.55)

This indicates that they are closed already on the torus and free to propagate in the compact
space. In contrast, twisted strings are closed only after identifying points by the twist 6,
according to their boundary conditions

Z(t,0+m) =0Z(t, 0) + naeq, (2.56)
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Figure 2.9: Closed strings in orbifold compactifications. a) Untwisted strings are closed on
the torus, whereas b) twisted strings only close through the action of the twist 6.

whence it follows that they are bound to the fixed points. The relation between the types
of strings in an orbifold and the action of the point group is the reason why we have called
untwisted to the space group elements with a trivial point group action, and twisted to those
other which include a nontrivial element of the point group.

Since massive strings have masses of the order of Mgy,., they are too heavy to contribute
directly to low—energy physics. Therefore, we will consider the spectrum of heterotic orb-
ifolds to be composed only of massless string states, satisfying additionally the level matching
condition for right- and left-movers, eq. (2.8).

Massless states differ for the several constructing elements g. On the one hand, untwisted
states (with constructing element g = (1, 0)) are written in general as

lg)r ® &%, |p)1 (2.57)
where ¢ is a weight of SO(8) and p € A as given in eq. (2.7). a®; represents an oscillator
excitation in one direction of either the Minkowski space (a*' ) or the compact space (&%, a% ;)

or the gauge degrees of freedom (&’ ).

On the other hand, massless states associated to a twisted constructing element g =
(9%, ngeq) (with k =1,..., N — 1) are in general expressed as

lgsh) @ & |psh) = |¢+vg)r @ a [p+ V)1, (2.58)

where & denotes in this case a product of oscillators of the form a?,. (or a®;,,.) in the
complex directions a = 1,2,3 (or their conjugates a = 1,2,3), with n* = kv® mod 1, such
that 0 < n® < 1. Here we also defined the local twist and the local shift vectors associated to
the constructing element g as

vg = kv and

Vo= kV +ngAa,

respectively. One can trivially extend these results to Zy x Z s orbifolds by including a second
twist vector vy and a second shift vector V3 in eq. (2.59).

(2.59)

Orbifold Projections

As we have already mentioned, the matter spectrum of orbifolds will be composed only of those
massless states which are invariant under the action of the space group S and its counterpart,
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the gauge twisting group G, that is, under the orbifold group O C S ® G. The problem here
is to find a prescription to figure out whether a massless state is projected out by the orbifold
action. Let us make some general observations.
The boundary conditions for closed strings on orbifolds, egs. (2.55) and (2.56), are sum-
marized by
Z(t,0+7)=gZ(T, 0) (2.60)

for a constructing element g. The set of all states with compact coordinates fulfilling eq. (2.60)
define a Hilbert space H,.

To ensure compatibility of the states from H, with the orbifold, we let an arbitrary space
group element h € S act on the coordinates describing the strings. The boundary condition
becomes

(hZ)(r, 0 +m) = hgZ(T, 0)
= hgh~Y(hZ)(r, o),

where we have made use of eq. (2.60). To interpret this, we have to distinguish between two
cases: a) h commutes with g, and b) h does not commute with g.
a) Let us consider first that A commutes with g, i.e.

lg, h] = 0. (2.62)

(2.61)

In this case, eq. (2.61) translates to
(hZ)(r, 0 +m) =g(hZ)(t, o) (2.63)

This boundary condition indicates that states described by the coordinates i Z belong to the
same Hilbert space H,. Consequently, h must act trivially on the states from H:

~ h _ ! _
lgsh) R ® @ |psh)r, —— P|gsh)R @ & |Psh)r, = |gsh)R © & |Psh) 1L - (2.64)

States from H, that do not fulfill eq. (2.64) have to be projected out.
Let us define the centralizer Z, of a constructing element g as the set of all space group
elements A commuting with g:

2, = {heS|lg hl=0}. (2.65)

The massless matter spectrum of orbifold compactifications is then formed by the massless
states which are invariant under all elements of the centralizer.
b) Consider now a noncommuting space group element h,

l9, h] #0. (2.66)

In this case, eq. (2.61) indicates that h maps states from a given Hilbert space H, onto a
different Hilbert space H}, 45-1. Subsequent application of A then leads to the sequence

Hy 2 Hygnor 25 Hpzgnr 2> Hpsgnos -5 ... . (2.67)
The crucial point is now that, since g and hgh~! belong to the same conjugacy class, h Z and
Z are identified on the orbifold. This means that, on the orbifold, the different Hilbert spaces
Hpn gn—n are to be combined into a single orbifold Hilbert space. Invariant states are then
linear combinations of states from all Hpn 5,-n. Such linear combinations involve, in general,
relative phase factors (often called v—phase) |78|.
Let us emphasize here that the action of noncommuting space group elements on physical
states of H, does not project out any state from the spectrum.
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2.3.1 TUntwisted Sector

In the untwisted sector U, the level matching condition for massless states of orbifolds coincides
with that of the uncompactified heterotic string, that is,

2
Lo 2 i N 1=0=-¢*— = =
LA q

mL_Lel g Lp_1_mg (2.68)
4

where p is a root of either Eg x Eg or SO(32) (see eq. (2.7)), g denotes the SO(8) weight vector

of the right-mover and N counts the number of oscillator excitations. As in the uncompactified

heterotic string, eq. (2.68) has solution only if ¢*> = 1 for the right-movers and either p? =

0, N =1or p? = 2, N = 0 for the left-movers. The spectrum of the untwisted sector,

nevertheless, is different from that of the heterotic string discussed in section 2.1. The reason

being that some states are projected out by the action of elements of the centralizer.

Transformation Phase

In the projection condition, eq. (2.64), we have considered that massless states of H, acquire
a phase ® under the action of an arbitrary element h of the centralizer Z,. In fact, every
element of the massless states transform differently under the action of an element h of the
centralizer. Embedding h into the gauge degrees of freedom shifts the bosonic coordinates X’
by V;!, where Vj, is the local shift vector of h (see eq. (2.59)). In the momentum space, this
accounts for a phase that depends on the momentum p of the state and the local shift vector
\%%

h Tip-
Py o Vi) (2.69)

The action of h provides the right-moving states with a similar phase

h Tig-v
lQ)r —— €2MT%|g) R, (2.70)

where vy, is the local twist vector associated to h. Finally, oscillators are transformed as

~ h ~

0/_1 »—>o/_1, I1=1,...,16,

Sl h, ~p _

afl — afl’ /"L_273’ 271

a h 627rivg o ( ) )
—1 —1>

ai, P, g 2mivg a, .

Left- and right-moving momenta lie on an even, self-dual lattice of lorentzian signature
(22,6) |98], implying a relative sign between the phases of the left- and right movers. Therefore,
the phase acquired by untwisted massless states under the action of h is given by

) r®|p)L d = 2milpVi—qus]

1 a 272
Wr®EJ0)L: B = erlennasang] (272)

where 2 stands for the direction in which the oscillator excitations acts.
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Untwisted Spectrum

The constructing element of the untwisted sector is g = (1, 0) and, therefore, the associated
centralizer contains all elements of the space group. The spectrum of the untwisted sector is
composed by those massless states of the uncompactified heterotic string which are invariant
under all elements of the space group. In the following, we evaluate the effect of the orbifold
projection on the massless spectrum of the heterotic string, discussed in section 2.1.

The ten-dimensional supergravity multiplet of the heterotic string splits into:

e a four-dimensional graviton g"¥, dilaton ¢, antisymmetric tensor B* (whose
dual is the model-independent axion ajsr), and their superpartners. They are given by
the space-group-invariant components of

[9)r ®a”4[0)L - (2.73)

Since the left-movers o |0);, do not transform under any h, then the right-movers
|¢) r must transform trivially too. From eq. (2.70), we see that this occurs only if the
six-dimensional momenta ¢ in eq. (2.73) correspond to'?

11
q= + (5, 29 9
+(1,0,0,0
This is a trivial consequence of requiring to preserve N' = 1 SUSY in orbifold compacti-
fications (cf. section 2.2.2);

) (2.74)

N[
~— N~

e some geometrical moduli given by states of the type
lahr® &% |0)2 (2.75)
satisfying the invariance condition
qg-vp vl =0 mod1, (2.76)

where the relative sign — (+) is associated with an oscillator carrying holomorphic
index a (antiholomorphic index a). These states are gauge singlet fields, arising from
the compact components of the ten-dimensional graviton and antisymmetric tensor (and
their superpartners). In particular, the symmetric combinations are the moduli for the
flat metric of the compact space, which can be written as

Gop = €q-€3, (2.77)

where e, correspond to the basis vectors of the compact space. The surviving com-
ponents of the antisymmetric tensor give rise to the so-called model-dependent axions
ayp- Note that, additionally to those states that do not satisfy the invariance condition
eq. (2.76), also states such as |¢)gr ® &li/ll are projected out by the orbifold action.
The action of i on the 16 ten-dimensional uncharged gauge bosons leaves invariant
only their four-dimensional components specified by

@) r @ &l4(0) (2.78)

13The SO(8) weights ¢ in eq. (2.74) carry implicitly minkowskian index .
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with the right-mover momenta ¢ also given by eq. (2.74) due to the invariance of a’ ;. These
states are the 16 Cartan generators of the four-dimensional gauge group G4p. Therefore,
the rank of the gauge group cannot be reduced by compactifying on this kind of orbifolds.

The 480 charged gauge bosons are of the form |¢)r ® |p)1. Those states left invariant
under the action of the space group acquire different natures depending on their transformation
properties:

e the charged gauge bosons (and gauginos) of the four-dimensional gauge group G4p
are those states where both left- and right-movers transform trivially under the action of
any element h of the space group, that is, where ¢-v, =0 mod 1 and p-V, =0 mod 1,
independently. The only right-moving momenta satisfying the former constraint are
those provided in eq. (2.74), which are also the right-movers of the Cartan generators of
the unbroken gauge group. The condition for the left-moving momenta must be fulfilled
for any h, then it can be restated neatly as

p-V = 0 modl, (for V1 and Vs in Zy x Zjs orbifolds)  (2.79a)
p-A, = 0 modl, a=1,...,6, (2.79b)

where A, are Wilson lines. These states transform in the adjoint representation of G4p.
Provided that not all 480 left-moving momenta p of the ten-dimensional charged bosons
satisfy egs. (2.79), even though the rank is not reduced, the gauge symmetry can be
broken;

e those states whose left- and right-moving components transform nontrivially and satisfy
the invariance condition
p-Vh—q-v, =0 mod 1 (2.80)

constitute the so-called untwisted charged matter of orbifold models. The various
matter states form several SUSY chiral-multiplets. Their gauge transformation properties
with respect to G4p depend on their momenta p.

2.3.2 Twisted Sectors

Zero modes of twisted sectors Ty ) are associated to the constructing elements g of the fixed
points. Requiring the states to be massless accounts for the following conditions on the left-
and right-moving momenta:

m%: %p§h+ﬁ—1+5céo,

N

| (2.81)
my = 3¢5 —3+6c=0,

=

where dc¢ corresponds to a change in the zero point energy related to the appearance of twisted
oscillators a2, q, a*y 4ya- 1t is expressed by

dc = % Za: n*(1 —n?) (2.82)

"1t is possible to reduce the rank of the algebra by embedding the point group generator 6 into the gauge
degrees of freedom as a rotation © instead of a shift vector V.
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a
g

(fractional) oscillator number N as

with n® = v¢ mod 1, such that 0 < n* < 1. For massless states, one can write the twisted

N = 23: 7o (N; + N;a) . (2.83)

a=1

Here, N; and N;“ are integer oscillator number, counting respectively the number of excita-
tions in the holomorphic a and antiholomorphic a directions.

Transformation Phase

The transformation of left- and right-moving states |psh)r, |gsh)r under the action of an ar-
bitrary centralizer element h can also be read off from egs. (2.69) and (2.70), where we have
only to substitute p for ps, and ¢ for ggp.
Further, just as in the untwisted sector, only the oscillator excitations on the compact
directions a and a transform nontrivially. Their transformations are given by
e (2.84)
Gy e PR G

Putting everything together, the complete transformation phase of a massless twisted

states reads ~ =
P — 627r1 [psh-Vh*CIsh'Uh+(N97N;)'Uh] (I)vac , (285)

where the vacuum phase
(bvac — 627"1 [*%(Vg'Vh*”g'Uh)] (286)

arises as consequence of the geometrical properties of twisted strings (cf. appendix of ref. [74]).

2.3.3 A Zs; Example

The model studied here was presented in refs. [34,49]. In those works, the Eg x Eg heterotic
string was compactified on a Zg orbifold with abelian embedding and two Wilson lines. Here,
let us first study the spectrum of the model in the absence of Wilson lines and then consider
the effect of these background fields.

The embedding of the point group into the gauge degrees of freedom is chosen to be given

by the shift vector
14 2 2
V= [(=,20 ~.07 ), 2.87
(3 ’ 3’ ><3, > ( )

which, together with the twist vector of a Zs orbifold, v = (0, 1/3, 1/3, —2/3), satisfies the
modular invariance condition, eq. (2.41).

Untwisted Sector

Aside from the fields G*”, B* and ¢ (and their superpartners), we have nine geometrical
moduli of the type

[0)r ®&%10)1 - (2.88)
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They arise as follows. In the absence of Wilson lines, the transformation properties of the
states in the orbifold spectrum are determined by the action of the point group generated by 6.
Therefore, denoting o = €>™/3, we can classify the right-movers according to their eigenvalues
with respect to the space group element h = (¢, 0):

" |¢)r with ¢ =+(

o'+ lgr with g= (

), £(1, 0,0,0),
1,0,0), (2.89)
)’ (07 _]-7 Oa 0)’

0*: lg)r with g¢=

NI—= N N
NI (N[ N
NI (N NI
NI [N NI

S—

~—

[an)

—~
|
|

where, as usual, the underscore denotes all permutations. On the other hand, left-moving
oscillators with internal indices also transform:
Ql : agl )

2. xa
o°: aty.

(2.90)

Therefore, for each complex direction a we obtain six (o')g(0?), invariant states and other
six with (0?)g(0')r. However, note that the former states are conjugate to the latter ones.
Together, they enter into a single physical state, so that it is enough to count left-chiral
states, i.e. states where the Ramond (half-integer) SO(8) weight has ¢° = —3.1% In the
present example, we count only the six (0?)r(o'),, invariant states. Furthermore, since SUSY
is preserved, a physical state of the spectrum must contain a Ramond weight along with an
Neveu-Schwarz (integer) weight. In this way, we come up to three invariant states for each
of the three complex directions, as given in eq. (2.88). Combinations of these nine moduli
correspond to the nine independent deformation parameters of the compact space of a Zg
orbifold [99].

The unbroken gauge group has rank sixteen because all Cartan generators given in eq. (2.78)
are invariant. The explicit breaking of Eg x Eg is obtained through the left-moving momenta,
p (i.e. the roots of Eg x Eg in eq. (2.7a)) satisfying p- V' =0 mod 1. There are 72 invariant
momenta p from the first Eg and 84 from the second Eg factor. Adding to this number the
eight Cartan generators of each Eg provides the dimensionality of the adjoint of the unbroken
gauge group. In this case 7248 — 80 corresponds to the adjoint of SU(9) and 84+8 — 911
correspond to the adjoint of SO(14) x U(1). The corresponding momenta p constitute the roots
of the unbroken gauge group. The left-moving states with these momenta |p); (transforming
as 0°) tensor together with the invariant (0°) right-movers of eq. (2.89). Since the number of
left-chiral states gives the multiplicity of states, we find that these gauge bosons appear, as
expected, only once. Therefore, the orbifold action with the shift vector eq. (2.87) breaks the
gauge group as

G=EsxEs — Gip =SU(9) xSO(14) x U(1), (2.91)

where the U(1) generator is given by the vector
t = (0%)(-18,07). (2.92)

More precisely, in order to determine the unbroken gauge group, one has to take the 72+84
invariant roots p and chose a basis that fixes a semiordering in the weight space [100]. From
the semiordering, one can find the simple roots «;, defined as those roots which are positive

'5Note that the designation of chirality is arbitrary.
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\\(9, 1)12

[

A \ A \ A

Figure 2.10: In the absence of Wilson lines, all fixed points are degenerate. The twisted
matter content correspond then to 27 copies of (9, 1);.

T2 .

and cannot be written as the sum of two positive roots. Provided that the roots have squared
length 2, one can then compute the Cartan matrix A;; = «; - a; for each gauge group factor
G, (e.g. for SU(9)), which describes uniquely the algebra. A more detailed discussion on how
to obtain the unbroken gauge group in orbifold compactifications can be found in section 3.2
of ref. [101].

The untwisted charged matter is formed by tensoring together left-moving |p);, and right-
moving |q) 1, states which, separately, acquire nontrivial transformation phases under the action
of h = (9, 0). There are 2[84 4 (14 + 64)] momenta p from eq. (2.7a) which lead to nontrivial
phases for the left-moving states: 84 + (14 + 64) of them transform with a phase ¢! and the
remaining 84 + (14 + 64) with o?. Moreover, 2 X 84 momenta come from the first Eg whereas
2 x (14 4 64) come from the second one. The gauge properties of the states are encoded in
the momenta p. The nonabelian gauge quantum numbers with respect to G4p, eq. (2.91), are
obtained by rewriting the momenta in Dynkin labels:

P — PpL(G.) = (01-Dp,...,an-p) for each G, (2.93)

where «; are the roots of the gauge factor G, C G4p of rank n. Comparing the momenta in
Dynkin labels ppy, with the results in the tables of ref. [102], one identifies the representations.
In our example, we summarize the properties of the left-moving states |p), by

lp)r with o' ~ (84, 1)9® (1, 14)415® (1, 64) o,

(2.94)
Ip)r with 0> ~ (84, 1)o@ (1,14)_13® (1, 64) 9.

The U(1) charge, denoted by the subscript, is given by ¢ - p, with ¢ representing the U(1)
generator given in eq. (2.92). Finally, the physical states are the result of combining the left-
movers described in eq. (2.94) with the right movers given in eq. (2.89), which provide the
states with a multiplicity factor of three. Again, one finds that (o')r(0?); left-chiral whereas
(0®*)r(0")L are right-chiral invariant states, thus they enter together into physical states. The
untwisted charged matter spectrum is

3(847 1)0 ) 3(1, 14)—18 ) 3(]_7 64)+9

Twisted Sectors

As discussed in section 2.2.3, the Zj3 orbifold has 27 fixed points on each of its two twisted
sectors, labeled T} and T for the action of ¥' and 92, respectively. Twisted states are attached
to the fixed points. They are described by the momenta satisfying the masslessness conditions
eq. (2.81), gsh = ¢+ vy and psn = p + V;, where p € A, and v, and V, depend on the
constructing element g (see eq. (2.59)).



2.3. STRINGS ON HETEROTIC ORBIFOLDS 37

Let us compute the spectrum of the first twisted sector. Consider the fixed point at the
origin. Its constructing element is g = (¢, 0); therefore, the local twist vector is v, = v and
the local shift vector is V, = V. Since the Wilson lines are trivial in this example, notice
that the local twist and shift vectors are the same for all constructing elements of this sector.
Then it follows that the matter spectrum at each of the fixed points is the same, so that the
spectrum of the sector is given by 27 copies of the matter at the origin.

The conditions on the left- and right-moving momenta for massless states read

2 2 ! ~ 4 ~
P =@+V)>=2—-2N —-26c=35—2N,

) ' ’ (2.95)
@G =(g+v)?=1-26c= 1%,

where we have used eq. (2.82) to compute dc = 1/3. Further, since V? = 4/3 and N is
nonnegative, eq. (2.95) has solution only for N = 0. There are only nine pg, and two ggn that
solve eq. (2.95):

. 2 13 1 03 2 07 . 1 1 1
Dsh - —3y3 57 3 0 > (ga 0 ) 3 Gsh - (0’ 35 3 §)a

14 2 3 2 07 1 1 1 1
3 307)(30°), (3 -5 —5 —3)
_14 112 1) (2 (7

6°6°2 0 2 3 )
_14 1 13 2 o7

66 2 3

Notice that the states |gsn)r ® |psn)r of the first twisted sector are right-chiral (¢3, = +1/2
for the Ramond momentum).

It turns out that in the 77 (and Tn_1) sector of Zy orbifolds all solutions to the mass
equation enter into an invariant state. In other words, all states from the first twisted
sector are invariant under the orbifold action. The reason is as follows. The elements
h of the centralizer Z, can also be expressed as ¢' with i = 0,...,N — 1. In this case, one can
verify that momenta pgy, and ggn solving the masslessness conditions always satisfy

1
Psh'Vh—qsh-vh—i—(Ng—N;)-Uh—i(Vg-Vh—vg-vh):O mod 1 (2.96)

for any centralizer element h.

Therefore, all the momenta pg,, and ¢gn given above survive the orbifold projection, provid-
ing, in considering all the fixed points of the 77 sector, 27 right-chiral supermultiplets which
transform as

27(9, 1)_19 (2.97)

under gauge transformations.

In the T5 sector, the situation is similar. As in the 13 sector, it suffices to consider the
constructing element of the fixed point at the origin g = (62, 0) and count 27 copies of the
associated matter content, as illustrated in fig. 2.10. The associated massless momenta are
given by

. 2 1 1 03 2 07 11 1
Psh - 3> 735 3 0 -3 0 ) qsh (Oa —3 T3 _§)7

14 2 03 2 07 1111

-3, —50)(-350), (-2 % % 3

14 1 12 1)\ (_2 (7

6> 6" _2 12 3> )

14 1 13 2 o7

6° 6 2 3
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Since these momenta differ from those of the 77 by a sign, the states |gsn)r ® |psn) 1, of the T
sector correspond to the conjugate of the states in the 77 sector. One can verify that these
states have the following gauge transformations

27(9, 1)412.- (2.98)

Notice that these states are left-chiral and, therefore, combine with those states from the T}
sector to form complete SUSY multiplets.

In summary, the matter content of the present Zs orbifold model is given in terms of the
gauge representations of the states by

Sector Matter content ‘
U 3(84, 1)
3(1,14) 15
3( 1, 64)g
T, 27(9, 1)1

We omit here the gravity multiplet, the moduli and gauge bosons.

Including Wilson Lines

We introduce now the two Wilson lines given by the vectors [34,49|

ap = (07 3) (0.3% %), 209
2 2 .
A3 = % ’ 3o %7 07 % ) (l 06) .

Wilson lines A, are gauge transformations associated to the noncontractible cycles in the
directions e, of the compact space. We have seen before that, due to the structure of the
compact space, the Wilson lines of Zj3 orbifolds satisfy A, = An+1 with @ = 1,3,5 (cf.
eq. (2.35)).

Geometrical moduli, the graviton, the dilaton and the antisymmetric tensor fields do not
feel the presence of the Wilson lines because their transformation properties only depend on
the geometry of the compact space (in other words, on the twist vector v and the right-moving
momenta ¢). Gauge bosons with left-moving momenta p, on the other hand, have to satisfy
additionally

p-Ay =0 mod1 (2.100)

in order to be invariant (cf. eq. (2.79b)). In this way, the gauge symmetry is further broken.

In the present example, the action of Wilson lines leave invariant only eight momenta p
from the first Eg and 40 from the second Eg. We find that, together with the 16 invariant
Cartan generators, they constitute the adjoint representations of the unbroken gauge group
in four dimensions

Gip 22 Gh, =SU(3) x SU2) x [U(1)® x SO(10) x U(1)3]. (2.101)
Here, we have separated symbolically what we will call the observable sector from the hidden
sector, choice justified on the appearance of the SU(3) x SU(2) gauge factors. Optimistically,
one could at this point say that a model with such a gauge group is a good candidate for
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Figure 2.11: The action of the Wilson lines A; and Aj lifts the degeneracy of the fixed
points of the first and second complex planes. Note that the Wilson line A; is related to the
directions e, and e, 41 of the compact space.

describing the standard model of particle physics. The eight U(1) generators are labeled t;
withi=1,...,8.

Another effect of the presence of nontrivial Wilson lines is the change of the matter spec-
trum. Many of the formerly invariant momenta p and pgn are not invariant any more with
respect to all elements of the centralizer(s). Let us focus first on the untwisted sector. The
centralizer of the constructing element g = (1, 0) is, as mentioned before, the complete space
group. A valid basis of Z, is given by

Z,=A{(0,0), (1, e1), (1, e2), (1, e3), (1, eq), (1, e5), (1, €6)} - (2.102)

In particular, the action of the space group elements h = (1, e,) imposes new constraints on
the momenta p of the untwisted charged matter. From eq. (2.80) (with V}, = A,), it follows
that these constraints are also given by eq. (2.100). We are then left with 2[(3+4 3 x 2+42) 4 16]
momenta p. After tensoring left- and right-moving states together and computing their gauge
quantum numbers, we find the following matter representations of SU(3) x SU(2) x SO(10)
(we omit the U(1) charges):

3(3,1,1)$3(3,1,1) 8 3(1, 2, 1) & 3(1, 1, 16)

The computation of the matter states in the twisted sectors gets more involved than
before. In the previous discussion, we have used the fact that, in absence of Wilson lines, the
solutions to mass equations and the projection condition are identical at any fixed point of a
given twisted sector. Therefore, in that case, all fixed points are degenerate. This situation
changes in presence of Wilson lines. Consider, for example, two different constructing elements
of the Ty sector: g; = (92, 0) and g» = (¥?, e2). The massless momenta pg, = p + V;, for
g1 correspond to those found in the case without Wilson lines because V,;, = 2V. The right-
moving momenta is not altered by the introduction of Wilson lines. The states |gsh)r ® |psh)L
at g1 form the gauge representations

1(1,2, 1)@ 13,1, 1) ®4(T, 4, 1) (2.103)

under the gauge group G/, given in eq. (2.101) (excluding the U(1) charges).
For g the local shift vector changes to V,, = 2V + Ay = 2V + A;. Hence, the solutions to
the mass equation for the left-movers take a different form:

14 2 3 122 5
ps _g _g’ 0 ) g ? _570 ?
14 1 11 1 2 12 (5
6 ? _67 _57 57 6 _g’ g ?
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‘ Counstructing element(s) g ‘ Matter content ‘
(92, nses + ngeg) 1(1,2,1)®1(3,1,1) d4(1,1, 1)
(92, e3 + nses + ngeg)
(92, e1 + ea + e3 + nzes + ngeg) 2(1,2,1)91(3,1,1)®1(3,1,1) 4 8(1, 1, 1)
(92, e1 + €2 + €3 + €4 + nses + ngeg)
(92, e3 + eq + nzes + ngeg) 1(1,2,1)®1(3,1,1)®4(1, 1, 1)
(92, ea + e3 + e4 + nzes + ngeg)
(92, ea + nzes + ngeg) 9(1,1,1)
(0%, e1 + €2 + nses + ngeg)
(92, ez + e3 + nses + nees) 3(1,2,1)®3(1, 1, 1)

Table 2.3: The matter content attached to the fixed points of the T5 sector of a Z3 orbifold
model with two Wilson lines.

These nine momenta along with the right-moving momenta ¢g, of the orbifold without Wilson
lines comprise the matter spectrum of the fixed point with constructing element go, which is
written down in terms of the corresponding gauge quantum numbers (excluding U(1) charges):

9(1, 1, 1). (2.104)

The difference between the matter content for g; and go, egs. (2.103) and (2.104), makes
manifest that Wilson lines lift the degeneracy of the fixed points. Only the points with
coordinates in the last torus conserve the degeneracy as shown in fig. 2.11. The degeneracy
of the last torus gives then a multiplicity factor of three for the twisted states. In principle,
we could expect a different matter content at each of the nine fixed points with different
coordinates in the first two complex planes. We list in table 2.3 the matter content associated
to the different fixed points of the 75 sector. Notice that there are only five classes of matter
content. As we shall discuss shortly, the class of matter content of a constructing element g
is related to its local shift V.

The matter states in the 7; sector are, as before, the right-chiral partners of the states
in the T3 sector. Hence, in terms of left-chiral states, the matter spectrum of this models is
summarized as follows:

Sector Matter content ‘ Sector Matter content ‘

U 3(3,1, 1) Ty 15(3, 1, 1)
3(3,2, 1) 12(3, 1, 1)
3(1,2, 1) 36(1, 2, 1)
3(1, 1, 16) 171(1, 1, 1)

Let us spend few words on some phenomenological properties of this model. If a string
compactification is to reproduce the standard model of particle physics, it must have the
gauge group Gsy = SU(3) x SU(2) x U(1)y. It has been shown that in the present model
it is possible to find a combination of U(1)’s producing the correct spectrum of the sm plus
additional particles, which turn out to be vectorlike with respect to Ggy (see table 1 of
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ref. [49]). The vectorlike character of the exotic particles insinuates that such particles can
acquire large masses provided that adequate couplings exist in the theory. As we will see
in section 2.5.1, ensuring that such couplings do not vanish is quite nontrivial, for allowed
nonvanishing couplings in string theory have to satisfy strong constraints.

Other qualities of this model include preservation of N/ = 1 sUSY and the spontaneous
breaking of the hidden sector. Yet issues such as correct Yukawa-mass textures, proton decay,
neutrino masses and compatibility with GUT theories require further investigation.

2.3.4 Local Shift Vectors and Local Spectra

We have seen that there are five classes of local spectra at the different fixed points of a Zg
orbifold model with Wilson lines. It turns out that this is a model-independent statement for
all Zs orbifold models, as we will explain in the following.

Consider first an arbitrary Zy or Zy x Zjs orbifold model. Locally, at a fixed point
with constructing element g, the 480 gauge bosons of the ten dimensional gauge group G are
affected only by the action of the local shift V. Therefore, the local gauge group G, and the
local matter spectrum coincide with the four-dimensional gauge group and the spectrum at
one arbitrary fixed point of an orbifold model with global shift vector V' =V}, (and no Wilson
lines). The roots of the local gauge group will be those roots p of the ten-dimensional gauge
group G satisfying

p-V,=0 mod 1 pP=2. (2.105)

Clearly, matter states transform locally under G, rather than under the four-dimensional gauge
group. This restricts the number of local gauge groups (and local spectra) to be the number
of (inequivalent) admissible shift vectors of the studied orbifold.

The intersection of the local gauge groups of the different fixed points in a particular model
yields the (global) four-dimensional gauge group G4p:

Gup = ggl N 992 N 993 Nn..., (2.106)
whence it follows that the local symmetry group is, in general, bigger than the G4p, i.e.
Gip C Gy, 1=1,2,3,.... (2.107)

From a global perspective in four dimensions, local matter states form representations of Gy4p.
These can be derived by the branching rule of the local representations under the breaking
Gy — Gsp. In higher twisted sectors, some of the local states can be projected out from a
global perspective, so that only incomplete local representation survive in the full orbifold.

We can now return to our Zj3 example. Since, in the case of Zj3 orbifolds, there are only
five admissible shift vectors V' (see table D.4), any local shift vector V, must be equivalent
to one of them. It follows then that there are also five classes of different local spectra, in
agreement with table 2.3. For concreteness, consider the constructing element gy = (92, e).
The corresponding local shift vector is

24 4 2\ /4 12 wan (2 12 2 12
Vo, =2V+A=(=.=0=)(=,=,0° Z2 0% (22,06 2.108
92 +A (3’3’ ’3)(3’3’ >_><3’3’ 3730 ), (2108

where W + A denotes Weyl rotations accompanied by Eg x Eg lattice translations. One can
verify that V|, corresponds to the shift vector V@ listed in table 2.3. Therefore, the local
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gauge group is Gy, = Eg x SU(3) x Eg x SU(3) and the local matter content is given the
bifundamental representation (1, 3, 1, 3). It is not difficult to confirm that the nine singlets
of eq. (2.104) under G}, arise from the breaking Gy, — G .

We will see in chapter 4 that the local picture proves to be a useful tool in the search after
orbifold models with realistic properties, such as grand unification.

2.3.5 Anomaly Cancellation

Orbifold models present generically one anomalous U(1) symmetry, U(1)4 [55]. However,
it is reasonable to expect that the theory in four dimensions should be anomaly free as it
arises from the heterotic string, where anomaly cancellation is achieved by the Green-Schwarz
mechanism [23]. It has been shown [103] that modular invariance of the orbifold guarantees
that the anomaly polynomial in four dimensions factorizes as tr F?2 — tr R2. From there it
follows that the anomaly can be cancelled by the generalized Green-Schwarz mechanism [104-
107]. Besides, the so-called U(1)4 universality condition holds automatically [56,108]

tr Q7Qa =

tr({Qa) = tr Q3 = 2 tr Qa ( = 877256‘5) j# A,  (2.109)

1 1
2,2 6ltal?
where ¢ denotes the index of a given representation under a nonabelian gauge group. Fur-
thermore, t; are the generators of the U(1) factors (t4 corresponds to U(1)4) that define the
charge ); as:

Qjlpsh)r = (tj - psh) [Psh) L

The constant dgg enters in the transformation of the dilaton in the Green-Schwarz mechanism.
Orbifold models contain at most one anomalous U(1). Hence the remaining U(1)’s satisfy

Q) = 5t Q= @ = Q=0 i j#A. (2.110)

2t;[? 6|t 2

The universality condition, eq. (2.109), states also that pure abelian, mixed abelian—
nonabelian, and mixed abelian—gravitational anomalies are not independent of each other.
Therefore, all of them cancel simultaneously. In ref. [109] it is shown that this holds also
for discrete symmetries present in orbifold constructions. Other anomalies, such as pure
nonabelian anomalies or Witten’s anomaly [110], vanish automatically in orbifolds. The con-
ditions (2.109) and (2.110) have been confirmed for all models appearing in the present work.

2.4 Discrete Torsion in Orbifold Models

It is well known that discrete torsion [91] introduces an additional degree of freedom in Zy X
Z ) orbifold constructions [83]. Nonetheless, there are some features of discrete torsion on
orbifolds which have received little attention. Only recently we have noted [74] that Zy
orbifolds also admit discrete torsion and, moreover, that discrete torsion can add more than
one degree of freedom to orbifolds with Wilson lines. In this section, we study briefly Zy x
Zyr and Zpy orbifold models with discrete torsion and introduce the concept of generalized
discrete torsion. Then we analyze an interesting equivalence between models with generalized
discrete torsion and torsionless brother models. For a more detailed discussion, ref. [111] is
recommended.
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The one-loop partition function Z for orbifold compactifications has the overall structure

Z = > elg.h)Z(g,h), gheS. (2.111)

g,h
[g,h]=0

The relative phases (g, h) are called discrete torsion phases. Their values can vary between
the different terms in the partition function and thus between the different sectors. Different
assignments of phases lead, in general, to different orbifold models. The arbitrariness of (g, h)
corresponds to the freedom of turning on a background antisymmetric field on the torus [91].

Although the discrete torsion phases appear to be arbitrary, modular invariance at one
loop and factorizability of the partition function at two loops impose certain constraints on
the torsion phases. They are given by

£(9192,93) = €(91,93) (92, 93) , (2.112a)
e(g1,92) = elga, )" (2.112b)
e(g.9) = 1. (2.112¢)

The last equation is a convention, rather than a constraint, and can be seen as a sort of
normalization of the phases.

2.4.1 Discrete Torsion without Wilson Lines

In orbifolds without Wilson lines, g and h are chosen to be elements of the point group P. It
follows then that for Zy orbifolds the solution of egs. (2.112) is trivial:

e(g,h) =1 Vg,heP. (2.113)

Therefore, in the case of Z y orbifolds without Wilson lines, non-trivial discrete torsion cannot
be introduced.

In Zn X Zj; orbifolds, still without Wilson lines, the situation is different because there
are independent pairs of elements which commute with each other. If we take two point
group elements g = 91w’ and h = ¥*2w’, then the discrete torsion phase is determined by
egs. (2.112) to be [83]

e(g,h) = (@MW, pR20f) = exp{%(lﬁﬁg —kot1)} . a=0,1,...,N, (2.114)

where N is the order of the twist 9.'6 Note that there are only N inequivalent assignments
of e.

2.4.2 Generalized Discrete Torsion

More recently, the concept of discrete torsion has been extended by introducing a generalized
discrete torsion phase in the context of type ITA /B string theory [112]. This generalized torsion
phase depends on the fixed points rather than on the sectors of the orbifold. Therefore, one
has to consider g and h to be elements of the space group S.

60Our convention for Zn X Zas orbifolds is that M = n N with n € Z.
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Considering the space group elements g = (91w’ nyey) and h = (920, mae,), the
general solution to egs. (2.112) for the discrete torsion phase is written down as

E(g h) _ e??ri [a (k1 l2—Fk2 €1)+ba (k1 ma—k2na)+ca (61 ma—~C2 Na)+dag Na mﬁ} ) (2115)

where the sum over «, 3 is understood. The values of a,by, cq,dng are required by modular
invariance and the geometry of the lattice I' to satisfy
Na, No by, Nocay Nogdag = 0 mod 1,
daﬁ = - dﬁaa
for each o, 3 = 0,...,6. Here N is the order of the twist 1, N, the order of the Wilson line
Aq, and Nyg is the greatest common divisor of N, and Nj (compare with the conditions
for modular invariance, eqgs. (2.42)). Additional constraints on the parameters by, co, dog
due to the choice of the lattice I' appear in a similar fashion as those on the order of Wilson
lines, explained in section 2.2.2. It is not hard to see that if e, ~ eg on the orbifold, then
ba = bﬁ, Ca = Cp and daﬁ = 0 must hold.
The generalized discrete torsion is not restricted only to Zy x Zjs orbifolds, as it was
commonly believed, but will likewise appear in the Zy case. Clearly, since in Zy orbifolds
there is only one shift, the parameters a and ¢, vanish.

(2.116)

Role of Discrete Torsion on Orbifolds

The most important consequence of nontrivial e-phases for our discussion is that they modify
the boundary conditions for twisted states and thus change the twisted spectrum. This can
be seen from the transformation phase ® of eq. (2.64), which is modified in the presence of
discrete torsion according to

P +— & =¢(g,h)P . (2.117)
Clearly, the phases ®' depend on the constructing element g and an element h of its centralizer
Z,, i.e. ' = ®'(g,h). The projection phases ¢ and ® project out different twisted matter
states. Very frequently all the states located at some fixed point are projected out by the
effect of the modified phase ®’. One could say that these ‘empty’ fixed points disappear from
the spectrum or, in other words, that they are nonphysical (at massless level). This feature is
interesting because it allows to interpret the effect of discrete torsion in terms of a change in
the metric of the compact space, as is discussed in section 2.4.4.

Examples

Zs3Orbifolds. Let us consider the Zs orbifold compactified on an SU(3)3 lattice. As we
have seen section 2.2.2, the lattice vectors of I" are related by the action of the point group
generator. In particular, we have that e, >~ eny1, for a = 1,3, 5, on the orbifold. This implies
that there are only three independent b,, namely by, b3, b5, while the other b-parameters
satisfy bp = b1, by = b3, bg = b5. Further,the antisymmetric matrix d,g takes the form

0 0 d1 d1 d2 d2
0 0 dy di  do ds
—d1 —d1 0 0 d3 d3
dog = . 2.118
s ~dy —d; 0 0 d3 ds (2.118)
—dy —dy —d3 —dz 0 O
—dy —dy —d3 —dz 0 O
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Therefore, there are six independent discrete torsion parameter, which can take the values 0,
Lor 2.

Zis X 7Z3O0rbifolds. The Zgx7Zs orbifold is very similar to Zs3. Since the compactification
lattice is that of the Zs orbifold, the six discrete torsion parameters b, and dns (eq. (2.118))
are also admissible in this case. Additionally, the parameters ¢, appear in the theory. In
the same way as b, they are restricted by the geometry, so that only ¢, with a = 1,3,5 are
independent. Including a, we obtain ten independent discrete torsion parameters with values
0, % or %

Zg-11 Orbifolds. For the Zg-1I orbifold on a GoxSU(3)xSO(4) lattice an analogous consid-
eration shows that there are only few nontrivial discrete torsion parameters. We find that the
only discrete torsion parameters that accept nonzero values are b3 = by = 0, %, %, bs,b = 0, %
and dszg = —dgs = 0, %; that is, only four independent parameters. However, very frequently
the factors accompanying these parameters in eq. (2.115) (such as (k1 mq — k2ng) for the
parameters b,) vanish, implying that the corresponding parameters are nonphysical. This is
explained by taking into account the space group elements g, h entering the e-phases, that
is, all constructing and centralizer elements. It turns out that this happens for all discrete
torsion parameters of Zg-11 orbifolds. Hence, discrete torsion is irrelevant in Zg-II orbifolds.

This will be important in chapter 4 for the classification of orbifolds of this type.

2.4.3 Brother Models

In most of the studies of orbifold models, it is claimed that two models whose parameters
(V1,Va, A,) differ only by lattice translations are equivalent. This is, in general, not true.
The reason being that lattice translations influence the projection condition of twisted states,
eq. (2.64).

A (torsionless) model M is defined by (V1, Va2, Ay). A brother model M’ appears by adding
lattice vectors to the shifts and Wilson lines, i.e. M’ is defined by

(‘/1,7 V2/7 A/oz) = (Vl + AVl, Vé + AV’Z, Aoz + AAOJ) 9 (2119)

with AV;;AA, € A. From the conditions (2.42), the choice of lattice vectors (AV;, AA,) is
constrained by

M(Vi-AVa+Va-AVi + AV, -AVy) = Omod?2 = 2z, (2.120a)

No (Vi- AAy + Ay - AV, + AV; - AA,) = 0mod 2 2Yia » (2.120D)
Qaﬁ (Aa . AAﬁ + Aﬁ -AA, +AA, - AAﬁ) = Omod 2 = 2,2@5 R (2.1200)

where ., Yia, 208 € Z.
One can verify that the inclusion of the lattice vectors (AVy, AV,, AA,) alters the projec-
tion phase of brother models as

Dr— & =2(g,h) P, (2.121)
where the ‘brother phase’ € is given by

Hg,h) = exp {—zm [(lﬁ Uy — ks 0) (V2 AV, — %) + (ky ma — k2 na) (Aa N %—“)

[e3

+(lyme — lang) (Aa AV, — y2—a> + namg (Ag “AA, — Zap )]} , (2.122)
N, Qaﬁ
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corresponding to the constructing element g = (61w, nqe,) and the centralizer element
h = (6%2w" mgey). One can see that Dog=Ag-AAy — 203/Qap is (almost) antisymmetric
in a, G,

Dys = —Dgo mod 1. (2.123)

Like the discrete torsion phase, the brother phase is not the same for all fixed points; hence
the local spectrum is changed.

The brother phase ¢ and the generalized discrete torsion phase eq. (2.115) are not only
very similar, but can, in fact, be made coincide. This implies an unexpected connection
between lattice translations of the parameters (AV;, AV, AA,) and discrete torsion. In other
words, we find that models with discrete torsion can be mimicked by torsionless models with
modified shift vector(s) and background fields. We find however that the noninteger values
of the parameter d,g do not allow an interpretation in terms of lattice translations in models
with trivial Wilson lines. Therefore, discrete torsion is, in this sense, more general than the
concept of brother models.

As an illustration of the relation between brother models and orbifolds with discrete tor-
sion, we have investigated the distinct Zy x Zj; orbifold models with standard embedding
that one can find for different nonzero values of the discrete torsion parameter a. We have
found that one can trade the parameter a for a pair of lattice vectors (AV;, AV,) which, added
the standard embedding shift vectors, lead to the spectra obtained in the models with discrete
torsion. Our findings are listed in table D.6.

2.4.4 Discrete Torsion and Nonfactorizable Lattices

Let us comment on one last interesting observation. We have found that in many cases orb-
ifold models M with certain geometry, i.e. compactification lattice I', and generalized discrete
torsion switched on are equivalent to torsionless models M’ based on a different lattice I".
Model M’ has less fixed points than M, and the mismatch turns out to constitute precisely
the ‘empty’ fixed points of model M due to the discrete torsion phase.

The simplest examples are based on Zy X Zso orbifolds with standard embedding and
without Wilson lines. By varying the allowed discrete-torsion parameters of this orbifold
(especially, dn3), we have found eight different models with nonzero net number of 27-plets
of Eg (see ref. [74]). Interestingly, these models have already been discussed in the literature,
but in a somewhat different context. They appeared first in ref. [113] in the context of free
fermionic string models related to the Zs x Zs orbifold with an additional freely acting shift.
More recently, new Zs X Zso orbifold constructions have been found in studying orbifolds
of non-factorizable six-tori [87,94|. For each of the models found by adding nonvanishing
discrete torsion phases, there is a corresponding ‘non-factorizable’ model M’ with the following
properties:

1. Each ‘non-empty’ fixed point, i.e. each fixed point with local zero-modes, in the model
M can be mapped to a fixed point with the same spectrum in model M'.

2. The number of ‘non-empty’ fixed points in M coincides with the total number of fixed
points in M.

These relations are not limited to Zs x Zs orbifolds, rather we find an analogous connection
also in other Zy x Zps cases (Zy X Z s orbifolds based on non-factorizable compactification
lattices have recently been discussed in [88]). This result hints towards an intriguing impact
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of generalized discrete torsion on the interpretation of orbifold geometry. What the (zero-
mode) spectra concerns, introducing generalized discrete torsion (or considering generalized
brother models) is equivalent to changing the geometry of the underlying compact space,
I' — I". To establish complete equivalence between these models would require to prove that
the couplings of the corresponding states are the same, which is beyond the scope of the
present study. It is, however, tempting to speculate that nonresolvable singularities (fixed
points with no states attached) do not ‘really’ exist as one can always choose (for a given
spectrum) the compactification lattice I' in such a way that there are no ‘empty’ fixed points.

2.5 String Interactions: Yukawa Couplings

To close this chapter, let us examine one crucial element necessary in order to study the
low—energy field theory limit of orbifold compactifications: field interactions. In contrast
to pure field theory, where couplings between matter fields are chosen ad hoc, in orbifold
compactifications they are determined by strict rules derived from string theory.

2.5.1 String Selection Rules

Consider the n—point correlation function of two fermions and n—2 bosons. The corresponding
physical states shall be denoted by W¥;, ¢ = 1,...,n. Then, in the field theory limit, a non—
vanishing correlation function induces the following term in the superpotential

W D U U0y, 0, . (2.124)

A complete evaluation of the correlation function has only been performed for 3—point cou-
plings and yields a moduli dependent coupling strength [114,115, 99,116]. Recently, the
correlation function of n—point couplings has been discussed at some extent [117].

On the other hand, symmetries of the correlation function give rise to the so-called string
selection rules. These rules determine whether a given coupling vanishes or not. We use the
following notation: the constructing elements of ¥; are denoted by g; = (6;,nl.e,) € S and
their left- and right-moving shifted momenta, by pg,; and gsp i, respectively. Then, the string
selection rules read:

e Gauge invariance.
Since the 16-dimensional left-moving momenta describe the gauge quantum numbers, the sum
over all left-moving shifted momenta pg, ; must vanish:

> pani =0 (2.125)

This translates to the field theoretic requirement of gauge invariance for allowed terms in the
superpotential. However, note that summing all momenta is, in practice, very cumbersome.
Instead, one can verify gauge invariance directly by computing all abelian and nonabelian
representations corresponding to the particles in the spectrum and then using well-known
rules to form gauge invariant combinations of (super)fields. We apply this second approach.

e Conservation of R—charge.
In orbifold constructions, R—symmetries are discrete symmetries in the six-dimensional space
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inherited from Lorentz invariance of the ten-dimensional theory. Basically, they arise from
demanding invariance of the compact space under the twist. Generically, there are three such
symmetries —one for each complex plane— whose quantum numbers can be identified with the
last three components of the SO(8) weight momenta gg, of the right movers. Since ggp is not
invariant under the ghost picture changing [47|, the R—charges have to be amended by some
oscillator contributions, resulting in

R; = qen; — Ng,i + N;Z (2.126)

which lie in the SO(8) weight lattice. Here N,; and N o.i are (vectors of) integer oscillator
numbers, counting the number of holomorphic and antiholomorphic oscillator excitations,
respectively. From the definition of the charges (2.126), one notices that the corresponding
R-symmetries do distinguish between bosons and fermions.'”

In the untwisted sector, the bosonic R—charges, eq. (2.126), have only three different
values. This allows to split the untwisted sector U in further untwisted sectors Ui, Uz and Us
comprised by (super)fields with R—charges (0, 1,0,0), (0,0,1,0) and (0,0,0, 1), respectively.

Invariance of the theory under R—symmetries constrains the superpotential of the theory.
Since these symmetries are discrete (as they arise from discrete rotations), the invariance
conditions can be stated as

> R =0 modN® for a=1,2,3, (2.127)

where N® denotes the order of the twist action on the a'® complex plane, i.e. it is the smallest
integers such that N*v® € Z (no summation). Here, two of the R; come from fermions and the
rest from bosons in order to be allowed in the superpotential. For computational purposes, it
is more convenient to use the purely bosonic notation, where eq. (2.127) becomes

> R{=-1mod N*. (2.128)

A caveat is in order here: in all moment we have assumed that the lattice I' of the
compact space is factorizable, that is, that I' can be written as the product of three one-
complex-dimensional sublattices, each of which is embedded in a complex plane Z¢ of the
internal dimensions. If I' is nonfactorizable, eq. (2.127) has to be modified. A brief discussion
on this issue is provided in appendix C.

e Space group selection rule.

Since the states entering the superpotential carry also some information about their space
group properties, the product of constructing elements g; must lie in the same conjugacy class
as the identity, i.e.

[9~@0. (2.129)
i
In terms of conjugate elements higihi_l of g;, this condition can be reformulated as [118]

[ rigihit = (1,0)  with ved (1—6)A. (2.130)

7

'"Recall that fermions and bosons have different right-moving momenta.
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Figure 2.12: The space group selection rule can be visualized as the ability of twisted strings
to join. g; denote three constructing elements.

Notice that this rule implies in particular that

[6:=1, (2.131)

)

condition which is known in the literature as the point group selection rule. Stated in this
way, the point group selection rule can be reinterpreted as a discrete symmetry [109]. In fact,
also the translational part on the space group rule (v € ). (1 —6;)A) can be seen as a discrete
(flavor) symmetry.

This selection rule can be visualized as the geometrical ability of twisted strings to join
(see fig. 2.12).

On the y—Rule(s)

In the literature, there exists an additional selection rule, usually called y—rule. In our nota-
tion, it reads [47,99]

> 4i=0 modl, (2.132)

where ; denotes the so-called v—phase of W;. If we suppose that the states ¥; are associated
to the conjugacy classes of g; € S, a phase €™ (") arises from the action of a noncommuting
element h ([g;, h] # 0) on the geometrical part of ¥;. However, since the physical states U; are,
by definition, space group invariant, this phase comes always along with a phase ®(pgh, gsh, 1),
such that

U, L 20 B (pg gen, h) Uy = ;. (2.133)

It follows then that the gamma phases 7;(h) can also be written in terms of pgh, gsh and the
embedding of h in the gauge degrees of freedom. Considering a coupling W1 WsWs. .., it turns
out that this relation implies that

e 22 = TT ®;(pen, gen, ) - (2.134)

)

Further, we have shown [78] that [[; ®;(psh, gsn, h) = 1 follows from the selection rules listed
above. Therefore, the expression

> 7i(h) =0 mod 1 (2.135)
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with an arbitrary space group element h € S, is always true for those couplings allowed by
the previous rules. Notice that if we consider that the elements hy = (14,0), hy = (w,0) and
hat2 = (1,e,) form a basis of S, we can have at most eight v—rules”. The one traditionally
considered corresponds to that associated with the space group element h = (¢,0) of Zy
orbifolds. For a very detailed discussion on the derivation and triviality of the ~-rule(s), we
refer to [111].



Chapter 3

Classification of Orbifolds

This chapter is devoted to the techniques used to arrive systematically to inequivalent
orbifold compactifications of the heterotic string. We review first the frequently called
Dynkin diagram method, based on a theorem by Ka¢. This method is used mainly to
classify models without background fields (Wilson lines). Models with Wilson lines
can be classified more effectively by using a proper ansatz that characterizes Wilson
lines of a given order, as discussed in section 3.2. Finally, we introduce the C++
Orbifolder, a computer program developed to classify orbifold models and compute
their properties.

3.1 Zpn Orbifolds without Wilson Lines

In the absence of Wilson lines, the Dynkin diagram method [93,119,120] is the standard
strategy to obtain the gauge embeddings of the point group P. It consists in identifying the
inner automorphisms of the Lie algebra of the gauge group G (either EgxEg or SO(32)), as
we will now describe.

Consider the extended Dynkin diagram of Eg and SO(32) given in fig. 3.1. The numbers
attached to the nodes are the Coxeter or Kac labels k;, which are by definition the expansion
coefficients of the highest root apy in terms of the simple roots, that is

og = ko + ...+ ko, (3.1)

where 7 is the rank! of the algebra. For convenience, the Ka& label of the most negative
root agy = —ayy is set to kg = 1. Then, by a theorem due to Ka¢ [121], all order-N inner
automorphisms of an algebra up to conjugation are given by

0s(Fo,;) = exp (2mis;/N) E,,, 1=0,...,7, (3.2)

1

where E, are the step operators of the Lie algebra of G and the sequence s = (sg,...,S;)
may be chosen arbitrarily subject to the conditions that the coefficients s; be nonnegative,
relatively prime integers and

=0

!The rank of Eg is » = 8 whereas the rank of SO(32) is r = 16.

51
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Figure 3.1: Extended Dynkin diagram of Eg and SO(32) and the associated Coxeter or Kag
labels.

The Shift Vector

The embedding of the point group in the gauge degrees of freedom, described by X! — X4V
(see eq. (2.19)), induces the transformations

oy (H;) = H; ov(Eqy) =exp (2mia-V) E, (3.4)

on the Cartan generators H; and step operators F, of the Lie algebra of G, with « being a
root of G, and V the shift vector. These transformations clearly describe an automorphism of
the algebra.

To derive the shift vector corresponding to a given automorphism is now particularly easy.
Comparing eq. (3.2) to eq. (3.4), it follows that

Si .
V== =1,...,r 3.5
o N r (3.5)
for the r linearly independent simple roots «;. Using that the simple roots «; and the funda-
mental weights (their duals) satisfy «; - o = ;;, one can expand the shift vector V' in terms
of the fundamental weights as

V=Y Lar (3.6)
i.e. the integers s; divided by the order N are the Dynkin labels of V. A direct calcula-

tion reveals that this shift vector also gives the correct transformation for the step operator
corresponding to the most negative root ag, oy (Eq,) = exp 2miag - V') Eq, -

Constructing shift vectors of EgxEg requires to find two sequences s* = (s§,...,s) and
s’ = (s},...,s%), each of which leads to independent automorphism, V% and V'’ acting

differently on each of the two Eg gauge factors. One can show that the combination
Vo= V)V (3.7)

form an inner automorphism of EgxEg.

To compute the explicit form of the shift vectors, we use tables D.7 and D.8, where we
provide our choice of the basis for the simple roots and fundamental weights of SO(32) and
Eg, respectively.
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Figure 3.2: Symmetry breaking induced by an EgxEg inner automorphism of order N = 6
described by s* = (0,1,0,1,0,0,0,0,0) and s* = (4,0,0,0,0,0,0,1,0).

The Unbroken Gauge Group G4p

To determine the unbroken gauge group G4p, one has to verify the action of an inner auto-
morphism on the Cartan generators H; and the step operators F, for the simple roots «; of
the algebra of G. Their transformations due to the shift vector V are given by eq. (3.4). We
see first that the Cartan generators do not transform, confirming that the rank is not reduced
by the action of the shift vector, as we learnt in section 2.3.1. Besides, from the transforma-
tion properties of the step operators, eq. (3.4), we note that the only step operators that are
invariant under the automorphism are those that satisfy

a;- V=0 modl. (3.8)

Using that «; - o = d;;, we conclude then that in the extended Dynkin diagram(s) depicted
in fig. 3.1, the simple root «; (i = 0,...,r) is projected out, if and only if the coefficient s; in
eq. (3.3) is nonzero.

This allows an interpretation in terms of the Dynkin diagram of the corresponding Lie
algebra. Given the parameters (sq,...,s;), the Dynkin diagram of the unbroken gauge group
Gup is obtained after deleting the nodes for which s; # 0 from the Dynkin diagram of the
original gauge group G.

To illustrate our discussion, let us consider the EgxFg Lie algebra. The parameters

s*=(0,1,0,1,0,0,0,0,0) and s®=(4,0,0,0,0,0,0,1,0) (3.9)

acting on the first and second Eg factors, respectively, describe an automorphism of order

N = 6 because
D kisi =) kis! =6, (3.10)

where k; are the mentioned Kac labels. By using the basis given in table D.8, we find that
the corresponding eight-dimensional shift vectors are given by

1 1 1 1
Ve = c(af+ai) = (421000 and VP = 2o = S(207). (311)

These vectors are the two components of a shift vector acting on the 16-dimensional degrees
of freedom of the heterotic string. Therefore, we obtain

yS0(10),1 _ %(4,2, 12,0%) (2,07) . (3.12)

The unbroken gauge group is found from fig. 3.2 to be

1/80(10),1

G = BEsxEs " —  Gip = [SO(10) x SU(2) x SU(2) x U(1)] x [SO(14) x U(1)]. (3.13)
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The U(1)’s appear because the rank is not reduced by VSC10).1,

As a side remark, we would like to point out that the shift vector VS°(10:1 turns out to
be of particular interest. We will see in chapter 4 that the phenomenology of models with this
shift vector is very promising. This feature will be associated to the existence of an SO(10)
gauge group in the resulting G4p and certain properties of the spectrum produced by VSO0(10):1,

Restrictions on the Shift Vector

Not every shift vector V' which describes an automorphism of the algebra is an admissible
choice for model construction. We have already seen in section 2.2.2 that for a twist ¢ € P of
order N, ¥V = 1 implies that N V should act as the identity on the gauge degrees of freedom.
Hence, a consistency condition on the shift vector V is

NV eA. (3.14)
Further, modular invariance of the partition function requires that
N (V? —v?) = 0 mod 2 (3.15)

has to be satisfied, where v is the twist vector, acting in the complexified coordinates of the
compact space.

From eq. (3.14) it is clear that for a given order N of the twist ¥, all shifts V of order N’ are
also admissible, as long as N’ divides N. In principle, we could determine the admissible shifts
for each N’ separately, but a more practical approach is to run through the outlined procedure
for N, dropping the condition on the relative-primeness of the sequence s = (sg,...,s,). It
is not hard to verify that, by dropping that condition, the order of the shift can be some N’
which is smaller than V.

In the previous example, the shift vector VSO(10:1 of order 6 given in eq. (3.12) fulfills
trivially eq. (3.14) because, by construction, 6 V' € A* and the lattice A is self-dual. In general,
all shift vectors generated by the Dynkin diagram method satisfy N V € A* = A. Further, we
see that this shift vector combined with the Zg-II twist vector v = (1/6, 1/3, —1/2) comply
with the modular invariance condition:

6 <(VSO(1O)’1)2 ~ v2) —6(B-1) =2=0 mod2 v. (3.16)
Hence, VSO0 ig an allowed Zg-1I shift vector.

Discriminating Equivalent Models

Notice that the form of the shift V' is not unique because the choice of the basis for the simple
roots a; and their duals is not unique. This implies the possibility that two apparently different
shift vectors can lead to identical orbifold models. The reason is that the automorphisms oy
of a Lie algebra respect certain symmetries. Let us first enumerate them.

Weyl reflections. The action of an element w of the Weyl group W on a shift vector V
is given by

w a-V

where « is an arbitrary root. The Weyl reflections corresponding to aj, ..., «a, form a basis
w1, ..., Wy, s0 that any other element of the Weyl group is described by products of these.
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az a3 G4 a5 Q& Q7 Qag 9 10 (11 12 13 14
aqQ

(a) Breaking due to V) of table D.5.

az a3 G4 a5 Q& Q7 ag Q9 10 (11 12 13 14

(b) Breaking due to V* from table D.5.

Figure 3.3: Extended Dynkin diagram of SO(32) corresponding to the breaking due to the
shifts VB3 and V& of the Z, orbifold

In SO(32), it is not hard to verify that the group of Weyl reflections alters the shift vector
just by permuting its entries or changing simultaneously the sign of two entries. This follows
from the fact that all simple roots have integer entries 0, 1. Weyl reflections in EgxEg are
more complicated. Those related to roots with integer entries act on the shift permuting or
pairwise sign-flipping its entries. However, if « is a half-integer weight of EgxEg (also called
spinorial), the shift vector can change nontrivially. Consider, for instance, the Weyl element
w associated to the Eg root o = (3, %, 3, 3, 3, 3, 3, 3) applied to both eight-dimensional
components of the shift vector VSO(10):1 given in eq. (3.12). The result reads

w (VSO(N)J) - % <2, 0, -1, 2,1, —23> . (g —%7> (3.18)

Despite the difference between the original shift V' and its rotated counterpart w(V'), both
have the same effect on the algebra. This can be seen as follows. A Weyl rotation does not
affect only the shift, but the complete space, including the simple roots of the algebra. In fact,
the Weyl group is an isomorphism of the algebra. Hence, scalar products are not modified.
This implies particularly that V - a; = w(V) - w(ey), i.e. the unbroken gauge group is not
modified by Weyl reflections. A less obvious consequence is that the orbifold spectrum is not
altered either.

Lattice translations. We have seen in section 2.4.3 that lattice translations can have an
influence in orbifold models. Namely, models whose gauge embedding is modified by lattice
vectors, i.e. brother models, can mimic the effect of discrete torsion. We also pointed out,
nevertheless, that in the case of Zy orbifold models without Wilson lines, this cannot occur.
It follows then that adding lattice vectors to Zy shift vectors is an allowed symmetry of the
automorphisms oy .

Symmetries of the Dynkin diagram. It is usually argued that symmetries of the
(extended) Dynkin diagram can help to avoid redundancies. Whereas EgxEg does not have
any symmetry of this type, SO(32) has at least the symmetry defined by the operation a; <
a16—;, 1.e. a reflection on a vertical axis crossing ag. The models described by automorphisms



56 CHAPTER 3. CLASSIFICATION OF ORBIFOLDS
‘ v (#) ‘ U Sector T, Sector Ty Sector
3 2(20,6)_%, 1(1,15)4, 16(1,15)%, 10(1,15) 1, 6(1, ﬁ)%
1(1,15), 80(1,1).3 10(1, 1)3, 6(1,1) 5
4 2(20,6) 1, 16(20,1) s, 10(1,15) 1, 6(1,15),
1(1,15) 4, 1(1,15); 32(1,6)_% 10(1, 1)%, 6(1, )%

Table 3.1: Spectra of two Z,4 orbifold models of the SO(32) heterotic string with similar
symmetry breakdown patterns. The U(1) charges are written as subindices.

obeying this symmetry lead to identical spectra and gauge group, confirming thereby this
symmetry.

However, not all symmetries of the Dynkin diagram are symmetries of the automorphisms,
as we now explain. Another symmetry of the SO(32) Dynkin diagram is spinor conjugation,
that is, the redefinition of the simple roots a5 < ai5. Even though this operation is a
symmetry of the Dynkin diagram, it is not a symmetry of orbifolds. As an example, consider
the Zy4 shifts V3 and V@ of table D.5. They both induce the unbroken gauge group Gap =
SO(20) x SU(6) x U(1) (see fig. 3.3), but their twisted matter spectra differ, as evident from
table 3.1.

By using effectively these symmetries, one can discriminate the number of inequivalent
Zn models without Wilson lines.

Advantages and Disadvantages

The classification strategy described in this section possesses certain features which make it
useful to obtain all shift embeddings of Z  orbifolds. By construction, the only requirement on
the shift vectors is imposed by modular invariance, eq. (3.15). One can directly determine the
unbroken gauge group without need of further information about the massless spectrum. It is
also straightforward to eliminate redundancies in the classification. However, this method also
has some drawbacks. In considering Zy x Zjs models or including Wilson lines, a complete
classification requires to invoke additional mechanisms, such as adding linear combinations of
U(1) directions to the shift vector(s) and Wilson lines (see e.g. [93]). In that case, the elegance
of this method is lost.

3.1.1 The Classification

We have used the method described in section 3.1 to classify all shift embeddings of EgxEg
and SO(32) heterotic orbifolds. In table 3.2 we list the number of models without Wilson
lines found for each Zy orbifold. With exception of the number of models for Zg-II and Z2
orbifolds, our results for the EgxEg agree with those presented in ref. [122]. We have verified
that the results listed here are correct. Since not all SO(32) orbifold models were known,
we have thought it would be useful to display them in a web page [123], where the following
details of each of these models are provided:

e the twist vector v and the root lattice I', which specifies the geometry,

e the shift vector V and the corresponding gauge group,
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| Zn | Bs x Es | SO(32) |

Zs 5 6
Z4 12 16
Ze-1 58 80
Z6-11 61 75
7 40 56
Zs-1 145 196
Zs-11 146 194
Zno-1 1669 | 2295
Zyo-T1 1663 | 2223

Table 3.2: Comparison between the number of inequivalent Z y shifts in the EgxEg heterotic
string and in the SO(32) heterotic string [73].

e the matter content, listed by sectors, including all U(1) charges, where we have denoted
the anomalous one by Uj 4.

Comparing the numbers of inequivalent SO(32) models to those of EgxEg, we find that
the SO(32) heterotic string leads to a larger amount of models. This difference can become
important if Wilson lines are present. We have learnt in section 2.3.4 that the local spectra at
the fixed points of orbifold models with Wilson lines correspond always to the twisted spectra
of the models without Wilson lines. In other words, if one defines a local shift vector V, for each
of the constructing elements denoting the fixed points, then each V (which includes Wilson
lines) has to be equivalent to one of the shift vectors V' we have before nontrivial Wilson lines
are switched on. In this sense, SO(32) orbifolds lead to a richer variety of models.

A remark is in order. In classifying orbifold models based on the SO(32) heterotic string,
we were somehow surprised by the common presence of spinors in the spectra. We give some
details about this feature in appendix B. This situation contrasts with the popular notion
that only EgxEg orbifolds admit, say, SO(10) spinors and therefore sm families of quarks and
leptons. Yet we have to admit, that spinors are more frequently encountered in EgxEg than
in SO(32) orbifolds, what renders EgxEg more attractive.

Our classification of Zy orbifolds closes one of the unfinished tasks started already in the
late eighties. Nonetheless, a classification of all Zy orbifolds is far from being useful if one
does not include Wilson lines, for they trigger further symmetry breakdown and, hence, the
appearance of models resembling the sM, which is, by the way, the true aim of any study of
this kind. Therefore, one is forced to find a useful way to study systematically models with
Wilson lines.

3.2 Including Wilson Lines and Zn X Zj; Orbifolds

A convincing approach to classify orbifold models with Wilson lines was first proposed in the
context of Zs orbifolds in ref. [96]. The proposal consists in a generic ansatz that describes
any (shift vector or) Wilson line of order three. As explained in more detail in appendix A,
we find that this approach can easily be extended to any order. Let us summarize here our
findings.
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By identifying those models whose shifts and Wilson lines match after the action of lattice
translations and Weyl reflections, one finds the shifts of order N, M and Wilson lines of order
N, take a block-form:

Vi = (Vjblock 15 Vjblock 25 Vjblock 3: - --) » (3.19a)
Aa (Aa,block 1, Aa,block 2 Aa,block 3y ) ) (319b)

where the blocks Vj plock i and Aq plock i are m;-dimensional vectors. The specific form of these
blocks depends on the order of the respective shift vector V; and Wilson line A,. Let us
denote by Xpjock i an arbitrary block of a shift or Wilson line of order N. The form of this
block is then expressed by (see appendix A)

L ((ij)a7-(ﬁ-j)57o"0, 1", (N-j) &8 (@)ng) case a)
2 (E)7,-2N=5)7, 1,37, (2R=j)" N =57 (N-1)"5-1)  case B)  (3.20)

Kblock i = 1 g
1 -\ o AT B Ano 1n1 N ANy =B N-1 n(NEI)
~ (:I:J) 7_(N_.7) 70 71 7"'7(N_.]) V=9 77(7) case C)

where « and [ are either 0 or 1 such that « + 8 = 0,1 and ), ny = m;. Furthermore, j
depends on the value of N and the kind of building block, according to the following cases:

e a) even order N , ‘vectorial’ block. ‘Vectorial’ means here that the entries have a

maximal denominator of N. In this case 7 takes the values {g +1,... ,]V -1}

e b) even order N , ‘spinorial’ block. ‘Spinorial’ means that the entries have a maximal
denominator of 2N and odd numerators. We have j € {N +1,N +3,...,2N — 1};

e ¢) odd order N. In this case ‘vectorial’ and ‘spinorial’ blocks are equivalent; so it

suffices to give one ansatz, where j € {%, %, ., N}

Shift vectors and Wilson lines obtained by the repeated use of the ansatz (3.20) have
to satisfy the modular invariance conditions, eq. (2.42), and the embedding constraint NV,
MV,, NoA, € A. In contrast to the Dynkin diagram strategy, the latter requirement is not
automatically fulfilled. Indeed, that requisite implies that all blocks of a shift or Wilson line
must be of the same type (either a, b or ¢). Once both consistency conditions are met by a
set of parameters, one has encountered an admissible orbifold model. In this way, one arrives
at a more general classification of orbifold models.

There is however a subtlety. As we have explained in section 2.4.3, brother models can
appear by considering lattice translations of the shift(s) and/or Wilson lines. The matter
spectrum of a brother to an orbifold model differs in the twisted sectors. Therefore, a model
and its brother are not equivalent. Since in the derivation of the ansitze (3.20) we have taken
lattice translations as a symmetry of the theory, brother models have been disregarded and
thus a classification based on this method is not comprehensive. On the other hand, it is
worth to mention that models with the same matter spectrum of the brother models can be
found by varying the discrete torsion parameters. In a sense, then, a classification based on
the proposed ansétze provides us with the full set of inequivalent torsionless models.
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Discriminating Equivalent Models

In this method, we have tried to avoid redundancies by disregarding those gauge embeddings
differing by lattice translations, and pairwise sign-flips and permutations of their entries.
However, in EgxEg models, as mentioned in section 3.1, there are additional Weyl reflections
(those based on the spinorial simple root), which modify in general shifts and Wilson lines
in a very unpredictable way. In other words, our present strategy has not projected out all
duplicities. Inspecting the symmetries due to those other Weyl symmetries is hopeless due to
the huge amount of elements of the Weyl group V. Hence, we have to look for an alternative
to eliminate equivalent models.

It turns out more practical to use shifts and Wilson lines to compute the massless spec-
trum of each model and, then, consider two models as inequivalent if and only if their massless
spectra are different. Of course, this job gets too ambitious if one has at hand a great many
models and one lacks computer support. That might be one of the reasons why a comprehen-
sive classification of orbifolds has been postponed for several years.

To perform the comparison of the spectra in a reasonable time, we compare the non-
Abelian massless spectra and the number of singlets, that is, we avoid a comparison of U(1)
charges. This underestimates the true number of models somewhat. Ideally, we should not
only compare the full massless spectra (including U(1) charges), but also the localization of the
particles and the couplings among them. Furthermore, it might be also necessary to consider
the Kaluza-Klein tower of nonzero modes. This is evidently unfeasible.

We would like to point out that the problem of identifying inequivalent models does not
appear only in this method. Also Dynkin diagram techniques suffer of the same problem
when considering Wilson lines. An interesting question would be to find out whether there is
another way to discriminate duplicities in a classification.

Advantages and Disadvantages

The classification method presented in this section is an alternative to classify orbifold models
with Wilson lines. By means of computer programs, one can generate all models of a given
orbifold in a direct manner. However, this method neglects brother models or, analogously,
models with discrete torsion. Therefore, one is forced to vary the discrete torsion parameters
in order to arrive to a complete set of models. Further, one cannot avoid to overcount some
models, which can only be identified by directly comparing the states of their matter spectra.

3.2.1 Sample Classification of Z3 X Z3 without Wilson Lines

As a concrete application, let us describe the classification of Z3 x Z3 orbifolds without Wilson
lines. Here we make use of both classification methods introduced in this chapter. A Zs x Zg
orbifold model is described by the twist vectors

v; =(0,1/3,0, —1/3) and wy=1(0,0,1/3, —1/3), (3.21)
two shift vectors V7 and V5 of order three and three Wilson lines, which are not important

for our current discussion. We aim here basically at a classification of all admissible shift
embeddings.
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‘ V#) ‘ Shift vector V; ‘ 6D gauge group Gsp ‘
1 (09, 12) (08) E;xEsg
2 1(09,12) (05, 12, 2) E7xEgxSU(3)
3 3 (03,14, 2) (0%) SU(9)xEs
4 (06,14, 2) (0%, 1%, 2) | SU(9)xEgxSU(3)
5 3 (06,16, 2) (0%, 16, 2) | SO(14)xSO(14)

Table 3.3: Five inequivalent EgxEg shift vectors V; of the Zg3 x Z3 orbifold and their induced
gauge symmetry breakdown.

First, by using the Dynkin diagram strategy depicted in section 3.1, one finds that there
are only five consistent shift vectors V1, which can be written in the generic form

1 ! /
Vio= (00, 1™, 27) (0", 1, 26), (3.22)
where « and 3 can be either 0 or 1, and n;, n} € Z, such that ng+ni+a = nj+n}+5 = 8. The
admissible shifts (listed in table 3.3) can be obtained by verifying the consistency conditions

3(VE—v?) = 0 mod?2 and
31 e A.

Note that the modular invariance condition forbids the trivial shift V4 = (0%)(0®). This is a

difference with respect to the Zs orbifold.
From the ansatz (3.20), it follows that the second shift V5 of order three has the generic
form

3 nit+a 3 ni+8

1 1 ng—1 1 1 néfl 1
Vo = = : , | o : , .1 o . (3.23)
3 . 0 1 : 0 1

2 -2

Together with one of the shift vectors V; from table 3.3, the shift vectors generated by
this ansatz are subject to the usual lattice conditions and modular invariance, eq. (2.42).
Disregarding those models that are equivalent at massless level, we get 109 shift embeddings.

Generalized Discrete Torsion

We use now the set of shift embeddings to generate all admissible models. As discussed in the
examples of section 2 4. 2 there are ten independent generalized discrete torsion parameters,
whose values are 0, 3 or 5. One might be tempted to deduce that the total number of models
is 109 x 319 but out of them only 1082 models (or more precisely, massless spectra) are
inequivalent. These models comprise the complete set of admissible models without Wilson
lines. The model definitions and the resulting spectra are detailed in our web page [123].

3.3 The C++ Orbifolder

The extensive work that an orbifold classification requires, would not be feasible without
computer programs. In collaboration with P.K.S. Vaudrevange and A. Wingerter, we have
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written the C++ Orbifolder. This program, which will be available to the scientific commu-
nity, has been thought to cover the needs of a researcher interested in the phenomenological
consequences of orbifold compactifications without dealing with the time-consuming and cum-
bersome computation.

Provided the shift vector(s) and Wilson lines, the C++ Orbifolder can compute the mass-
less spectrum of the EgxEg or SO(32) heterotic string compactified on any symmetric Zy and
Zn x Zpy orbifold in much less than a second on a 2.66 GHz computer. Its results are given
in a human readable format, which can be saved as TXT- or TEX-file. The underlying lattice
I" as well as the inclusion of generalized discrete torsion can be chosen at will. In computing
orbifold spectra, the program verifies all consistency constraints, such as the conditions for
cancellation of anomalies and modular invariance.

One can profit of the speed of the C++ Orbifolder in a classification of orbifold models.
Some routines of this program use the classification methods outlined in this chapter. Thus,
one can generate a large amount of models with and without discrete torsion in a reason-
able time. In particular, the comparison of two different spectra takes less than a second,
independently of how complicated they are.

A very useful feature of this program is that it is capable to determine all nonvanishing
couplings entering in the superpotential of a given model, according to the string selection
rules enumerated in section 2.5.1. This process has to be performed order by order in the
superpotential and therefore is very demanding. As yet the program can determine the su-
perpotential for Zg-II orbifolds up to order eight in the fields within one week, in average. For
other orbifolds, like e.g. Z3 or Zi2, this computation can take significantly less time because
there are less particles in the spectra and/or less allowed couplings.

A phenomenological viable orbifold model must have at least the sM gauge group and all
possible exotic particles have to be decoupled from the low—energy spectrum. To pick up a
nonanomalous linear combination of U(1)’s that play the role of the hypercharge is a challenge.
We have developed routines to perform that task in the case when the hypercharge can be
embedded in an SU(5) GUT theory. Moreover, the Orbifolder can identify the SM particles and
determine whether additional exotics acquire large masses when some SM singlets get VEVs of
the order of the string mass scale.

The C++ Orbifolder is, however, still under development. Some of the aspects that are
currently in an advanced stage include: discrete flavor symmetries of the superpotential,
continuous global accidental symmetries of the superpotential, and resolution of orbifold sin-
gularities. One might be interested also in considering asymmetric orbifold constructions and
a systematic study of discrete accidental symmetries of the superpotential, which can shed
light, for instance, in the solution to the problem of proton stability.
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Chapter 4

A Mini-Landscape of Zg-11 Orbifolds

Inspired by the works by Kobayashi et al. [97] and Buchmiiller et al. [48], we aim at
promising models of the Zg-II orbifold. We perform a systematic search of models
with two Wilson lines guided by the concept of local GUTs, which is introduced in
section 4.1. It turns out that out of 3 x 10* Zg-II orbifold models with local GUTS,
about 200 models have the exact matter spectrum of the MSSM and some other
realistic properties. This chapter focuses mainly on the methodology of our search.
We list the main results here and the discussion of the phenomenology of the models
is left for chapter 5.

4.1 Orbifold Local GuUTs

Let us focus on Zy orbifold compactifications. Consider a fixed point or fixed torus with
constructing element g = (9%, nye,). Thus, the associated local gauge shift and local twist
vector are given by Vy; = kV +n,A, and vy = kv, respectively. We have seen in section 2.3.4
that at the fixed point g, the local gauge group G, is larger than the four-dimensional unbroken
gauge group G4p. Furthermore, the matter states living at the fixed point g furnish complete
representations under G,, which can nonetheless be partly projected out when considering
the complete orbifold by the action of Wilson lines. On the other hand, massless modes
of untwisted (bulk) fields also build representations under G,, but they are always partly
projected out (even in the absence of background fields). Therefore, bulk states are, in general,
incomplete (also called ‘split’) multiplets from the four-dimensional perspective.

A useful concept in orbifold compactifications is that of local grand unification, or local
GUTs, which appear when the local symmetry G, at some fixed point(s) is a GUT symmetry,
such as SO(10) or Eg. In presence of local GUTs, the SM gauge symmetry can arise as the
intersection of different local GUT groups.

If we suppose, for example, that the local gauge symmetry is SO(10) whereas the unbroken
gauge group in four dimensions is G4p = Ggar = SU(3). x SU(2)1, x U(1)y, then the states
attached to the fixed points can transform locally as 16—plets, which under the sM gauge
group, form the representations

16 = (3,2)1/6+ (3,1)_9/5+(3,1)13+ (1,2) 12+ (1,1)1 +(1,1)o . (4.1)
Similarly, 10-plets of SO(10) can appear in the same (or in a different) local spectrum. They
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SU(5 _ SU(4‘>< SU(2)? SM gegeration SM gen.eration
10 +5 |(4,2,1)
(@12
@, — Gip = Gsm
G, = S0(10
10+5+1
—@ @ L J

SU(5)¢; x U(1)  SM generation ~ SM generation

Figure 4.1: Local cuTs at different fixed points: local vs. global picture. The intersection
of all local groups is G4p = Gsus-

correspond to the SM representations
10 = (3,1)_1/3+ (1,2)12+ (3, 1) 15+ (1,2) 12, (4.2)

which are those of the Higgs doublets and Higgs triplets. As we already mentioned, once we
abandon the local picture and consider the orbifold globally, some parts of the 16— or 10—plets
might not be present in the global spectrum due to the orbifold projections. In the best of
the cases, the parts of a local 10-plet which are projected out will be those corresponding
to Higgs triplets, whereas the complete 16—plets of the matter generation will survive. This
situation would then endow the theory with a natural explanation of the structure of the sm
families [48,50,53,54]. It would additionally provide a solution to the doublet-triplet splitting
problem of 4D GUTs [124].

It is noteworthy that such an ideal case as the example just presented, including other
GUT symmetries, can be realized in orbifold constructions. We have to demand that mat-
ter generations appear from local GUTs localized at specific points, where the action of the
orbifold group on the associated states is trivial. Furthermore, it is necessary that the Higgs
representations come from the bulk or from fixed points where the orbifold projections can
partly alter their structure. Since solely higher twisted-sector fields are affected by orbifold
projections, the first requirement is met when local GUTs appear at the fixed points of the
first twisted sector and the local matter spectrum includes GUT generations (such as 27-plets
of Eg or 16-plets of SO(10)).!

In section 2.3.4, we have concluded that a local shift vector V; has to be equivalent to
one of the shift vectors V that define Zy orbifold models without Wilson lines. Therefore,
finding local GUTs with SM matter generations at fixed points of the T3 sector amounts to first
identifying those shifts leading to the desired GUT symmetry as the gauge group of the theory
in four dimensions and GUT generations in the 77 sector, and then selecting a suitable set of
Wilson lines inducing the symmetry breakdown Gour — Ggas (see fig. 4.1).

One of the qualities of this method is that it ensures the existence of standard GUT hyper-
charge, which is consistent with gauge coupling unification, although no GUT appears in 4D.
Another advantage is that, even though matter fields form locally complete GUT representa-
tions, interactions generally break GUT relations since different local GUTs are supported at

!That the states in the first twisted sector are not affected by the orbifold projection follows from the
fact that the projection phase, eq. (2.85), is trivial for 71 (and T5) twisted states satisfying the masslessness
condition, eq. (2.81).
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Shift ‘ 4D gauge group g4D ‘
1750(10).1 SO(10) x SU(2)? x SO(14) x U(1)?
1/50(10),2 SO(10) x SU(3) x E7 x U(1)?

VEs,1 Eg x Eg % U(1)2

VEe6.2 Eg x SU(3) x E7 x U(1)

Table 4.1: Gauge group associated to shift vectors with local GUT structure. Their matter
spectrum in the 77 (or equivalently T5) sector includes 12 GUT families.

different fixed points. In particular, mixing of the localized generations with vectorlike bulk
states breaks the unwanted GUT relations for the fermion masses [48,125|. As already men-
tioned, this approach can explain why the sM gauge and Higgs bosons do not form complete
GUT multiplets, while the matter fields do.

In the following sections, the concept of local GUTs is used as a guiding principle in the
search for orbifold models with realistic features.

4.2 MSSM Search Strategy

It is well known that with a suitable choice of Wilson lines it is not difficult to obtain the sm
gauge group up to U(1) factors. The real challenge is to get the exact matter spectrum of
the SM or, more precisely, of its minimal supersymmetric extension, the MSSM. Demanding
additionally gauge coupling unification constrains possible models.? In order to find models
which combine both properties, we base our strategy on the concept of local GUTs described
in the previous section.

An SO(10) GuT has very compelling features which make it appropriate for model build-
ing [52]. Among other reasons, it incorporates the success of Georgi-Glashow and Pati-Salam
GUTSs, provides a single gauge coupling, predicts the existence of right-handed neutrinos and
gathers a complete SM generation within a single representation. Hence, we shall be mostly
interested in the gauge shifts V' which allow for a local SO(10). Also Eg local GUTs can be
reasonable promising as they embed the SO(10) structure. That is, the shift vectors V' we will
consider are such that the left-moving momenta p satisfying

p-V =0 modl, p? =2 (4.3)

are roots of SO(10) or Eg (up to extra group factors). Furthermore, the massless states of the
T sector are required to contain 16—plets of SO(10) at the fixed points with SO(10) symmetry
or 27-plets of Eg at the fixed points with Eg symmetry.

Since these massless states from 7T} are automatically invariant under the orbifold action,
they all survive in 4D and appear as complete GUT multiplets. In the case of SO(10), that
gives one complete SM generation, while in the case of Eg we have 27 = 16 + 10 4+ 1 under
SO(10). It is thus necessary to decouple all (or part) of the 10-plets from the low—energy
theory.

The Wilson lines will be chosen such that the standard model gauge group is embedded
into the local GUT as

Gsy C SU(5) C SO(lO) or Eg . (4.4)

In refs. [34,49], only models without standard hypercharge are investigated. We have verified that, in fact,
Z3 and Z4 orbifolds do not allow for GUT hypercharge normalization.
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Figure 4.2: T sector of the Zg-1I orbifold on a GoxSU(3)xSO(4) lattice. The SU(3) torus
admits one Wilson line A3 of order 3 (green) associated to the directions e3 and e4 while
the SO(4) torus can allocate up to two Wilson lines, A5 (blue) and Ag (red), of order 2.

It follows then that the hypercharge is that of standard GuTs and thus consistent with gauge
coupling unification. Hypercharge will appear as a linear combination of several U(1)s and,
thus, the generator of hypercharge (in a standard basis),

1 1 111
R ( 2’ 2’3’3’3> ’ (45)
will be embedded in a 16-dimensional vector acting on the gauge degrees of freedom. Note
that gauge coupling unification in orbifold models is due to the fact that the 10D (not 4D)
theory is described by a single coupling.

Our model search is carried out in the Zg-II orbifold compactification of the EgxEg het-
erotic string. Some properties of this orbifold were described in section 2.2.3 (see the discussion
around eq. (2.49)). In this construction, there are two gauge shifts leading to a local SO(10)
GUT [93,126],

ysoan.l — (171710, 0,0,0,0) (

L 0,0,0,0,0,0,0) ,
VSO(lO),2 - ( ’ 3 %7 0,0,0,0, 0) (

1
ga
£,4,0,0,0,0,0,0) , (4.6)

,%,0,0,0,0,0) (3, %,0,0,0,0,0,0). (4.7)

The symmetry breakdown of EgxEg due to these shift vectors is given in table 4.1. The shift
VSOQ0).1 of eq. (3.12) and the one presented here are equivalent. They differ because we have
used Weyl transformations to reduce the number of nonzero entries in order to facilitate later
analysis. We will focus on these shifts and scan over possible Wilson lines, employing the
classification method of section 3.2, to get the SM gauge group. Due to its geometry, the Zg-11
orbifold with lattice GoxSU(3)xSO(4) allows for up to two Wilson lines of order 2, A5 and
Ag, and for one Wilson line of order 3, As, as illustrated in fig. 4.2.

The next question is how to get three matter generations. A geometric explanation of
the origin of the three generations is somehow attractive and can be realized in orbifold
compactifications. As depicted in fig. 4.2, there are 3 x 4 fixed points in the T sector, which,
in the absence of Wilson lines, are degenerate, that is, are furnished with identical matter
spectrum. Wilson lines lift this degeneracy in the direction they act. For example, if the
Wilson line Aj related to the torus direction es is nontrivial, then in the SO(4) torus the
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Figure 4.3: A successful approach to get models with three matter generations. Two GUT
generations are located at fixed points of the T} sector while the third one comes from other
untwisted or twisted sectors.

points M and e as well as X and A are equivalent, but the horizontal symmetry is lost.®> The
points that keep their local GUT structure are in this case the six ones related to B and e
in the SO(4) plane. Hence, the simplest possibility to get three matter generations is to use
three equivalent fixed points with 16—plets [53] which appear in models with two Wilson lines
of order 2. If the extra states are vectorlike and can be given large masses, the low—energy
spectrum will contain three matter families. However, if one starts from the shifts given above,
this strategy fails since all such models contain chiral exotic states [48]. In the case of Eg,
it does not work either since a simple analysis of the Dynkin diagram of Eg reveals that one
cannot obtain Ggy C SU(5) C Eg with two Wilson lines of order 2.

The next—to—simplest possibility is to use two equivalent fixed points which give rise to
two matter generations. This situation can be obtained in models with one Wilson line of
order 3 and another of order 2. The third generation would then have to come from other
twisted or untwisted sectors. The appearance of the third complete family can be linked to
the sM anomaly cancellation. Indeed, since the shift vectors of eqs. (4.6) and (4.7) lead to
GuUT families in the untwisted sector, that sector contains part of a 16—plet after the inclusion
of Wilson lines. Then the simplest options consistent with the SM anomaly cancellation are
that the remaining matter either completes the 16—plet or provides vectorlike partners of the
untwisted sector. In more complicated cases, additional 16— or 16-plets can appear. The
localized 16— and 27-plets are true GUT multiplets, whereas the third or “bulk” generation
only has the SM quantum numbers of an additional 16—plet.

We find that the above strategy is successful. First, we notice that the model presented
in refs. [48,50] adjusts precisely to this scheme. Secondly, also in the case of Eg GUTs we
observe that it is not difficult to obtain the sM gauge group. As we will detail in section 4.4,
in fact, other massless states present in the spectra of models based on this strategy are often
vectorlike with respect to the sM gauge group and can be given large masses consistent with
string selection rules.

Once established the basis of our study, let us specify now all other details of our search
strategy. We enumerate the steps of our search as follows:

U Generate all models with two Wilson lines.

U Identify “inequivalent” models.
O Select models with Gsar € SU(5) € SO(10) or Eg.
O Select models with three net (3, 2).

3The remaining vertical symmetry is usually identified with D4 or Ss, which in adequate models can be
interpreted as a family symmetry.
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O Select models with nonanomalous U(1)y C SU(5).
0 Select models with net three sm families + Higgses + vectorlike.

Notice that in step [0 we have decided not to specialize to the case of one Wilson line
of order 2 and one of order 3. Even though we already know that only in that case we can
obtain realistic models, we would like also to know how frequently those models appear in
the landscape patch that we have chosen. In other words, it might be useful to count with
the total number of models in order to draw some reliable statistical results out of our search.
To do so, we apply the classification method described in section 3.2, that is, we propose an
ansatz describing generically Wilson lines of order 2 and 3, based on egs. (3.19b) and (3.20).

Not all models obtained in step [J are inequivalent. In step [, we consider two models
to be “equivalent” if they have identical spectra with respect to nonabelian gauge groups and
have the same number of nonabelian singlets. Thus, models differing only in U(1) charges are
treated as equivalent. In addition, some models differ only by the localization of states on the
different fixed points. We know that these ambiguities occur and it is possible that in some
cases Yukawa couplings are affected. Hence our criterion may underestimate somewhat the
number of truly inequivalent models.

The criterion [ is crucial for obtaining viable models. We require particularly that
SU(3)xSU(2) appears embedded in an SU(5) subgroup of the local GuTs. This constraint
is imposed in order for the hypercharge to be of Georgi-Glashow type and, hence, consistent
with gauge coupling unification.

Of course, we could try immediately to identify an appropriate hypercharge. It proves how-
ever to be more practical to first reduce further the number of models available. Criterion [
amounts to finding those models where three copies of quark-doublet-like particles exist. Let
us just remark that, in general, both representations (3,2) and (3,2) under SU(3)xSU(2)
appear in the spectra. They form some vectorlike pairs that will eventually decouple from
the low—energy spectrum. Thus, only models satisfying |#(3,2) — #(3,2)| = 3 will lead to
realistic phenomenology.

After the above procedure, it is then straightforward to identify the hypercharge. In an
ideal case, the hypercharge generator would be given by (4.5) embedded in a 16-dimensional
vector. However, this form is basis-dependent. In general, what one does is to compare
the simple roots of the SU(5) embedded in the GUT
group to those of SU(3)xSU(2). Since the roots of ©— ° 99 : SU(5)

SU(5) span a four-dimensional space whereas those
of SU(3)xSU(2) only span a three-dimensional Oi_:; ty oi : SU(3)xSU(2)xU(1)y
space, the hypercharge generator ty is uniquely

determined by the sole direction orthogonal to the simple roots of SU(3)xSU(2) which lies
in the space of SU(5). In other words, the hypercharge results directly from the symmetry
breakdown SU(5) — Ggns. Ambiguities arise in certain seldom cases when U(1)y can be
defined in different ways. In this case, we have to count the model twice. On the other hand,
the hypercharge generator can unfortunately mix with the anomalous U(1) of the orbifold,
what leads to the undesirable consequence that it has to be broken at very high energies.
Therefore, at step [, one is forced to disregard those models where the hypercharge appears
anomalous.

We are in position to identify the MssMm candidates. In step [, we have to verify that
the resulting spectrum contains exactly the spectrum of the MSSM, i.e. three net matter
generations and, at least, one pair of Higss-doublets with the correct quantum numbers under
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Criterion VSO(IO),l VSO(IO),2 VEs.l | 1/7Es,2
[1 inequivalent models with 2 Wilson lines 22,000 7,800 680 | 1,700
O sMm gauge group C SU(5) € SO(10) (or Eg) 3,563 1,163 27 63
O 3 net (3,2) 1,170 492 32
O nonanomalous U(1)y C SU(5) 528 234 22
0 spectrum = 3 generations + vectorlike 128 90 3 2
Table 4.2: Statistics of Zg-II  orbifold models based on the shifts

V8010),1 '1/80(10).2 '/ Ee.1 /Ee:2 with two Wilson lines.

Gsy = SU(3).xSU(2)r, xU(1)y. Other states in the spectra of admissible models, generically
called exotics must form vectorlike pairs.

4.3 A Fertile Patch in the Landscape

The results of our search strategy are presented in table 4.2. Interestingly enough, this strat-
egy has allowed us to find 223 explicit examples with the MSSM matter content plus additional
vectorlike particles. These models represent a major result in the context of string compact-
ifications and are considered one of the central results of this work. We see that most of the
MssM candidates arise from a local SO(10) GuT. Naively, we can consider this result to be
another argument why SO(10) GUTs might be preferred to other GUTs. On the other hand, it
might just reflect the fact that two Wilson lines cannot break Eg enough to get a comparable
amount of models with Ggjs gauge symmetry. One might then expect that adding a third
Wilson line, many more models with promising properties arise from the Eg shifts.

We find that the properties of the models with the chiral MSSM matter content, such as
the number and type of vectorlike exotics and SM singlets, are so similar that there is no
model which can be preferred a priori. This implies that, even though one is also interested
in studying the phenomenological features of each model, some interesting conclusions can be
drawn in a generic form. The details of the models are listed in [123].

It is instructive to compare our model scan to others. In certain types of intersecting
D-brane models, it was found that the probability of obtaining the SM gauge group and three
generations of quarks and leptons, while allowing for chiral exotics, is 1077 [44,45]. More
recently, in ref. [43] intersecting D—branes on Zg-II orbifolds have lead to the conclusion that
the probability of finding such matter configurations can be enhanced to 10~%. The criterion
which comes closest to the requirements imposed in refs. [43-45] is 0. We find that within our
sample the corresponding probability is 5 %.

In refs. [40,41], orientifolds of Gepner models were scanned for chiral MSSM matter spectra,
and it was found that the fraction of such models is 1074, In our set of models, the corre-
sponding probability, i.e. the fraction of models passing criterion [, is of order 1%. Note also
that, in all of our models, hypercharge is normalized as in standard GUTs and thus consistent
with gauge coupling unification.

This comparison shows that our sample of heterotic orbifolds is unusually “fertile” com-
pared to other constructions. The probability of finding something close to the MSsSM is
much higher than that in other patches of the landscape analyzed so far. It would be in-
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teresting to extend these results to other regions of the landscape where promising models
exist [51,127-129].

We would like to make an additional remark. Our strategy to determine the hypercharge
is, of course, not the only choice. One could instead express U(1)y as an arbitrary linear
combination of all U(1)’s (not only of those embedded in the local GUT symmetry) which
gives the correct values of hypercharge to the MSSM particles. This approach was followed in
ref. [130]. The authors of ref. [130] find that the majority of the models at step O allow for a
definition of a nonanomalous U(1)y. However, only in 12% of those models, hypercharge is
in harmony with coupling unification. That means, in particular, that even in a more general
scheme, relaxing the demand U(1)y C SU(5), (almost) only those 223 models at step O of
our search meet all the phenomenological properties we require.

4.4 Towards Realistic String Models

Taking as a base the MSSM candidates passing criteria [1-[, there are now many ways to
address the question of their phenomenological viability. One could, for example, opt for
a model-by—model approach, in an attempt to identify one model with many features that
match the known low—energy physics and, simultaneously, to find the solution to as many as
possible of the currently open questions in theoretical high energy physics. By that approach,
certainly one might find one model with some beautiful properties that also gives answer to
some puzzles. However, a different model will have some other nice features and will solve
some other problems.

We would rather follow an alternative approach. Provided that the MssM candidates are
very similar, one could ask general questions, such as whether the vectorlike exotics decouple,
or whether SUSY preserving vacuum configurations are realizable from these models, among
other matters. The answers to those questions are, of course, model dependent, but, on a
statistical footing, they will probably yield some predictions or, at least, exclude some regions
of the landscape.

4.4.1 Coupling Selection Rules in Zg4-11

Let us start by stating the string selection rules which will be repeatedly used in our study.
Assume a coupling between a number of states V,;. Based on our discussion of section 2.5.1,
couplings entering the superpotential must satisfy the following rules.

Gauge invariance. The usual rule on the left-moving momenta py, ; of the states U,
> Psh,i = 0, applies.

R-charge conservation.* Since the twist vector reads v = (0,1/6,1/3,—1/2), the order
of the corresponding (discrete) R-symmetries is respectively 6, 3 and 2. Therefore, a coupling
in the superpotential is invariant if the R—charges of the states involved fulfill the conditions

> Ri=-1 mod6, Y Ri=-1 mod3, » R}=-1 mod?2. (4.8)

Space group selection rule. In general, this rule reads [[,¢; ~ (1, 0) with ¢g; =
(9", nleq) € S denoting the constructing elements of the states entering the coupling. It can

*R-symmetries do distinguish between fermions and bosons, therefore, in some approaches [131], the re-
maining discrete subgroup after breaking these symmetries can well be identified with an R-parity. We do not
follow this approach.
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be restated in Zg-11 orbifolds as the following set of constraints:

1
Ezkl = 0 modl1, (4.9a)
1 A A
§Z(ng+ng) = 0 mod1, (4.9b)
L i
321 = 0 mod1, (4.9¢)
1 i
32N = 0 mod 1. (4.9d)

Notice that, in this notation, these rules can be identified with conservation of certain discrete
Z,, symmetries with (integer) charges k, ns + ny4, ns and ng. Some consequences of the
appearance of these symmetries have been studied in ref. [109].

4.4.2 Decoupling Exotic Particles

Now we are in position to investigate the decoupling of vectorlike extra matter {z;}. One could
argue that the existence of these exotics in the spectra of our MSSM candidates constitutes a
problem by itself since vectorlikeness does not guarantee immediately that such exotics get
large masses. Therefore, we have to corroborate whether the extra matter can be given a large
mass by explicitely computing the couplings that endow exotics with masses. The mass terms
for such states are provided by the superpotential

W = l‘lffJszjj = ;%5 <8182...>, (410)

where s1, s2, ... are SM singlets. Some singlets are required to get large (close to Mst,) VEVS in
order to cancel the Fayet—Iliopoulos (FI) term of the anomalous U(1) intrinsic to the majority
of orbifold compactifications. Then, if the relevant Yukawa couplings are allowed by the string
selection rules discussed above, mass terms as that of eq. (4.10) appear, making the vectorlike
matter heavy. Thus the exotic particles decouple from the low—energy theory.

Clearly, one cannot switch on the singlet VEVs at will. Instead, one has to ensure that they
are consistent with SUSY. Supersymmetry requires vanishing F'— and D-terms. The number
of the F—term equations equals the number of complex singlet fields s;, therefore there are
in general nontrivial singlet configurations with vanishing F—potential. The D—terms can be
made zero by complexified gauge transformations [132] if each field enters a gauge invariant
monomial [133]. Thus, to ensure that the decoupling of exotics is consistent with SUSY, one
has to show that all SM singlets appearing in the mass matrices for the exotics enter gauge
invariant monomials involving only SM singlets and carrying anomalous charge. However, for
simplicity, we will assume momentarily that all SM singlets entering the mass matrices develop
large supersymmetric VEVs.?

In many cases, vectorlike exotics happen to have the same quantum numbers as the sMm
particles. Hence, in the process of decoupling, the vectorlike states can mix with the localized
16— and 27-plets (as long as it is allowed by the SM quantum numbers) such that the physical
states at low energies are neither localized nor “true” GUT multiplets. Even though part of

5This assumption will be confirmed in the next chapter by examining carefully the decoupling of exotics in
SUSY preserving vacua.
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the beauty of a geometrical explanation of the family structure dissolves thereby, it is clear
that whatever the mixing, in the end exactly three SM families will be left if the mass matrices
Mz have maximal rank.

Decoupling of exotics in SUSY preserving vacua has additional effects on the low—energy
theory. Generally, there are supersymmetric vacua in which all or most of the sM singlets
get large VEVs. As a consequence, many of the (abelian and nonabelian) gauge group factors
get spontaneously broken, such that the low—energy gauge group can be Ggps up to a hidden
sector:

Gsm X Ghidden » (4.11)

where the SM matter is neutral under Ghigden- This (true) hidden sector is important to deal
with the problem of low—energy susy breaking, as we shall outline in section 5.3.

In practice, to show that the decoupling of exotics is consistent with string selection rules
is a technically involved and time consuming issue. In order to simplify the task and to reduce
the number of models, we first impose an additional condition. We require that the models
possess a renormalizable top—Yukawa coupling as motivated by phenomenology (namely, by
the large mass of the top—quark). We point out that this requirement, nevertheless, is not
imperative since a large top—Yukawa coupling can also be obtained as a result of a conspiracy
of the VEVs of the fields or by other means.

As a second technical simplification, we consider only superpotential couplings up to order
eight. Thus, the next two steps in our selection procedure are:

O Select models with a “heavy top”.
O Select models in which the exotics decouple at order 8.

In step [0, we require a renormalizable O(1) Yukawa coupling of the type®

quhy ~ (3,2)16(3,1)_2/3 (1,2)1/2 - (4.12)

To accomplish this condition, we have first to verify whether such a coupling is allowed by
string theory. In the Zg-1I orbifold, combining the point group selection rule, eq. (4.9a), with
R—charge conservation, one finds that only renormalizable couplings of fields from the sectors

U003, U3y, UT3T3, Th12T3, TiT17T; (4.13)

are nonvanishing. On the other hand, the coupling strength of string interactions is given
by their correlation function, which for renormalizable couplings has been computed analyti-
cally [114,115]. It turns out that the coupling strength has a dependence on the localization
of the fields involved. In particular, the coupling for twisted fields is proportional to e,
where A denotes the area of the triangle formed by the fixed points where the strings are
located; hence, it can be highly suppressed if the strings are located far apart from each other.
Therefore, couplings including an untwisted field are unsuppressed whereas 17T T-couplings
are significant only when the twisted fields are localized at the same fixed point. We discard
models in which the above couplings vanish or are suppressed.

In the next step O, we select models in which the mass matrices M,z for the exotics (cf.
eq. (4.10)) have a maximal rank such that no exotic states appear at low energies. Here, we
consider only superpotential couplings up to order eight and for this analysis we assume that
all sM singlets can obtain supersymmetric VEVS.

5Notice that at this level it is impossible to distinguish between lepton doublets £ and up-type Higgses h..
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1780(10),1 | 1/80(10),2 || 1/Ee,1 | 1/E6,2
Criterion o X|O0O X O O
0 spectrum = 3 generations + vectorlike | 72 56 | 37 53 3 2
U exotics decouple at order 8 56 50 | 32 53 3 2

Table 4.3: A subset of the MSSM candidates. The number of models with “heavy top” are
listed under 0. X denotes no “heavy top”.

In table 5.2 we summarize our results (see ref. [123]| for further details). We make a
distinction between those having a “heavy top”, as in step [, and those without it, M. We
identify 93 models that pass requirements [J and [J. This means that a significant fraction of
our models can serve as an ultraviolet completion of the MSSM in string theory.

There are also many models which do not fulfill criterion [J. As already mentioned, al-
though our naive approach indicates that no heavy top can be found directly in these models,
it can be that further analysis reveals that such conclusion is incorrect. For that reason, we
have analyzed also the decoupling of the exotics in these MSSM candidates. In this set, exotic
particles can get large masses in 103 models. All in all, we see that if the criterion [J is skipped,
out of 223 MssM candidates, 196 do not present exotics at low energies.

A word on possible light exotics is in order. In ref. [134] it has been considered the possible
presence of a special kind of vectorlike exotics (baptized ezotica) in the low—energy spectrum.
These exotic particles, which appear in some of our models, would not affect gauge coupling
unification and could have a fractional electric charge. Although unlikely, one wonders whether
such particles might appear in future colliders. If it happens, we would have to reconsider not
to decouple all exotics.

We would like to point out an observation. We find that there are in our models several
pairs of Higgs doublets with a matrix of y-like mass terms. Generally, all Higgs doublets can
acquire large masses just as the (other) vectorlike exotics do. The challenge is then to decouple
all Higgs-doublet pairs minus one, which will trigger the Higgs mechanism of the sM model.
To get only one pair of massless Higgs doublets usually requires fine-tuning in the VEVs of the
sM singlets such that the mass matrix for the (1,2)_; /5, (1,2);/, states gets a zero eigenvalue.
This is the notorious supersymmetric py—problem. The fine-tuning can be ameliorated if the
vacuum respects certain (approximate) symmetries [135,136]. We will find in section 5.4 that
such symmetries might appear regularly in promising orbifold constructions.

In conclusion, we have found a very interesting set of semi-realistic models. In the most
optimistic case, we find that any of 196 models could very well house the physics of the
sM. However, we are still far of making any phenomenological conjecture from string theory
about physics at low energies. To verify whether our MSSM candidates are consistent with
phenomenology requires addressing several questions. Some important issues we must still
clarify include

e SUSY preserving vacua at high energies,
e hierarchically small SUSY breaking,

e realistic flavor structures, and

e absence of fast proton decay.

These and some other phenomenological questions will be discussed in the next chapter.



74

CHAPTER 4. A MINI-LANDSCAPE OF Zg-11 ORBIFOLDS




Chapter 5

Low Energy Physics from Heterotic
Orbifolds

In this chapter we examine the phenomenological properties of the models found in the
previous chapter. First, we discuss the matter spectra of a characteristic model with the
exact spectrum of the MSSM, which serves as example all through this chapter. Then
we proceed to evaluate the implications of the hidden sectors of the MssM-like models.
We investigate a correlation between the realistic properties of these models and susy
breaking via gaugino condensation. A surprising result is that the breakdown of susy
occurs generically at an intermediate energy scale. Another interesting problem is whether
it is possible to impose R-parity in order to guarantee proton stability. We find a chance,
defining a matter parity from the spontaneous breaking of U(1)p_;, which however can only
be defined in some models. Other plausible possibilities are not discussed here. Finally, we
address the question of the viability of the seesaw mechanism in orbifold models. Contrary
to previous statements, we find that the presence of O(100) right-handed neutrinos in
MSsM-like models supports the success of the seesaw mechanism in these models.

5.1 An Orbifold-Mssm

In the last chapter we found more than 200 models with the MSSM matter spectrum and
vectorlike exotics. By demanding that the vectorlike exotics decouple from the low—energy
spectrum, we have seen that the number of models is barely reduced. We then opted to take
a more aggressive approach: we disregarded those models where a trilinear Yukawa coupling
q u hy, is vanishing or suppressed according to string selection rules. Note that this requirement
is not imperative and was implemented only as a technical simplification. It turns out that
this criterion is rather strict and reduces the amount of realistic models by a factor 1/2.
The remaining O(100) models have many common properties and will lead us to interesting
phenomenological conclusions along the lines of this chapter.

We study now one generic model out of the set of promising MSSM candidates with “heavy
top”, which will be referred to as orbifold-MssM. The model is based on the gauge shift

SO(10),1 __ 1 1 1 1 1 1 1 1 1 1
V ( ) - (§7 T 9y T 9 07 07 07 07 0) (57 T 6 2y 92y T 9y T 9y T 9 5) . (51)

N[

where we have added an EgxEg lattice vector to simplify computations. The Wilson lines are
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‘ # Representation  Label H #  (Anti-)Repr. Label ‘ ‘ 7# Representation Label
3 (3,2;1,1)6 % 4 (1,2;1,1)9 mi
8 (1,251,1) 10 i 5 (1,2;1,1)1 l; 2 (1,21,2) Yi
3 (1,1;1,1), i 47 (1,1;1,1)g 59
3 (3,1;1,1),2/3 Uj 26 (1,1;1,2)0 h;
7 (3,1;1,1)1/3 7 4 (3,1;1,1)_1/3 di 9 (1,1;8,1)0 Wy
4 (3,1;1,1)1 v 4 B, L1,1) 46

20 (1,1;1,1) st 120 (L,L;1,1)_qp s
2 (1,1;1,2) xf 2 (1,1;1,2) 40

Table 5.1: Massless spectrum. The quantum numbers are shown with respect to SU(3). x
SU(2)r x SO(8) x SU(2), the hypercharge is given by the subscript.

chosen as
1 1 11 1 11 1)\/10 7 4
A = (=3 3 o5 o oo o) (350 =6 -5 -5 =5 -3,3),
1 1 1 1 111 1 5 3 1 5 3 3
4 = (v-v-v- o nond)(L-L-3 -2 -3-3-33) (62

The hypercharge generator is identified with the SU(5) standard form
ty = (0,0,0,—-1, -1 11 1)(0,0,0,0,0,0,0,0). (5.3)
The gauge group after compactification is
Gsn x SO(8) x SU(2) x U1, (5.4)

while the massless spectrum is given in table 5.1. From there, we see that the three SM particles
¢; and d; come accompanied with additional vectorlike pairs /—¢ and d—d, respectively. Exotics
with nonzero hypercharge, such as xf and z; , are also vectorlike. Since the exotics with no
hypercharge m; and y; are doublets under SU(2)r, they can allow couplings such as m;m;
and decouple from the low—energy spectrum. The remaining particles are either SM singlets
or the three sM matter generations which need not be decoupled.

Note that Higgs doublets and lepton doublets cannot be distinguished in a supersymmetric
theory, therefore both classes of particles are denoted by £. That implies particularly that the
down—type Higgs hg is given by a linear combination of some /;, whereas the up—type Higgs
h, (required in supersymmetric theories) is a superposition of ;.

5.1.1 Renormalizable Couplings, “Heavy Top” and Proton Decay

At trilinear level, string selection rules (see section 4.4.1) allow only few couplings of SM
particles. There is one coupling of the type g¢; E_j up, with only untwisted fields, which we
consider to be the Yukawa coupling that gives mass to the top—quark. Notice that this
coupling allows us to identify the right—-handed top, the up—type Higgs doublet h, and the
quark doublet of the third generation.

There are also four couplings of the type g; ¢; d;, and four of the type & l; . They
can produce the down-type quark and lepton masses as well as lepton number violating
interactions. Clearly, depending on the specifics of the vacuum configuration and, particularly,
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Figure 5.1: Dangerous contribution to proton decay through exchange of the scalar compo-
nent of d due to dimension four operators of the type ¢; ¢; di, and @;d;di. The proton decays
rapidly as p — 7le™.

on the choice of the down—type Higgs hg, it can be that lepton violating operators do not
appear in this model.

Further, we note that lepton number violating interactions g; ¢; dj, are harmless to the
stability of the proton as long as they do not come accompanied by quark interactions, ﬁiczj dy,
(see fig. 5.1). Thus, in this model, due to the absence of ﬂiJij operators, the proton is
stable at trilinear level, so that dangerous effective dimension four operators can appear only
suppressed by different powers of Mgy, .

5.1.2 Spontaneous Symmetry Breaking and Decoupling of Exotics

Let us suppose that all sM singlets s9 develop nonzero VEVs. Since they are only charged
under some hidden U(1)’s, the gauge group gets spontaneously broken to

Gsm X Ghidden (5.5)

where Ghigden = SO(8) x SU(2). Note that if more than one fields h; were allowed to develop
VEVS, the unbroken hidden gauge group would certainly be Gpiggen = SO(8).

Additionally, the vectorlike states get large masses. In order to verify this, one has to
obtain the mass matrices M,z of the exotics and assume that the VEVs of the singlets s?
are of the same order (s?) ~ s ~ My,. Replacing the singlets by their VEVs, one can then
compute the rank of the effective mass matrices. A mass matrix with maximal rank ensures
that all exotics of the corresponding class obtain masses proportional to the VEvs s. We
make at this point a strong assumption, namely that all singlets acquire VEVs consistent with
supersymmetry, that is, along D— and F—flat directions. This assumption will be confirmed
later.

We have checked that the rank of all the mass matrices is maximal, such that the exotics do
decouple from the effective low-energy theory. Below we present most of the matrices. There,
s"™ indicates the dominant mass term for each entry, i.e. s denotes that the corresponding
coupling appears first when n singlets are involved. Each entry usually contains many terms
and involves different singlets as well as coupling strengths, which are presumed to be of order
1 in string units.
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Similarly, the 20 x 20 mass matrix M+, has also maximal rank. The dd mass matrix is
4 x 7 such that there are three massless d states. The ¢/ mass matrix is 8 x 5, so there are
effectively three massless lepton doublets.

As we already mentioned, without additional information, it is not possible to distinguish
between lepton doublets and Higgs doublets. Therefore, since the mass matrix M ,; has max-
imal rank, all possible Higgs pairs are massive. If one wishes to recover the Higgs mechanism,
it is necessary to choose a special vacuum configuration where the rank of the matrix M,;
is reduced. This corresponds precisely to the supersymmetric p—problem, that in a first ap-
proach is not automatically solved. Note that, since the matrix M,; is not diagonal per se,
the resulting Higgs doublets will be indeed linear combinations of the fields ¢; and ¢;. Un-
fortunately, this spoils our argument about the identification of the Higgs fields through the
trilinear coupling of the top quark.

Summing up all the ingredients just described, we end up with the exact MSsM spectrum.

Let us stress that these properties, although particular to this orbifold-MssM, are quite
similar to those of other models. That is, all 93 MSSM candidates with “heavy top” accept
this description. Perhaps one of the most relevant differences will be the number of lepton
doublets ¢ and ¢ that can be interpreted as Higgs doublets. In some cases, there are only four
susy fields ¢; and one /;, which may be seen as three lepton doublets and one pair of Higgses.
This can lead to considering a particular model more predictive than another.

Let us stop our discussion on this model here and proceed to explain how to guarantee
SUsY at high energies in these models. This model will appear regularly in the following
sections in order to exemplify some of the new elements introduced.

5.2 Supersymmetric Vacua

In the previous section, we have assumed that all SM singlets can acquire nonvanishing VEVs
without destroying some of the properties of our orbifold-mMssM. However, this is in general not
true. In this section we discuss the constraints to get supersymmetric vacuum configurations,
their consequences and a method to obtain such vacua.

Momentarily, let us assume only global supersymmetry. We would like to verify whether
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the MssM candidates admit supersymmetric vacuum configurations. This amounts to inspect-
ing whether a combination of fields can attain VEVs, such that the D— and F—terms vanish.
This is explained as follows. The scalar potential in a supersymmetric gauge theory is given,
in terms of the auxiliary fields D, and F; of the gauge and chiral multiplets, by

V(gi.0!) = ZD (- 0))° +Z|F|2 (5.6)

where the auxiliary fields are expressed in terms of the fields ¢;,¢; and the gauge group
generators t, in the representation of ¢;. The auxiliary fields are given by

Do = Y oltati, (5.7)
ow
Fo= 5o (58)

with W = W(¢;) being the superpotential. From a field theoretical perspective, solutions
of egs. (5.7) and (5.8) represent supersymmetric vacua. However, string theory introduces a
new element, namely an anomalous U(1) symmetry, U(1)4 (such that trtq # 0). In presence
of U(1) 4, the corresponding D-term analogous to eq. (5.7) gets an additional contribution®
¢ [137], giving rise to the so-called FI D—term

g M3
DA—qutmmf Zqz“w»f Toga trta, (5.9)

where t4 is the generator of U(1)4 and g is the four-dimensional coupling constant, given by
the VEV of the four-dimensional dilaton ¢ as g = ¢!¥). In our conventions, trt4 > 0 and thus
¢ > 0. Note that the orbifold point vacuum, i.e. (¢;) = 0, is not supersymmetric as (for g # 0)
the extra term ¢ induces SUSY breakdown at a scale too large to be realistic.

Supersymmetry remains unbroken if and only if the scalar potential admits a minimum
¢; = (¢i) such that V({(¢;), (gbj)) = 0. Therefore, any supersymmetric ground state has to
satisfy the D— and F—flatness conditions

(Dy) = 0 Va, (5.10a)
(F) = 0 Vi. (5.10Db)

Note that there are as many F;—constraints as fields ¢;.

Provided a set of fields ¢;, supersymmetric field configurations are given by the sets of
VEVs (¢;) satisfying eqs. (5.10). Naively, it appears that the number of constraints is larger
than the number of variables, so that the system seems to be overconstrained. However, this
is not the case. As well known, complexified gauge transformations along (F—)flat directions
allow us to eliminate the D—term constraints?, such that the number of variables equals the
number of equations.

1To maximize confusion, normally ¢ is called FI term. Note that D4 is called here FI D-term.
For a field-theoretic discussion, see e.g. ref. [138, p.57-58]. Details on heterotic orbifolds can be found in
ref. [48]
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5.2.1 D-Flatness

Let us review first the issue of D-flatness and cancellation of the FI term [104,133,139-141].
Since, in particular, D4 must vanish in a supersymmetric vacuum, at least some of the scalars
are forced to attain large VEVs, typically not far below the string scale. This sets the scale of
the breaking of U(1) 4 and other gauge symmetries, under which the scalars might be charged.
In other words, vanishing of the FI D—term triggers spontaneous symmetry breaking at a very
high scale. On the other hand, the condition D4 = 0 also implies that there must be at least
one field whose anomalous charge ¢ is (in our convention) negative (i.e. opposite in sign to
trt A) .

D-flatness can be achieved by the noticeable observation that, in general, every holomor-
phic gauge invariant monomial (HIM) represents a D-flat direction [133]. Particularly, in
theories without an anomalous U(1), the condition (5.10a) is satisfied if there exists a mono-
mial I(¢;). Then, the VEVs of the scalar fields in a D-flat vacuum configuration are read off

o (5 ) = ctéD (511)

where c¢ is a complex dimensional constant, ¢ # 0. This remarkable result follows simply from
the gauge invariance of I(¢;) [133]. In the case that U(1)4 is present, the monomial I(¢;)
must be invariant with respect to all gauge symmetries except U(1)4. The anomalous charge
of this monomial must be negative [141]. Let us explain this in more detail and propose a
method to find such HIMs.

In supersymmetric theories with a single U(1) gauge theory, the so-called D—term potential
is given by

Vp «

2
Z%‘ |¢z‘|2] - (5.12)

Consider as a first example a U(1) gauge theory with two fields ¢+ carrying the charges +1.

Since Vl;/z o |¢4|? = |¢_|?, Vp vanishes at the ground state |(¢4)| = [(¢_)|. That is, one has
a D-flat direction, parametrized by ¢ = [(¢4+)| = |(¢—)|. Note that, if one writes the HIM
I(¢1+) = ¢4 ¢, which is the only possible holomorphic and invariant monomial, eq. (5.11)
yields the same result.

Consider now a theory with one field (¢1) with charge 2 and two fields (¢9,¢3) with
charges —1. Then we have many flat directions, described by the roots of the equation
2[(p1)]? — [{p2)]? — |{¢3)|? = 0. The solutions are the three directions

[(¢1)] = [(¢2)] = [(¢3)] = ¢; (5.13a)
(@2l =0, [(¢3)] = V2/(¢1)] = ¢/ (5.13b)
(@3] =0, [{d2)] = V2/(¢1)| = ¢" (5.13¢)

with complex parameters ¢,¢’ and ¢’. It is convenient to associate these directions to the
HIMs

Prads, d1d5, ¢35, (5.14)
respectively.
From this example, we notice that a monomial I(¢;) = @] ¢5>--- " represents a flat
direction defined by the relation
oul _ Joul - _ L@l g g = 0 for my = 0. (5.15)

3

Vi Vm
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It is, however, clear that there is only a finite number of linearly independent D—flat directions.
In the previous example, the third direction is not independent of the other two. In other
words, the requirement Vp = 0 poses only one constraint on the three real variables (|{¢;)|?)
entering eq. (5.12). The space of absolute values |{¢;)| is two-dimensional. The power of using
the monomials is that checking whether certain monomials are linearly independent or not is
fairly simple. One identifies with each monomial the vector of exponents, n = (ny,ng...).
The flat directions are independent if and only if the vectors are linearly independent. In the
previous example one would get the vectors (1,1,1), (1,0,2), and (1,2,0), out of which only
two are linearly independent.

It is also clear how to obtain these vectors: all of them are orthogonal to the vector of
charges ¢ = (q1,42,...). That is, the problem of finding the above monomials (and thus the
D-flat directions) is reduced to the problem of finding vectors n with the following properties:

1. ¢g-n=0,
2. n; € Ng.

The property that the n; be integer-valued does not pose a constraint in our models: since the
charges are rational, one can rescale any n having the first property such as to have integer
entries. However, the requirement that the entries be nonnegative, which reflects that the
monomials ought to be holomorphic, is a constraint.

The discussion so far can easily be extended to U(1)™ theories. Here the D-term potential

m 2
Vb o leqﬁﬂmwzl , (5.16)
j=1L i

where q(j ) is the charge of the field ¢; under the j*" U(1) factor. Now a D-flat direction has

(3
to satisfy the above constraints for each U(1) factor separately. Again, it is advantageous to
represent D—flat directions by holomorphic gauge invariant monomials. Then the vector n of
exponents has to be orthogonal to every charge vector ¢\/) = (qgj ), qgj ), ...). In other words,
n has to be in the kernel of the charge matrix @),

18

1 @)

q1 42
q(2) q(2)

Q-n =0, with Q = L (5.17)
qgn) qén)

Hence, the problem of finding the D—flat directions of a U(1)™ gauge theory is reduced to the
task of calculating the kernel of the charge matrix ), and to forming linear combinations of
elements of this kernel in such a way that the entries are nonnegative integers. The maximal
linear independent set of such linear combinations is in one-to-one correspondence with the
independent D-flat directions. It is straightforward to see that the results obtained so far
generalize to the nonabelian case [133].

We can now review the issue of cancelling the FI term. For an anomalous U(1), the D—term
potential Vp follows from the FI D—term, eq. (5.9),

VA o [Yatlel +e] (518)
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Recalling that & > 0 in our conventions, to cancel the FI term one thus has to find a holomor-
phic monomial,

I = ¢Msh? ... (5.19)

with net negative charge under U(1) 4, i.e.
Zni @' < 0. (5.20)
i

To summarize, the D—flat directions are in one-to-one correspondence with holomorphic
gauge invariant monomials. In the abelian case, such monomials can be identified with ele-
ments of the kernel of the charge matrix ) with nonnegative integer entries. Cancellation of
the FI term requires the existence of a holomorphic monomial with net negative charge under
U(1) 4, which is gauge invariant with respect to all other group factors.

5.2.2 F-—Flatness

Let us now turn to the discussion of F—flatness. Since the superpotential W is nonrenormal-
izable, studying this question in detail is somewhat less general than D—flatness because most
of the statements one can obtain are order-dependent.

However, ensuring that a vacuum configuration is F-flat (ignoring momentarily D-flatness)
is mostly trivial because the number of equations

(F) = <§Z> —0 Vi (5.21)

coincides with the number of variables and, in general, when the superpotential is a nontrivial
polynomial, some of their solutions are nontrivial.

In particular, nontrivial solutions can always be found in orbifold compactifications. Let
us illustrate it in the case of Zy orbifolds. If the superpotential W, at order z in the fields
¢; is allowed by string selection rules, then an ‘extended’ superpotential W ~ Wy + Wév +
WO2N 14 .. is also admissible.

As an example, assume a Zg orbifold toy-model with two particles, ¢; and ¢o. Suppose
further that the superpotential®> Wy = ¢143 is allowed. Clearly, the solution to eq. (5.21)
is given by (¢2) = 0 and (¢;) arbitrary. Suppose now that (¢2) = 0 is unwanted for some
reason. An allowed extension of Wy would be given by W ~ W, + Wé‘ = ¢103 + #1¢5. In this
scenario, the previous solution is still a valid option, but there is also an additional nontrivial
F-flat vacuum configuration, parametrized by (¢$) = —1/4(¢3) and arbitrary (¢3) # 0.
Notice that (¢2) in this vacuum configuration is nontrivial. This discussion makes manifest
the order-dependence of F—flatness. In this sense, verifying F—flatness at a given order in the
superpotential is physically not so relevant in orbifold models.

After arriving to an F—flat vacuum configuration, the natural question is whether recov-
ering D-flatness imposes additional conditions and, therefore, overconstrains the choice of
the vacuum parameters. It has been shown [48] that in orbifold models, given a solution to
the F—term equations (5.21), complexified gauge transformations scale this solution to give a
family of solutions. Remarkably, particular rescalings succeed in rendering all the D-terms
(including the FI D—term) zero.

3Note that we omit all coefficients.
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(W) =0

Up to now, our considerations are valid only for globally supersymmetric models at pertur-
bative level. An admissible vacuum configuration arising from string theory, however, must
also be consistent with local susy. In fact, supergravity as well as nonperturbative effects can
modify the properties of a particular vacuum configuration.

In an attempt to deal with those additional effects, the condition (W) = 0 is commonly
imposed in the same footing as F-flatness (see e.g. refs. [49,141]). Strictly speaking, this
condition has nothing to do with preservation of SUSY. Since in supergravity the gravitino
mass is given by

maa o [(W)2, (5.22)

(W) = 0 implies mg3/, = 0 and therefore, through the relation A = —3 M3, m3 /9> @ vanishing
cosmological constant A. Recall that in the context of supergravity, a nonvanishing gravitino
mass does not necessarily imply breakdown of supergravity. That is, imposing the condition
(W) = 0 amounts to requiring the existence of a Minkowski vacuum (similar to the vacuum
we are living in) rather than unbroken supersymmetry.

A caveat is in order. To compute e.g. the gravitino mass, eq. (5.22), and thus to discrim-
inate a vacuum according to its nature (Minkowski, De Sitter or anti-De Sitter), it is funda-
mental to consider the complete superpotential W, including, in particular, contributions due
to nonperturbative effects. However, the superpotential considered in previous sections does
not include those contributions because, at this level, they are hardly controllable in orbifold
constructions. Therefore, requiring (the incomplete) (W) to vanish does not affect directly the
VEVs of the fields ¢;, contrary to the D— and F—flatness conditions that we discussed above.

5.2.3 A susy Vacuum of the Orbifold-MmssMm

We are now in position to verify whether the orbifold-MssM introduced in section 5.1 possesses
a supersymmetric vacuum. By following the method described above, we find the HIM

I = 5959 (s9)” (s2)" (s8) (s32) (s35)” (sh1)” (sds)" (s36)” A4 hs 3 h3 hds by hao hy hSe (5.23)
with net anomalous charge >, ¢/ = —52/3. We further identify that some fields share the
same gauge quantum numbers:

53 < sy = 59 < sig, sa < 815, 595 < 854 - (5.24)
Therefore, we can consider a vacuum configuration where the SM singlets*
{3:} = {59, 59,58,52, 52,59, 505, 805, 536, 592, 594, 895, 541, 843, 896, P2, ha, hs, ho, his, hia, hoo, ko1, ko) (5.25)

develop nonzero VEVs while the expectation values of all other fields vanish. Fields s are
singlets under all nonabelian gauge factors and hypercharge, but carry (hidden) U(1) charges;
fields h; are doublets under the hidden SU(2) and charged under the U(1)’s excepting hyper-
charge (cf. tables 5.1 and F.2).

Let us assume that all particles attain (almost) the same VEV (5;) ~ s. From eq. (5.9)
with trtq = 170/3 for the orbifold MSSM, we see that the FI D—term is given by

52, g Mg 170
3% T 192m2 3

“In table F.2 the two sM singlets 5?7 2 have been denoted by x1,2. The reason will become transparent when
we introduce B— L in section 5.4.

(Da) ~

(5.26)
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Therefore, in order for the chosen vacuum to be D-flat, the expectation values of the sm
singlets should be s ~ /g Mp; x 1072 =~ (few) x 10'6 GeV.

In the vacuum configuration (5.25), the gauge symmetry group G4p given in eq. (5.4)
breaks spontaneously, as expected, to

Gsm X Ghidden (5.27)

where Ghigden = SO(8). Notice that the rank of Ghiqgen is four. This will turn out to be very
general in models with realistic features and will lead in the next section to the conjecture
that susy breaking through gaugino condensation occurs generally at an intermediate energy
scale for realistic heterotic orbifold models.

For completeness, let us address F—flatness in the orbifold-MssM. To verify whether this
vacuum is also F—flat, we would need the complete superpotential W (i.e. up to arbitrary
order in sM singlets). Realistically, we have to stop computing the superpotential at a given
order. We consider here, for simplicity, the order-six superpotential

W = s§hs(s3h1 + syh2) + (s5h1s + s3has)(shy + si3) (has + has)
+ (s92h14 + 854h16) (s + s3) (has + h2o) (5.28)

+ haa(sPhs + s93ha) (521(536 + 59g) + $95(sa + 593) + s95(s95 + 526)) .

The resulting F'-terms are provided in eqgs. (F.26). We observe that with nonvanishing VEVs
for the fields (5.25), there are still some nonzero F—terms, implying that some of those fields
should have trivial VEvVs. However, as we have mentioned before, one can argue that, if we go
to higher orders in W, nontrivial solutions to all F; = 0 equations can be found. As a matter
of fact, we find that if we go to order eight in the superpotential, such nontrivial solutions
exist.?

5.3 Supersymmetry Breakdown

In the previous section, we have found that supersymmetric vacua can be achieved in MSSM
candidates (at least at perturbative-level). However, as SuSy is broken in nature, realistic
models should admit spontaneous SUSY breaking at an intermediate scale. Remarkably, it is
known that in most N’ = 1 vacua SUSY is broken spontaneously by nonperturbative effects.
Our understanding of nonperturbative breaking of string theory is as yet very limited, but
below the string scale we can work in the effective quantum field theory. Indeed, there is a
reasonably coherent understanding of nonperturbative breaking of sUsY in field theory, and the
low—energy theories emerging, in particular, from heterotic orbifolds are typically of the type
in which this breaking happens. This topic is quite involved as there are several symmetry-
breaking mechanisms, such as gaugino condensation, instantons or composite goldstinos.

In orbifold models with realistic features, there are frequently additional (nonabelian)
gauge symmetries that remain unbroken even after all exotics have acquired large masses.
This hidden sector® Ghiqqen usually contains little or no matter at all. These are precisely the
ingredients that can trigger spontaneous SUSY breaking via hidden sector gaugino condensa-
tion [57-59,142].

5The (lengthy) details are available from the author upon request.
5Notice that a requirement to call it “hidden sector” is that the observable matter (e.g. the MssM particle
spectrum) be uncharged under Ghidden-



5.3. SUPERSYMMETRY BREAKDOWN 85

Gaugino condensation occurs when one or more gauge groups in the hidden sector become
strongly coupled at an intermediate scale A. To determine the exact scale in which it happens,
we need to know the running of the coupling of the hidden sector. It is given by

1 5 bo
; hidden = 773 »
97 2(Mcut) — Bhidden In(M&yr/1?) T 1672

Tenaaen (1) = (5.29)

where g is the four-dimensional (string) coupling constant given by g2 = e 2} = Re(S),
and by is the well known beta-coefficient which depends on the gauge group Ghigden and the
(hidden) matter content. The Landau pole of the hidden sector is determined by gémdden — 00.
Hence, we obtain

1 1
A =~ MGUT exp{—%m} s (530)

where we have omitted the label yjqden to keep the results short. Note that the scale A is
below the string (and GUT) scale, but above the scale where any of the observable gauge
groups become strong. Just as with quarks in QCD, the strong attraction causes the gauginos

to condense [57], B

As in QCD, this condensate breaks a chiral symmetry, but in the pure supersymmetric gauge
theory (containing only gauge boson and gauginos) it does not break susy.

In string theory, the fields of the hidden sector couple to one special moduli, namely the
dilaton S. In particular, the auxiliary field of S couples to the (hidden) gauginos inducing, at
scales below A, a nonperturbative effective interaction (compare with eq. (5.30))

Fs ON) ~ Fg A® ~ Fg M3ype 25 . (5.32)

It is usual to define the parameter a = 3/2( that, in a way, can be used to determine whether
SUSY breaking occurs at a realistic energy scale (see e.g. ref. [143]).
The existence of such coupling implies an effective nonperturbative superpotential

3
=%

This superpotential breaks supersymmetry. Despite the fact that a given model could be
supersymmetric at all orders of perturbation theory, nonperturbatively, the term

W~ Méyre ™, @ (5.33)

Fl= —%—Vg ~ aMgyre ™ (5.34)
is nonzero and, thus, breaks susy. Furthermore, the F—term in eq. (5.34) leads to S — oo at
the minimum of the resulting scalar potential. This is the notorious dilaton run-away problem
that appears in models with a single gaugino condensate and a classical (universal) Kahler
potential

K=-In(S+59). (5.35)

To solve this problem, one can either employ multiple gaugino condensates or nonperturba-
tive corrections to the Kéahler potential. In orbifold models, nevertheless, the first option is
generically ruled out since there is mostly just one unbroken gauge group factor in the hidden
sector or the condensation scale of a possible second hidden gauge factor is too low (as is the
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case for e.g. SU(2) or SU(3)). Thus, we are left with the second option only. It consists in
amending the classical Kahler potential for the dilaton by a nonperturbative functional form,
such that

K = —In(S+5)+AK,, . (5.36)

The functional form of AK,, has been studied in the literature [143-148]. For a favorable
choice of the parameters, this correction allows one to stabilize the dilaton at a realistic value,
Re S ~ 2, while breaking supersymmetry [143,147-150]. The T-moduli can be stabilized at the
same time by including T-dependence in the superpotential required by T—duality [151,152].
In simple examples, the overall T-modulus is stabilized at the self-dual point such that Fr = 0.
This leads to dilaton dominated SUSY breaking. There are many problems attached to moduli
stabilization that, in principle, can have some influence on our results. However, they are
beyond the scope of this thesis.

If the dilaton is stabilized at a realistic value Re(S) ~ 2, gaugino condensation translates
into SUSY breaking with the gravitino mass determined by the VEV of the (hidden) gaugino
condensate [58]

(AN) A3
Mgy N st A —s . (5.37)
PTME T M
In particular, notice that
A ~ 108 GeV (5.38)

leads to the gravitino mass in the TeV range. It is clear that for certain (hidden) gauge groups
and matter content, A can be in the right range.

Let us point out that, even if the scale of gaugino condensation is adequate (~ 10%3
GeV), there are many factors that can affect it. In particular, there are string threshold
corrections [153-157] which lead to different gauge couplings in the visible and hidden sectors.
Whereas in the visible sector, due to gauge coupling unification, one requires g~2(Mqguyr) ~ 2,
in the hidden sector string threshold corrections can alter its value as

gl?iglden(MGUT) ~ 2 (1 - A) ) (539)

where A parametrizes such corrections. In this case, the running of the hidden gauge coupling
changes and, hence, so do the corresponding condensation scale:

A ~ Mgyt exp {—%2(1 - A)} . (5.40)

In the next section, we will have the opportunity to see how these corrections affect the
breaking of supersymmetry.

5.3.1 suUSsY Breakdown in the Orbifold-MmssMm

In section 5.2.3, we have seen that in an admissible vacuum configuration that preserves
SUSY at high energies (as high as the string scale) the unbroken hidden sector is reduced to
Ghidden = SO(8). Furthermore, we observe that there are some 8-plets in this sector (cf.
table 5.1). These states can be split in two sets, which form mass terms independently (see
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Figure 5.2: Running of the coupling constants of (a) Ghidden = SO(8) (orbifold-mssm) and
(b) Ghidden = SU(4) [48] for different threshold corrections A.

table F.1). In the vacuum configuration (5.25), their mass matrices are given by

53
3,3>. (5.41)

W o W
Yo wm %
w o o o
!
T
5
|
~/~
oo

The first of these matrices has maximal rank, but from the second matrix there is a pair f, f
that stays massless up to energies lower than Mguyr.

Let us proceed to compute the gravitino mass mg/;. We will require the beta-coefficient
that can be computed by

N = 6. (N —1) — #(2N-plets) ; (5.42)
in our case it is b(s]’o(g) = 16. Therefore, with the realistic value for the stabilization of the
dilaton, Re(S) ~ 2, we obtain from eq. (5.30)

A ~ Mgure ™ ~10'2 GeV, (5.43)

what in turn yields the gravitino mass mgz/,, ~ 1 GeV. This scale is phenomenologically
unacceptable because that scale has been already ruled out by experiment. However, as
we mentioned before, threshold corrections can modify this scale. In fact, by using egs. (5.29)
and (5.40), we find that threshold corrections enhance the scale of gaugino condensation and,
therefore, also the gravitino mass. In fig. (5.2) we present the running of the gauge coupling
g(u) for two different cases. Fig. (5.2)(a) illustrates the influence of different values of A
on the behavior of the gauge coupling. We notice that for A = 0 we recover the result
given in eq. (5.43) whereas for A = 0.3 the condensation scale becomes almost 10'* GeV. In
fig. (5.2)(b), we compare our result with a case where the hidden sector has an SU(4) gauge
group and no massless matter in that sector. We might say that the situation in SO(8) is
somewhat better than in SU(4). However, we must recall that there are of course other factors
that can affect our estimates. For example, we have not described precisely the mechanism to



88 CHAPTER 5. LOW ENERGY PHYSICS FROM ORBIFOLDS

Criterion H 1S0(10),1 | 1/50(10),2 H VEe1 ‘ 1V Ee.2 ‘
0 heavy top 72 37 3 2
0 exotics decouple at order 8 56 32 3 2
U exotics decouple + gaugino condensation || 47 25 3 2

Table 5.2: A subset of the MSSM candidates.

stabilize the dilaton. Further, we have used the symbol ‘~’ in many of our equations because
those values are not precise. Therefore, in this study the most important result is that the
scale of sUSY lies around the phenomenologically interesting interval.

5.3.2 susy Breakdown in the (Mini-)Landscape

After having examined some of the most important aspects of gaugino condensation, we would
like to continue our study on the set of MSsM-candidates obtained in the last chapter through
a search guided by grand unification. We have found 196 orbifold models (cf. table 4.3) with
the following properties:

e SM gauge group times additional gauge factors,

e nonanomalous hypercharge of the Georgi-Glashow type, i.e. consistent with gauge
coupling unification,

e three MSSM matter generations plus vectorlike exotics,

e all vectorlike exotics are decoupled from the massless spectrum.

In order to save some computation time, we have imposed an additional constraint on the
models. Namely, we have demanded one trilinear coupling of the type ¢ ¢« which might be
responsible for the heavy mass of the top quark. Although this condition is not arbitrary, it is
also not imperative since a heavy top quark might also appear through alternative methods.
However, for consistency, we will stick to that constraint in this section.

The strategy we have followed consists in first finding a set of MSSM candidates and then
studying common features that could lead to some sort of low—energy predictions. In this
section, we concentrate on the question of SUSY breaking. Particularly, we would like to figure
out whether our MSSM candidates yield a reasonable scale of SUSY breaking via hidden sector
gaugino condensation.

With that purpose, we will impose an additional criterion in our search

[ Select models where exotics decouple + gaugino condensation

At this step, we select models in which the decoupling of the SM exotic states is possible
without breaking the largest gauge group in the hidden sector. We find that all or almost
all of the matter states charged under this group also attain large masses which allow for
spontaneous SUSY breaking via gaugino condensation.

The models satisfying all our criteria, -0, we consider the most promising MSSM can-
didates. Our results are presented in table 4.2. More details can be found in [158]. We find
it remarkable that out of O(10%) inequivalent models, ©(10%) pass all of our requirements,
including a hidden sector that allows SUSY breaking. In this sense, the region of the heterotic
landscape endowed with local SO(10) and E¢ GUTs is particularly attractive.

A comment is in order. We impose by hand the requirement that gaugino condensation
be allowed. By assigning VEVs to all sM singlets, i.e. without verifying explicitely D— and
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Figure 5.3: (a) Number of models vs. the size of largest gauge group in the hidden sector.
N labels SU(N), SO(2N), Eny groups. The background corresponds to step [, while the
foreground corresponds to step [ (see table 4.2). (b) As before, but with models of step 0
at the foreground.

F-flatness, the hidden sector gauge group is broken by matter VEVs charged under this group.
Similarly, the sM gauge group is broken in more general “vacuum” configurations where many
other fields can also acquire VEVs. Clearly, most of the string landscape is not relevant to our
physical world. It is only possible to obtain useful predictions from the landscape once certain
criteria are imposed. Here we require that gaugino condensation be allowed so that susy
can be broken. Since the largest hidden sector group factor would dominate SUSY breaking,
we focus on vacua in which this factor is preserved by matter VEvs. Within the set of our
promising models, we can now study predictions for the scale of SUSY breaking.

Our MssM candidates have the necessary ingredients for supersymmetry breaking via gaug-
ino condensation in the hidden sector. In particular, they contain nonabelian gauge groups
under which little or no matter states are charged. The corresponding gauge interactions
become strong at some intermediate scale which can lead to spontaneous supersymmetry
breakdown. The specifics depend on the moduli stabilization mechanism, but the main fea-
tures such as the scale of supersymmetry breaking hold more generally. In particular, the

gravitino mass is given by
A3
mgp X —5 (5.44)
Mg,
while the proportionality constant is model-dependent.
The gaugino condensation scale A is given by the renormalization group invariant scale of

the condensing gauge group,

1 1

With an appropriate mechanism, the dilaton can be stabilized at a realistic value Re(S) ~ 2
while breaking SUSY. As already mentioned, we see that for A ~ 1013 GeV, the gravitino mass
lies in the TeV range which is favored by phenomenology. sUSY breaking is communicated to
the observable sector by gravity [57].

In fig. 5.3(a), we display the frequency of occurrence of various gauge groups in the hidden
sector. The preferred size (IV) of the gauge groups depends on the conditions imposed on the
spectrum. When all inequivalent models with two Wilson lines are considered, N = 4,5,6
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Figure 5.4: Number of models vs. scale of gaugino condensation.

appear with similar likelihood and N = 4 is somewhat preferred. If we require the massless
spectrum to be the MSSM + vectorlike matter, the fractions of models with N = 4,5, 6 become
even closer. However, if we further require a heavy top quark and the decoupling of exotics
at order eight, N = 4 is clearly preferred (figure 5.3(b)). In this case, SU(4) and SO(8)
provide the dominant contribution. Since all or almost all matter charged under these groups
is decoupled, this leads to gaugino condensation at an intermediate scale.” Possible scales of
gaugino condensation are shown in fig. 5.4.

The correlation between the observable and hidden sectors comes about for a few reasons.
First, it is due to modular invariance which ties the gauge shifts and Wilson lines in the two
sectors. Second, the gauge shifts and Wilson lines in the hidden sector affect properties of the
massless spectrum, for instance, through the masslessness equations.

We see that among the promising models, just as in the orbifold-MSSM presented in sec-
tion 5.3.1, intermediate scale supersymmetry breaking is preferred. The underlying reason is
that realistic spectra require complicated Wilson lines, which break the hidden sector gauge
group. The surviving gauge factors are neither too big (unlike in Calabi—Yau compactifications
with the standard embedding) nor too small.

There are significant uncertainties in the estimation of the supersymmetry-breaking scale.
First, the identification of A with the renormalization group invariant scale is not precise.
A factor of a few uncertainty in this relation leads to two orders of magnitude uncertainty
in mg/y. Also, there could be significant string threshold corrections which can affect the
estimate although we see from fig. (5.2) that threshold corrections might enhance the scale
of susy breaking. Thus, the resulting “prediction” for the superpartner masses should be
understood within 2-3 orders of magnitude.

5.4 R-Parity and Proton Decay

An essential property of the MSSM that a realistic model must exhibit is R-parity. This has the
advantage of greatly reducing the number of arbitrary parameters in the superpotential, for-
bidding dimension three and four baryon or lepton number violating operators, and preserving
a viable dark matter candidate, i.e. the LSP. However, obtaining a conserved R-parity in string

"We note that before step [, gaugino condensation does not occur in many cases due to the presence of
hidden sector matter.



5.4. R-PARITY AND PROTON DECAY 91

_
u U
7T+,K+
d - =
J do-
L)
< w
q £ T~ _
u -V
—

Figure 5.5: Possible contribution to proton decay, involving the dimension five operator
qgqq?l. The proton decays as p — Ko or 7+ 7.

constructions sets frequently an insurmountable hurdle, which must however be overcome in
order to reach the MSSM.

Our strategy for accomplishing this is, in principle, quite simple. We identify first a
U(1) g, gauge symmetry and then give VEVS to some SM singlets that break U(1)p 1, to the

discrete subgroup
73t o (—1)3(BE) (5.46)

This unbroken discrete symmetry is the so-called family reflection symmetry or matter par-
ity [60], which, due to its properties, can be considered an R-parity. This is a global Zs
symmetry which is even on the Higgs doublets and odd on all SM quark and lepton fields.
Further, it forbids dangerous baryon or lepton number violating operators of dimension three
and four:

udd, qdt¢, (¢e and (h,. (5.47)

On the other hand, it allows quark and lepton Yukawa couplings as well as the Majorana
neutrino mass operator vv. However, there are certain dimension five operators that are
allowed by this symmetry:

“gjl'/)cqu' a4 ar s Kgfl)clal u;dy e, (5.48)

which can induce proton decay (see fig. (5.5)). (! and x(® are coupling constants. In the
mssM k(1) is constrained by [159]
(1) (1)

Fi121 . F1122 o Msusy

and 3 can take arbitrary values as long as they are consistent with perturbation theory.
Here, A denotes an intermediate cut-off scale and Mgysy ~ 10* GeV is the scale at which
SUSY is supposed to break.

We build the U(1)p_;, symmetry as a superposition of all gauge U(1)’s of the MSSM can-
didates excepting the anomalous one.® In our MSSM candidates, a natural choice for the
generator of U(1)p_;, follows from the standard breaking

SO(10) — SU(5) x U(1)y — Gsur x U(1)x , (5.50)

8In fact, this constraint might be relaxed. Yet in that case, one has to deal with the anomalies more
carefully.
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where the generators of hypercharge and B — L are given by

1 1 111
ty = (—=, —=, = =, = 51
Y < 27 2737373>7 (55)
thr = 2@ty+ty) = (0,0, 2 22 (5.52)
B-L — 5 Y X — ) 737373 .

with tx = (1°) generating the additional U(1)x. Under these symmetries, including SU(3).. x
SU(2)r, an MSSM matter generation has the quantum numbers

16 = (3,2) + (3,1)

+ (3,1)

q u

+ 121 4+ (LDt (Lo,

o=

11 2 _ 1 —
6’3 3’ 3 ’

(5.53)

Q) wi=

l € v

where the subscripts denote hypercharge and B — L charge, respectively. Further, the Higgs
doublets ¢ and ¢ have U(1) charges (—1/2,0) and (1/2,0), respectively.

Unfortunately, the symmetry generated by tp_; mixes with U(1)4 in our MSSM candidates
and is, hence, ruled out. We have to search for a different “suitable” definition of U(1)py,
which has to satisfy two conditions:

(1) it must assign the standard B—L charges, eq. (5.53) to all sM particles (including a pair
of Higgs fields), and

(ii) it must give most SM singlets a value that satisfies 3(B—L) =0 mod 2.

Condition (i) is clear, but the second condition requires some argumentation. Firstly, sm
singlets with charges 3(B—L) =0 mod 2 can obtain VEVs for decoupling exotics, as well as
giving effective quark and lepton Yukawa couplings. Secondly, if there are some singlets (let
us call them ;) satisfying 3(B—L) = 0 mod 2 and with nontrivial B— L charge, they will
break U(1)p_r, but will leave the R-parity, Zé\", unbroken. Moreover, note that if singlets
with 3(B—L) =1 mod 2 develop nonvanishing VEVs, R-parity is broken and dimension four
baryon/lepton number violating operators are typically generated. We would like to remark
that this approach to get R-parity is not unique. Alternatives arise from considering other
internal symmetries, such as R-charge® conservation (inherited from Lorentz invariance in ten
dimensions) [131] or T—duality [160].

Searching for generators of U(1)p_r is not difficult, but quite cumbersome. One has to
express tp_1, as a superposition of all U(1)’s, excepting the anomalous U(1),

tpr = intiy (5.54)

i#A

and solve (non)linear equations on the real parameters z; guaranteeing that the conditions
(i) and (ii) explained above be fulfilled. The precise description of the method is provided in
appendix D of ref. [78].

5.4.1 Supersymmetric MSSM Candidates

Before going any further, there is a question that we have to clarify. In section 4.4, it was
assumed that all SM singlets can acquire VEVs. Nevertheless, we have learnt in section 5.2 a
strategy to identify those singlets which admit a nonzero VEV in a consistent supersymmetric
vacuum. In the present case, since B— L must be broken spontaneously, it results impossible
to postpone the task of verifying D—flatness any longer.

9We refer here to one of the selections rules. See section 2.5.
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VSO(IO),l VSO(IO),2

Criterion O X 0O g

0 spectrum = 3 generations + vectorlike 72 56 | 37 53
U exotics decouple at order 8 56 50 | 32 53
[’ exotics decouple in SUSY configurations || 55 50 | 32 53

Table 5.3: A subset of the MSsSM candidates. The number of models with “heavy top” are
listed under 0. K denotes no “heavy top”. Only in one model, it was not possible to find a
supersymmetric vacuum configuration where all exotics decouple.

Let us focus on the models based on the shifts VS010)1 and VSO10).2  that is, in those
that concentrate most promising models. According to our previous discussion, all we have to
do is to verify whether there exist holomorphic invariant monomials (HIMs) with net negative
anomalous charge. All fields entering the monomials are allowed to attain nonvanishing VEVS
and, therefore, contribute to the masses of the exotics.

We recall our results from chapter 4 and complement them with our new findings in
table 5.3. In particular, observe that we have incorporated the nontrivial criterion ’. We
have verified that all vectorlike exotics acquire large masses. These results are crucial for the
discussion on breaking of U(1)p_r..

Notice that we have not discussed F—flatness or any other additional constraint (e.g.
(W) = 0). As we mentioned in section 5.2, the reason is that other conditions are not
relevant since they depend on technical particularities of the models, such as the order of the
perturbative potential at hand. On the other hand, we do not have any prescription to write
the full superpotential including all possible nonperturbative contributions. Additionally, we
have shown that once one has found a D-flat configuration, it is always possible to find a
nontrivial solution to the F—term equations.

5.4.2 R-Parity Invariant MssM Candidates

For simplicity, we focus here only on those models from table 5.3 with a cubic top Yukawa
coupling, that is, on those 55+32 MSSM candidates satisfying simultaneously criteria [1 and
0.

We notice that the shift VSO0 seems still to be more promising in comparison to
V80(10):2 With our method, we find that 34 of the 55 (5 of the 32) MssM candidates from the
first (second) shift vector admit nonanomalous definitions of B—L . Each model, nevertheless,
correspond to a big family of configurations with distinct acceptable U(1)p_; symmetries.
There are two reason for this to happen:

e In many cases there are vectorlike exotics with SM gauge charges identical to those of
quarks and leptons. Further, without B—L , each lepton doublet ¢ could very well be a Higgs
boson ¢. Thus there are different ways to choose which of these states have standard B—L
charges. Each choice can lead to a different (and nonanomalous) definition of B—L .

e For each choice of sM particles above, there may be more than one B— L definition.
The system of equations that determine the values of the variables z; in eq. (5.54) might be
underconstrained. Therefore, in some cases, there are (continuous) families of B—L generators
(i.e. some of the z;’s are free or fulfill equations with an undetermined number of solutions).
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These ambiguities, although disturbing at first sight, might also be considered a rich source
of new physics. However, it is clear that we need to implement new criteria in order to reduce
the number of B — L configurations. We require the presence of sM singlets with charges
B—L =0,+2,+2/3,42/5,...,46/7 in the spectrum!®. Configurations with singlets having
B—L charges consistent with 3(B—L) = 0 mod 2, but different from the values just mentioned
are automatically disregarded.

Including only these possibilities, we find 3447 (144) consistent B — L generators from
the first (second) SO(10) shifts. The question is now whether all these configurations are
inequivalent or not. It can be argued that, if one considers one single model (shift vector +
Wilson lines + hypercharge generator) with several B—L configurations, we could distinguish
the inequivalent configurations by comparing the sets of SM singlets with charges fulfilling
3(B—L) =0 mod 2. If these sets (and not the charges) coincide in two models, one might
state that they are equivalent and, thus, that one of them can be ignored. This is indeed the
approach we follow.!!

In this approach, we find that there are “only” 85 (8) inequivalent B — L configurations
from VSO00)1 (1780(10).2) = Fyrther, as we are interested in models containing solely the
SM gauge group times a hidden sector for gaugino condensation, one can verify whether all
extra unbroken U(1)’s break when fields with proper B— L charges attain VEvs. Requiring
the absence of extra unbroken U(1)’s reduces this set to 42 (0) acceptable configurations.
Finally, demanding that all exotics decouple along D—flat directions leads to 15 (0) acceptable
solutions with an exact low energy R-parity. We list the corresponding shifts, Wilson lines
and generators of hypercharge and B—L in table E.1. These input parameters can be used
to determine all other properties of the models.

This result is specific to our (B — L)-based strategy and we expect, in general, more
acceptable models to exist. We point out that there is a big uncertainty in this number and,
therefore, it should be taken as a lower bound.

5.4.3 R-Parity in the Orbifold-Mssm
The orbifold-MssM allows us to define a suitable B— L generator which leads to the standard
charges for the SM matter, eq. (5.53). The generator is given by

tpr = (-1,-1,0,0,0, 2, 2, 2)(-2z+3,-1,0, -2, —2,0,0,0) , (5.55)

with arbitrary x. Let us take x = % Then the B— L generator we shall use is

tp—r = (_1a -1,0,0,0, %a %a %) ) (_%a _%a 0, _%a _%a 0,030) . (556)
An interesting feature is that the spectrum contains a pair of fields with B—L charges 42, so
that, if the B—L gauge symmetry is broken by VEVs of these fields, the matter parity (—1)3(B*L)
is conserved and proton decay due to dimension three and four operators is suppressed. In
table F.1, we have summarized the matter spectrum of the model. Since now we include B—L

0Note that we have included also charges that violate the condition 3(B—L) = 0 mod 2. This is also
admissible because other discrete symmetries resulting from the breaking of U(1) 5z, might be as good as Z3".
Further details can be found in appendix C of ref. [78]

" Nevertheless, soon we found that some configurations with identical sets of singlets with correct B — L
charges led to different charges in the MSSM matter fields and therefore different phenomenological properties.
It seems necessary to try a different approach.
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, we can now distinguish between fields with identical SM quantum numbers; in particular, we
can distinguish now between Higgs and lepton doublets.

The vacuum configuration (5.25) is still admissible in presence of U(1)p 1. In this config-
uration, SM singlets with B—L charges 2, labeled y1 = s! and x2 = 59, attain nonzero VEVs
and thus break B—L by two units, such that, e.g. particles with B—L charge 1 are equivalent
to particles with B—L charge equal to —1. This example applies to the right-handed neutrinos
to be studied in the next section.

Let us now proceed to enumerate some of the properties that the orbifold-MSSM acquires
after breaking B— L.

Absence of proton decay operators of dimension three and four. This is, of course,
not surprising since we have imposed B—L just to avoid these operators.
Cancellation of the p—term. The Higgs mass terms are

20 0 3
- 5 53 8 58
i (Mﬁ%)ij ¢;j , where /\/ldgd) = = N (5.57)
s 0 0 s
s 0 0 8
The up-type Higgs h, is a linear combination of ¢1, ¢3 and ¢4,
hy ~ f§2(51 + (53 + §4 (54 R (5.58)
while the down-type Higgs is composed out of ¢o and ¢3,
hg ~ ¢2+ 3. (5.59)

Let us remark that this spoils our argument about the existence of “heavy top”.
Notice that in this vacuum configuration the p-term, being defined as the smallest eigen-
value of Mg,
PwW

Bo= m ) (5.60)

hu=hg=0

vanishes up to order 5%, at which we work. It is a way to deal with the supersymmetric
p—problem.
Charged fermion Yukawa matrices. The up-Higgs Yukawa couplings decompose into

4
WYukawa D) Z(Yu)gf) qi 7jfj (5]? 5 (561)
k=1

)

where the matrices Yu(i are given in appendix F. Thus, the physical 3 x 3 up-Higgs Yukawa

matrix is

0
YV, ~ ZyW4+yv® 45ty® = | o (5.62)

/\,5

S

Note that due to the Higgs mixing the top quark Yukawa coupling for this vacuum configura-
tion is given by 52. Therefore, the corresponding 5 VEVs are required to be quite large.
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The down-Higgs Yukawa couplings decompose into

4
k —
Wyukawa O Z(Yd)z(j) ¢ dj dr (5.63)
k=1
where again the Yukawa matrices are provided in appendix F.
The physical 3 x 3 down-Higgs Yukawa matrix emerges by integrating out a pair of vec-
torlike d— and d—quarks,

1 320
Y; = 1 320 (5.64)
s 50

We note that both the up and down quarks are massless at order six in SM singlets. However,
we have checked that the up quark becomes massive at order seven and the down quark gets
a mass at order eight.

Analogously, the physical 3 x 3 matrix emerges by integrating out a pair of vector-like £—
and /—leptons,

11 3
Y, = 5 5 32 (5.65)
0 0 55

Dimension five baryon and lepton number violating operators. We have looked for
effective dimension five baryon and lepton number violating operators in this model. We find
that to order 3° no such operators exist. However, these operators can be generated once the
exotics 0;, 0; are integrated out. Fortunately, a clever choice of VEVs for the fields {3;} can
guarantee sufficient suppression of all induced ¢ q q £ operators, consistent with current bounds
on proton decay, eq. (5.49).
p-term and Minkowski space. In many MSSM candidates, it happens that the p—term
is identified with the SM singlet superpotential, W (s;). Unfortunately, this relation does not
hold the orbifold-MssM. This is intimately related to the number of Higgs pairs found. In the
orbifold-MssM there are four fields of this type and they mix. In models where the relation
p = (W(s;)) = 0 holds, there is only one pair of Higgses and generically they are bulk fields.

In the orbifold-MssM we could not find any argument against the eventual instauration of
a deep anti-De Sitter vacuum.

Further details of the orbifold-MssM regarding the effect of our B—L choice on the neutrino
masses will be discussed in the next section. The detailed mass matrices are displayed in
appendix F.

5.5 Neutrino Masses

The seesaw mechanism [61-63] is perhaps the most attractive way to explain the smallness of
the neutrino masses. Its essential ingredients are heavy Majorana neutrinos and their Yukawa
couplings to the left-handed neutrinos. The supersymmetric seesaw mechanism is described
by the superpotential

o 1
W = Y64 Nj + 5MN; Ni (5.66)

where ¢ and ¢; (i = 1,2,3) are the up-type Higgs and lepton doublets, and N; (1 < j < n)
are some heavy standard model singlets. At low energies, this leads to three light neutrinos
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with masses of order (Y, ($))2/M, where Y; and M represent typical values of Y,/ and M. ks
respectively. For Y, ~ 1 and M ~ 10'6GeV, one has m, ~ 1073eV. The scales of the
atmospheric and solar neutrino oscillations, [161]

\/Am2, ~0.04eV, \/Am?2, ~0.008¢V , (5.67)

are suspiciously close to this scale. This hints at GUT structures behind the seesaw.

In conventional GUTs, NN, are members of GUT matter multiplets, e.g. a 16-plet of SO(10),
and Mj; are related to a VEV of a large GUT representation, e.g. a 126-plet of SO(10). In
this case the Majorana mass terms originate from the coupling 16 16 126 (cf. e.g. [162]).

5.5.1 Seesaw Mechanism with Several Neutrinos

Even though in our scheme we have local GUTs, the Yukawa couplings do not necessarily pre-
serve the symmetry of these GUTs. The symmetry of the nonlocal coupling in ten dimensions
is an intersection of the local gauge groups at the vertices. This implies, for example, that
the Majorana mass terms for the neutrino components of the 16—plets can originate from the
coupling

16 X V16 X (SM singlets) R (568)

where the singlets belong neither to(16)n0r to(126)of SO(10).

Furthermore, any sM singlet can play the role of the right-handed neutrino as long as it
has a Yukawa coupling to the lepton doublets and a large Majorana mass. These are abundant
in orbifold models and typical models contain @(100) such singlets.

MSSM candidates contain an anomalous U(1) which induces the FI D-term,

M2
Danom = 2B trtpom + S a2, (5.69)
7

19272

where tp is the anomalous U(1) generator, ¢; are the anomalous charges of fields ¢; and g
is the gauge coupling. This triggers spontaneous gauge symmetry breaking while preserving
supersymmetry [104]. Some of the fields charged under the anomalous U(1) (and, in addition,
under other gauge groups) develop nonzero VEVs thereby reducing gauge symmetry. The scale
of these VEVs is set by the FI term which is somewhat below the string scale. This eventually
determines the seesaw scale. In general, any SM singlets can get large VEVs as long as it
is consistent with supersymmetry, and one can obtain the standard model gauge symmetry
times that of the hidden sector,

Gsp — Gsm X Ghidden - (5.70)

The singlet VEVs are not necessarily associated with flat directions in the field space and

generally correspond to isolated solutions to supersymmetry equations [48]. The hidden matter

gauge group Ghidden can be responsible for spontaneous supersymmetry breaking. In fact,

within the class of models with the MSSM spectrum, gaugino condensation in the hidden

sector favors TeV—scale soft masses for the observable fields, as we have seen in section 5.3.2.
The nonzero singlet VEVs lead to the mass terms for the vectorlike states,

W = ;% (545 ...), (5.71)
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where x;, T; are the vectorlike exotics and (sj) are the SM singlet VEVs in string units. Such a
coupling must be consistent with string selection rules. In section 5.4, it has been shown that
many Zg-1I models satisfy this requirement and all of the vectorlike exotics can be decoupled.
This results in the MSSM spectrum at low energies.

Similarly, the singlet VEVs induce “Majorana” mass terms for the sM singlets as well as
the neutrino Yukawa couplings of eq. (5.66),

Mij ~{sasp...) , YT~ (seas8p...), (5.72)

as long as it is consistent with string selection rules.

Identification of right-handed neutrinos is intimately related to the issue of baryon/lepton
number violation. In generic vacua, any SM singlet can play the role of the right-handed
neutrino. However, such vacua also suffer from excessive R-parity violating interactions. The
simplest way to suppress these interactions is to identify a B—L gauge symmetry and enforce
either its approximate conservation or conservation of its discrete (matter parity) subgroup.
In local GuTs, the B — L generator resembles the standard cuT B — L, but also requires
extra U(1) components beyond SO(10). It is nonanomalous and produces the standard B—L
charges for the sSM matter. If B— L is broken by VEVs of fields carrying even charges under
B— L, the matter parity (—1)>(®1) is conserved. This forbids dangerous R-parity violating
interactions and requires the right-handed neutrino to carry the charge qp_; = +1. Another
possibility is that U(1)p_ is broken at an intermediate scale Mp_j such that all R-parity
violating couplings are suppressed by Mp 1, /Mp. In this case, Majorana mass terms for the
right—-handed neutrinos are allowed only upon B— L breaking, which lowers the seesaw scale
to intermediate energies. In what follows, we consider these possibilities in specific heterotic
orbifold models.

5.5.2 Seesaw Mechanism on the Orbifold-MmssMm

The B— L generator is identified with

2 2 2 11 11

tpr = (_17 _170707 07 353> 3) (_57 2 07 B EEPE 07070) . (573)
In general supersymmetric configurations, many SM singlets get nonzero VEVs. Choosing a
subset of such singlets with 0 or £2 B—L charges, the unbroken gauge symmetry is

Gsm X Ghidden » (5.74)

where Ghigden = SO(8), while all of the exotic states get large masses and decouple. This
vacuum preserves the matter parity (—1)3(5-1),

We find that there are 39 right-handed neutrinos defined by ¢p_; = 41, two of which are
members of the localized 16-—plets. They have Yukawa couplings to the lepton doublets and
large Majorana mass terms. We have calculated the 3 x 39 Yukawa matrix Y, and 39 x 39
Majorana mass matrix M of eq. (5.66) up to order six in the singlet VEvs. That is, for each
matrix element, we have determined at which order in the superpotential a nonzero coupling
is allowed by string selection rules. Each entry depends on the quantum numbers and the
localization of the Majorana neutrinos, and involves products of different singlets and moduli-
dependent Yukawa couplings. We then assume that the main hierarchy in these entries comes
from products of singlet VEVs so that these matrices can be treated as textures.
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The effective mass matrix for the left—-handed neutrinos,
Mg = —02Y, M 'YT (5.75)
with v,, being the up-type Higgs VEV, can be represented by the texture

9 (1 s s

v
Mg ~ — ]\; s s s2
* 2 2
s 8% s

(5.76)

Here s < 1 represents a generic singlet VEV in string units and M, is the effective seesaw
scale. Y, contains entries with powers of s between 1 and 5, while the dependence of the
eigenvalues of M ranges from s to s® (with no massless eigenstates at generic points in moduli
space). This results in a strong s-dependence of the effective seesaw scale M,. This scale is
further suppressed by the large multiplicity of heavy singlets N, M, o« N™% with 0 < = < 2.
The value of x depends on the texture. For example, when all the singlets contribute equally,
x = 2, whereas x = 0 if only a fixed number of neutrinos have nonnegligible couplings. For
the present model, we find

M, ~ 0.15° My, ~ 10" GeV, (5.77)

for the string scale M, = 2-10'7 GeV and s ~ 0.3. The obtained texture (5.76) is of course
model dependent.
The corresponding charged lepton Yukawa matrix is of the form

1 1 ¢
Yo~ |[c ¢ 21, (5.78)
00 O

where “0” denotes absence of the coupling up to order six in the singlet VEVs c. Such zeros are
expected to be filled in at higher orders. Here we are again using a single expansion parameter
although in practice there are many variables.

These crude estimates show that reasonable fermion masses can in principle be obtained.
Inserting order one coefficients in the textures, one finds that the eigenvalues scale as

~ (1,52,52);}4—“, me, ~ (1,¢,0)vq, (5.79)

my,
where vy is the down-type Higgs VEV. For s ~ 0.3 and ¢ ~ 0.1 the textures reproduce
roughly the observed lepton mass hierarchy. The above texture favors the normal neutrino
mass hierarchy and can accommodate small and large mixing angles. Further details of the
model are available in appendix F.
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Chapter 6

Conclusions and Outlook

This thesis was based on orbifold compactifications of the heterotic string. We have empha-
sized its relation to low—energy phenomenology and, therefore, its viability as a unified theory
of all observed forces. In particular, we have focused on the phenomenology of abelian orbifold
compactifications of the EgxEg heterotic string theory.

We have described in detail the heterotic string and provided some recipes for the compu-
tation of the direct properties of orbifold models, such as their fixed points and their matter
spectra. Along with this analysis, we have commented about the inclusion of some additional
degrees of freedom denominated discrete torsion. In concrete, we have shown that, contrary
to previous statements, Z orbifolds with Wilson lines as well as Zy x Zj; orbifold models
admit discrete torsion. Further, we have found out that the assignments of discrete torsion
can be traded for translations of the gauge embedding parameters (shifts and Wilson lines) in
the lattice A.

We have explained and extended some conventional methods employed to classify orbifold
models, paying special attention to the construction of ansitze that allow us to obtain system-
atically all inequivalent input parameters of orbifold compactifications, that is, shift vectors
and Wilson lines. The classification method obtained is very flexible and can be adapted to
both EgxEg and SO(32) heterotic string theories. Our methods have already been tested in
all Z and Zy x Zjs orbifolds. We have made an exhaustive classification of Zy orbifolds
without background fields and also a complete classification of ZgxZg orbifold models, in-
cluding discrete torsion. Whenever possible, we have compared our results to those of the
literature.

It is clear, however, that the task of getting all orbifold models or computing their proper-
ties requires some automatization. We have built the C++ Orbifolder, a program written in
c++ language capable to compute most of the features of orbifold constructions in a fraction of
a second. We consider that such a tool might be of some interest for the scientific community
and, therefore, we plan to publish it in the future.

We have analyzed particularly the heterotic Eg xEg string compactified on a Zg-11 orbifold,
allowing for up to two discrete Wilson lines. Employing a search strategy based on the concept
of local GUTs, we have obtained about 3 x 10* inequivalent models. Out of them, 223 models
exhibit the MSSM gauge group structure, three light families and vectorlike exotics. We show
that all the vectorlike exotics can decouple without breaking supersymmetry for 190 of these
models. This means that almost 1 % out of 3 x 10* models have the gauge group and the chiral
matter content of the MssM. This result shows that orbifold compactifications of the heterotic
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string correspond to a particularly fertile region in the landscape and that the probability of
getting something close to the MSSM is significantly higher than that in other constructions.
It would be interesting to extend these results to other regions of the landscape where some
promising models also exist.

Furthermore, we have found that requiring realistic features in the set of MSsM candidates
is correlated with the supersymmetry breaking scale such that, in the context of gaugino
condensation, intermediate scale (~ 1 TeV) of sUSY breaking is favored. This occurs because
most of the models with realistic features have a hidden sector with SU(4) or SO(8) nonabelian
symmetry.

In order to get closer to the MssM, we defined a successful strategy for obtaining models
with an exact R-parity based on spontaneous breaking of a gauge U(1)p_ symmetry. We
find 87 models which have a renormalizable top Yukawa coupling. Out of these, we identify
15 models with an exact R-parity, no light exotics or U(1) gauge bosons and an order one
top quark Yukawa coupling. We would like to remark that the number 15 is a lower bound,
mainly since our search is based on a specific strategy related to B—L symmetry. Additionally,
many of our constraints, such as demanding a renormalizable coupling for the top quark are
just artifacts invoked in order to simplify our analysis. Therefore, an interesting question
would be to obtain similar results in cases where: a) no trilinear coupling for the top quark is
demanded, b) no vectorlikeness of the SM matter generations with respect to B—L is imposed,
c) also models with anomalous B— L are admitted, and d) R-parity results directly from the
so-called R-charge conservation (string) selection rule.

On the other hand, we notice that dimension five baryon and lepton number violating
operators, like ¢ g g ¢ appear in orbifold models quite regularly even if B—L is imposed. They
are either generated in the superpotential to some order in SM singlets, or they may also
be generated when integrating out heavy exotics. In some cases, only fine-tuning the VEVs
of some SM singlets can alleviate this problem. One is thus encouraged to investigate other
possible solutions, such as the identification of some discrete symmetries.

Another aspect of phenomenology that captured our attention is the seesaw mechanism.
Since there are no upper bounds on the amount of right-handed neutrinos that might appear,
we find that in a scenario with O(100) right—handed neutrinos, the seesaw mechanism is real-
ized from orbifold constructions. Moreover, (left-handed) neutrino masses are then enhanced
(in comparison to the naive estimate of the neutrino masses in GUTSs) to more realistic values.
We consider this setup to be plausible and perhaps even desirable, since some consequences of
the existence of many right—handed neutrinos could shed some light in some open issues, such
as leptogenesis [163,164]. We might even consider the abundance of right-handed neutrinos
to be a prediction of string theory.

We have also studied in detail one model that we have called orbifold-MssM. In fact, this
model is not special in the sense that other MSSM candidates possess very similar qualities:
only the exact matter spectrum of the MSSM (up to many SM singlet fields); admissible B —
L symmetry which is spontaneously broken to matter parity in a supersymmetric vacuum
configuration; gaugino condensation scale leading to SUSY breaking at an intermediate scale;
vanishing u—term; and proton decay through dimension five operators can be avoided by some
fine-tuning. The top Yukawa coupling is order 52 due to Higgs doublet mixing in this model.
Further, both the up and down quarks are massless at order six in SM singlets. However, the
up quark becomes massive at order seven and the down quark gets a mass at order eight.
These properties are very interesting, but we believe that the best model awaits still in some
corner of the landscape.
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There are some phenomenological issues that we have not addressed in this thesis. In
particular, one issue concerns proton stability. The examples we studied are challenged by the
presence of dimension five proton decay operators. Their suppression may require additional
(discrete) symmetries or even a change in the geometry of the orbifold, as suggested in ap-
pendix C. There are also dimension six operators, generated by GUT gauge boson exchange,
which we have not discussed.

Further, we have not studied precision gauge coupling unification. Although hypercharge
is normalized as in four-dimensional GUTs thus allowing gauge coupling unification in the
first approximation, there are various corrections that can be important. First, a detailed
analysis would require the calculation of string threshold corrections in the presence of discrete
Wilson lines. However in specific cases these corrections are known to be small [165]. Second,
there are corrections from the vectorlike exotic states. It is possible that precision gauge
coupling unification may require anisotropic compactifications, leading to an effective orbifold
GUT. [47,166-168|. These questions have been explored in ref. [169] and refs. [170,171].

Another question that was not clarified in this thesis concerns moduli stabilization. We
have seen that, e.g. in order to determine the scale of gaugino condensation, stabilizing the
dilaton S is crucial. The minimum of its potential affects strongly the scale of supersymmetry
breakdown in the observable sector. However, the dilaton is not the sole modulus in the
theory. Beside some geometrical moduli, many singlet fields (with neither VEVs nor masses)
appear in the matter spectrum of orbifolds. Their stabilization is also important for addressing
cosmological issues, such as inflation, baryogenesis and leptogenesis.
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Appendix A

Form of Shift Vectors and Wilson lines

Even though there is a straighforward prescription to obtain all Zy shift vectors (see sec-
tion 3.1), it is necessary to implement a method which can be easily extended to Zy X Zy
orbifolds and orbifolds with Wilson lines. An option is an ansatz that describes any shift or
Wilson line. To start with, let us specify an ansatz for Zy shifts of SO(32) orbifolds. We will
see in section A.2 that the resulting ansatz can be then trivially generalized.

A.1 Zn Shift Vectors of SO(32) Orbifolds

We will call vectorial shifts to those shift vectors of order N (NV € A) whose entries have a
maximal denominator of N. Spinorial shifts will be those other which have a denominator of
2N and an odd numerator. As an example, consider the Z4 shift vectors of table D.5. The
first 12 of them are vectorial, whereas the last four are spinorial. It is convenient to describe
separately these two cases and further distinguish between Z x shifts with N even and IV odd.

To obtain the general form of a shift, we take for granted that two shift vectors are
equivalent if they are related by lattice vectors or by Weyl reflections, i.e. by any permutation
of the entries and pairwise sign flips.!

a) Vectorial Shifts and N Even

Invariance under lattice translations implies that the entries V; of a shift of order N are
constrained by —(N — 1)/N < V; < 1. Therefore, we can start with the ansatz

1
V= N( — (N =1)"-0=n (N =2)"-W=2) Q" 1™ .. N"V) (A.1)
for a vectorial shift. As usual, the exponent n; of an entry ¢ counts how many times that
entry is repeated; for instance, the entry —(N — 1) appears n_y( ~n-1) times. Therefore, the
exponents n; are integers satisfying

> ni=16. (A.2)

17 orbifold models without Wilson lines do not change under lattice translations, unless one introduces
lattice-valued Wilson lines. In such case, the new model can be a brother model. Further details are provided
in section 2.4.3.
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Since pairwise sign-flips are allowed, we see that all negative entries can be made nonnegative
as long as at least one n_; is even (i = 1,...,N). However, if there is an odd number of
negative entries and ng = 0, one negative entry will remain. Combining both results, we get

V:N((_J‘)a, 070, 1™, ... T (N = 1)) 1<j<N-1 (A.3)
with o = 0, 1. This ansatz contains still some redundancies. Lattice translations of the shifts
amounts to adding +1 to an even number of entries of V. One can thus apply V; — V; — 1 for
an even number of entries fulfilling V; > % and then flip their signs. By this operation, a Zy
vectorial shift can be finally expressed by

1 N

nN
vol <(ij)o‘, (N = )P0, 1 (N = gy —oB (5> : ) L (A9

where o, 3 = 0,1 such that « + 3 = 0,1 and j can take the values {% +1,...,N—1}.

As a side remark, using the shift V' of eq. (A.4) and the SO(32) simple roots «; provided
in table D.7, one can compute «; - V. Since those roots with «; - V # 0 are projected out
while the others form the Dynkin diagram of the unbroken gauge group G4p, one finds that
the symmetry breakdown induced by a generic vectorial shift of SO(32) orbifolds is given by

80(32) E— SO(Q?”L()) X U(nl) X ... X U(”(ﬂfl)) X SO(QnN/Q), (A5)

2

recalling that U(n) = SU(n) x U(1).

b) Spinorial Shifts and N Even

An analogous analysis to that presented in the previous case leads to the conclusion that a
generic spinorial shift can be written as
1
V=os <(ij)°‘, (2N — )P, 1M 3™ (2N — jnen-n=eB (N - 1)”N—1) . (A.6)
with j € {N +1, N +3,...,2N — 1}. It is again not hard to confirm that a shift vector of
this kind leads to the breaking

80(32) — U(nl) X U(ng) X ... X U(nN_g) X U(nN_l) . (A7)

¢) N 0dd

The general form of the shift vectors changes slightly. First, as explained in ref. [172], in this
case it is enough to determine either the vectorial or the spinorial shifts, since one spinorial
shift can always be transformed into a vectorial one by the action of Weyl reflections and
lattice vectors. Choosing the vectorial form, we obtain the following shift vector of odd order:

V= % ((ij)o‘,—(N YR 0m 1™ (N — jyrev-n—a=B (%)n(%l)) . (A8)

where j € {%, %, ..., N}. The resulting four dimensional gauge group is

SO(32) — SO(QTL()) X U(nl) X ... X U(’I’L(N—S)) X U(TL(M)) . (Ag)

2 2
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The shifts obtained by the ansétze given in eqs. (A.4)-(A.8) are further restrained by
NV € A and the requirement that follows from invariance of the orbifold partition function:

N (V? = v?*) =0 mod 2 (A.10)

for a given twist vector v of order N. Only those shifts satisfying these conditions are consistent
with orbifold compactifications. The ansétze (A.4)—(A.8) constitute, as we will see in the next
section, the basic constructing blocks of general Zy x Zj; shifts and Wilson lines.

A.2 A General Ansatz

Now we are in position to propose an ansatz which covers all orbifolds, including Wilson
lines. Consider a model with a given shift vector V. Independently of whether V belongs to
an EgxEg or an SO(32) orbifold, Weyl reflexions and lattice translations allow to make its
entries as small as possible and to gather them in blocks Vijoek i, just as in the ansitze (A.4)—
(A.8):

1

V= N (Vblock 15 Vblock 2, Vblock 35 - - ) » (A.11)

where each subvector Vpjock i contains m; identical integer or half-integer entries, such that
> m; = 16. Our task is then to find a universal second shift V4 of order M, in the case of
Zn X Zyy orbifolds, or/and the general form of a Wilson line A, of order N,, trying to avoid
redundancies at maximum. From the block-structure of the shift vector, we can expect V5
and A, also to be splitted in blocks of length m; as

Vo = (Vablock 15 V2,block 2, V2,block 3, - - -) » (A.12a)
Aa = (Aablock 1, Aablock 25 Aablock 3, -) - (A.12b)

This would mean that each block Vo piock i and A plock i is independent and can, therefore, be
described separately. In other words, we have just to find an ansatz for a subvector V5 piock i
or Ag block i of the corresponding order (M or N,) and then to apply it consecutively over all
blocks.

In the previous section, we have seen that the ansétze (A.4)—(A.8) describe the minimal
form of a shift of order N. They can be used in order to build the blocks V5 piock i and Aq block i
by replacing N by M or N, and demanding that

an =m; (A13)

for each block. We have additionally to guarantee that the vectors obtained in this way lie
on the lattice A, i.e. one has to impose M V5, NoA, € A. This condition implies that, for
even N, all blocks must be of the same type (either vectorial or spinorial). Clearly, admissible
orbifold models are only those with shift(s) and Wilson lines fulfilling the modular invariance
conditions provided in eq. (2.42).
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Appendix B

Spinors in SO(32) Orbifolds

Early works on orbifold compactifications considered the SO(32) heterotic string to be phe-
nomenologically disfavored. One of the reasons being that the theory by itself does not include
spinors in its massless spectrum. This situation was shown to be preserved in the simplest
orbifold compactifications, leading to the somewhat naive conclusion that, if spinors can be
found from the SO(32) heterotic string at all, they must appear in a quite unnatural way.

Only recently, the interest in four-dimensional heterotic SO(32) orbifold constructions
has been revived [173,174]. In the case of Zy orbifolds, a complete classification of gauge
embeddings in the absence of background fields has been achieved [73,172]. Interestingly, that
classification has shown that spinors of SO(2n) gauge groups appear rather frequently in the
twisted sectors of SO(32) orbifolds. Spinors of SO(10), in particular, are found locally at fixed
points of the first twisted sector of many orbifold models. Moreover, that classification reveals
that the amount of available SO(32) orbifold models is comparable, at the same level, to that
of its more famous brother: the Eg x Eg string. Thus, it is not adventurous rather to conclude
that model building based on the heterotic SO(32) string theory might be as interesting as
that based on the Eg x Eg theory.

On the other hand, the appearance of spinors on models derived from the SO(32) heterotic
string might also be important for a possible understanding of the SO(32) heterotic type I
duality in four spacetime dimensions. We know that spinors do not appear in the perturbative
type I theory. Thus, the mentioned duality requires the implementation of nonperturbative
effects.

B.1 SO(10) Spinors and Shift Vectors

Let us investigate here the possibility of having the 16-dimensional spinor representation of
SO(10) in Zy orbifolds of the SO(32) heterotic string theory. In the standard basis of the
roots of SO(10), the highest weight of the 16-plet is given by the five-dimensional vector

161 = (%5> . (B.1)

To be included in the spectrum of an orbifold compactification, this vector must be part of a
16-dimensional solution pg, to the mass formula for massless states, eq. (2.68) or eq. (2.81).

! As usual, powers of an entry represent how often that entry is repeated in the vector.
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Therefore, psn, must be written as

5
psh = p+Vy = <%,a1,...,a11>, (B.2)
where p € Agpin(32)/z,, Vy 18 the local shift of a constructing element g and a; € R are selected
so that psn fulfills Npsh € Agpin(s2)/z, and the mass formula. There can be more than one
combination of different a;’s for which the resulting ps, satisfies all the conditions.

A first consequence of eq. (B.2) is that one cannot get 16—plets of SO(10) in the untwisted
sector of any orbifold compactification. The reason is that the only pgy available for untwisted
massless states correspond to the roots of SO(32), which are expressed by the 480 vectors
(£1, +£1, 01).

As a second consequence, one finds that it is not possible to get 16-plets of SO(10) in
the Z3 orbifold. This can be understood as follows. Since in Zg3 orbifolds 3pgn, must lie on
the lattice Agpin(32)/z, and the first five entries of 3psn are half-integer, all a;’s must also be
half-integer, 3a; € Z + 1/2. Assuming in the best of the cases that 3a; = 1/2, it follows that
pgh > 14/9. However, masslessness of the states in Zs orbifolds constrains pg, to have at most
squared length 4/3.

It is possible to find the form of the local shift vectors producing SO(10) spinors. From
eq. (B.2), for all Zy orbifolds with N > 3 the local shift(s) giving rise to the 16 representation
of SO(10) can be written as

Vg = Psn—p (B.3)

with pgy given as in eq. (B.2).

Hence, we can determine the shift vector V' of an orbifold model containing SO(10) spinors
in the first twisted sector, relevant for phenomenology, as we have discussed in section 4.1. In
absence of Wilson lines, the local shift vector V;; at any fixed point of the first twisted sector
coincides with V, therefore

=0
V = psh— 0 5= pen, (B.4)

where we have chosen p = 0 because two shifts are equivalent if they differ by an arbitrary
lattice vector. This shift vector is automatically modular invariant. For each allowed pgn
from eq. (B.2), one can verify that the shift vector V' obtained through eq. (B.4) leads to a
four-dimensional SO(10) gauge group by applying the patterns provided in appendix A.1l.
As an example, we consider the Z4 orbifold without Wilson lines. The only possible shift
vector consistent with 4V € Agpin(32)/z,, the masslessness condition eq. (2.81) and eq. (B.4)

1S
1% 12
V = = (=,=-,0° B.
DPsh <2 74 ) ) ) ( 5)

which is one of the admissible shift vectors for the Z,4 orbifold, listed in table D.5.



Appendix C

Zg-11 on Nonfactorizable Lattices

Zg-11 orbifold compactifications on the lattice Go x SU(3) x SO(4) have proven to lead to
realistic models. The question here is how the properties of such models are influenced by
the use of one of the other allowed lattices of Zg-II. In the best of the cases, the possible
changes shall be of relevance when dealing with unsolved phenomenological issues such as
proton decay.

C.1 Lattices and Spectrum

The allowed lattices of Zg-II orbifolds are presented in table C.1. Note that, with exception of
the lattice (A), Go x SU(3) x SO(4), all lattices are nonfactorizable. These lattices are inde-
pendent in the sense that they cannot be deformed continuously into one another. Therefore,
one knows that orbifolds on those lattices will have certainly distinct properties.

The geometry of the compact space will affect some other properties of orbifold models.
Firstly, one finds that the number of fixed points of the orbifold varies according to

Lattice T, T, T3
(A) Gy x SU(3) x SO(4) 12 6 8
(B) SU(3) x SO(8) 12 3 8
(C) SU(3) xSO(7) xSU(2) 12 3 8
(D) SU(6) x SU(2) 12 3 4

where, as usual, 7; denotes the i*" twisted sector. Secondly, the number and order of the
allowed Wilson lines changes, leading e.g. to the presence of a (previously disregarded) Wilson
line of order six in the case of SU(6) x SU(2).

This two features have crucial effects on the matter spectrum of orbifold models. Evidently,
the number of states of orbifolds on nonfactorizable lattices will be reduced compared to the
number of states on the usual lattice. What is somehow more interesting is that the missing
states in nonfactorizable orbifolds form vectorlike pairs.

Consider, for instance, the spectrum of the orbifold-mssum listed in table C.2. We see that
the number of exotics can be considerably reduced compactifying on nonfactorizable lattices.
All nonfactorizable lattices (B,C,D) yield in the observable sector only three MSSM generations
plus two pairs of Higgses. That means that unwanted quark triplets and two Higgs pairs have
disappeared. However, we lose simultaneously some necessary particles, such as some SM
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| | 6D Lattice I' | Twist v | Conditions on Wilson lines |
(A) G2 xSU@B)xSO(4) | §(0,1,2,—=3) | 3A3~245~246~0; Ay~ Ay =0, Az ~ Ay
(B) | SU(3) x SO(8) 1(0,2,1, -3) | 3A; ~ 245 = 0; A1 ~ Ay, A3~ Ay ~ 0, A5 =~ Ag
(C) SU(3) X SO(7) X SU(Z) %(0, 2, 1, —3) 3A1 ~ 2A5 ~ 2A6 =~ 0; A1 ~ A2, A3 ~ A4 ~ 0
(D) | SU(6) x SU(2) 10,2, 1, -3) 6A; ~ 246~ 0; A; ~ Ay~ A3 ~ Ay ~ As

Table C.1: Allowed lattices for Zg-II orbifolds and constraints on the Wilson lines. With
exception of (A), all lattices are nonfactorizable.

singlets s°, h, used to decouple exotics, and some right-handed neutrinos n, f, 7, 7. This is
rather a curiosity than a problem.

This situation is similar to what is observed between brother models of Zs x Zy orbifolds.
In that case, nonvanishing discrete torsion on orbifolds with a given torus lattice projects out
some of the states living at particular fixed points, reducing thereby the effective number of
fixed points. Hence, the massless spectra of models with discrete torsion on a given lattice turn
out to be identical to the spectra of models without discrete torsion on a different lattice [74].
A natural question is then whether discrete torsion also relates the spectra of Zg-II orbifolds
compactified on different lattices. Unfortunately, a close inspection of the parameters of
discrete torsion in Zg-1I orbifolds convinces us that discrete torsion (as introduced in ref. [74])
does not have any effect on the spectrum of the models. However, it was during long time,
without clear justification, believed that discrete symmetry only affected Zy x Zjs orbifolds.
Therefore, a very interesting question would be to try to find out whether we are still missing
something.

C.2 String Selection Rules

Compactifying on nonfactorizable lattices affects more than the spectrum. The computation
of Yukawa couplings in factorizable orbifold models is based on certain selection rules stated
in a form that makes use of the factorizability of the lattice. Particularly, conservation of
R-charge in Zg-1I factorizable orbifolds is expressed as

ZR}:—l mod 6, ZR?:—l mod 3, ZR?:—l mod 2, (C.1)

where the sum runs over the states of a given coupling. R{ corresponds to the R-charge of
the i*" particle of the coupling on the a*® complex plane of the compact space.

In the literature [140,175], it is usually stated that R-charge conservation, eq. (C.1), follows
from the symmetries of the three complex planes of a factorizable orbifold. In the case of
factorizable Zg-1I orbifolds, it is clear that the three independent (discrete) rotations generated
by the Cartan generators H® of the underlying SO(6) (~ SU(4)) Lorentz symmetry leave the
compactification lattice (A) invariant. Therefore, the original SO(6) Poincaré symmetry of
the compact space is broken to Zg X Zs X Zs in the factorizable orbifold.

We might assume that this is also true for compactifications on other lattices and then we
could apply the same R-charge conservation given in eq. (C.1). However, as we will see below,
independent rotations on each of the complex planes are not symmetries of the lattice.
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Figure C.1: The root lattice of SU(6) x SU(2) for Zg-II orbifolds in complex coordinates.

C.3 (D) ZeII on SU(6) x SU(2)

Let us consider, as an example, the SU(6) x SU(2) lattice. The basis vectors of the root lattice
of SU(6)xSU(2) are expressed in the six-dimensional orthogonal coordinates by

e1= (1,0,1/3,0,/2/3,0),

ea = (—1/2,/3/2,1/2V/3,1/2, —/2/3, 0),

es = (—1/2, —/3/2, —=1/2V/3, 1/2, 1/2/3, 0), (02)
es= (1,0, —1/v/3,0, —/2/3,0), '
es = (—1/2,v/3/2, —1/2v/3, —1/2, 1/2/3, 0),

es = (0,0,0,0,0,v2).

Notice that the twist vector in this basis is given by v = (0, 1/3, 1/6, —1/2). The lattice is
illustrated in fig. C.1.
One sees that the action of R! = ¢>™3/1 ¢ Z3 C SO(6) on e.g. the basis vector e; is

1
Rle = 5 (e1 +e2—eqg+e5) . (C.3)
Since the coefficients on the right-hand side are not integer, then R! is not a symmetry of the
lattice SU(6)xSU(2). One can show that the only element of SO(6) containing only Cartan
generators that leaves the lattice invariant is

Rt = 2mig (2H1+H2—3Hs) (C4)

and powers of it.
We can then conjecture that the corresponding “R-charge conservation rule”, in analogy
to the factorizable case, is

ZRt Z 2R' + R —3R%); =0 mod 6. (C.5)

Nevertheless, one notices immediately one problem: charges R! of bosonic and fermionic
superpartners coincide, i.e. the Zg symmetry generated by 2H; + Hy — 3H3 is not an R-
symmetry. This issue is not only interesting per se, but its consequences might be very
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important for phenomenological considerations. In particular, we have verified the effect of
the “rule” eq. (C.5) on the couplings of the Mssm orbifold. We find that, given that we have

less constraints in the nonfactorizable case, many more couplings are allowed.

Since the number of states in the massles spectrum is reduced, also the couplings will be
restricted. This might have important consequences on both the decoupling of exotics and

the appearance of dangerous proton decay operators, which are still to be studied.

Lattice I' Lattice I'

sM Repr. Label |[(A) [(B) [(C) [D) sM Repr. 4) [B) [©) [D)
(1, 2)(—1/2,0 ) 4 2 2 2 (1, 1)z, 14 14 14 10
(1, 2)1/2,0 é 4 2 2 2 (1, 1) 1j2,-1) 14 14 14 10
(3, )ass,-1/3) d 4] 3| 3] 3 (1, 1)1/2,0 s 8| 8| 8] 6
(3, 1)(—1/31/3) d 1folof|oO (1, 1)(—1/2,0) s 8] 8| 8] 6
(1,2)1/2,-1) L 4 3 3 3 (1, 1)1/2,2 st 2 2 2 2
(1,2)1/21) l 1 0 0 0 (1, 1) 122 s~ 2 2 2 2
(3, 2)a1/6.1/3) ¢ || 3]3]3]3 (3, )(_1/a_2/5) 0 3] 1] 1] 1
( 17 1)(1,1) € 3 3 3 3 ( §7 1)(1/3_’2/3) 5 3 1 1 1
(3 Dcoysue @ || 3] 3] 3] 3] (B D uyeas 0 2 2 2 0
(1, D)o n, 21 14 14 12 (3, 1)1/6,—2/3) v 2 2 2 0
(1, 1)0,-1) n,m 18 11 11 9 (3, 1)(—1/6,-1/3) v 2 2] 2] 2
(1, )0 h,s’,w || 98 | 60 | 60 | 52 (3, )1/6.1/3) v 2 2| 2] 2
(1, 1), 2 X1 1 1 1 1 (1, 2)0,-1) m 2 2 2 2
(1, 1) 0.2 X2 1 1 1 1 (1, 2)0, m 2 2 2 2
(1, 1)012 7 H 16 | 8 ‘ 8 ‘ 8 (1, 2)0,0 y 4] 4] 4] 4
(1,1)0,1/2 f 16| 8| 8| 8

Table C.2: Multiplicity of the sm fields of the orbifold-MssM in the different admissible
compactification lattices of Zg-II. The hidden-sector quantum numbers have been omitted.
The labels coincide with those of table F.2. (A) denotes the factorizable lattice Go x SU(3) x
SO(4). Note that some pairs of exotics disappear in nonfactorizable lattices (B,C,D).
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Orbifold Tables

P 6D Lattice I' Conditions on the Wilson lines
Zs SU(3)3 3A1] ~ 3A3 ~ 3A5 ~0; Ay = Ay, Az = Ay, A5 = Ag
Z4 SU(4)2 4A1 ~ 4A4 =~ O; A1 ~ AQ ~ A3, A4 =~ A5 ~ AG

SU(4) X SO(5) X SU(Q) 4A1 ~ 2A5 ~ 2A6 ~ 0; A1 ~ A3 ~ A4, A4 ~ 0

SO(5)? x SU(2)?
Zg-1 G2 x SU(3)
Zs-11 SU(6) x SU(2)

G x SU(3) x SU(2)?
SU(3) x SO(8)
SU(3) x SO(7) x SU(2)

Z7 SU(7)

Tig-T SO(9) x SO(5)
Zs-11 SO(10) x SU(2)
SO(9) x SU(2)?

245 =~ 244 = 2A5 =~ 246~ 0; A1 = A3~ 0
3A5 2 0; Ai ® Ay = A3 =~ Ay =0, A5 = Ag
6A; =246~ 0; Al ~ Ay~ A3 ~ Ay ~ As
3A3 = 2A5 =2 246~ 0; A1 = Ay =0, A3 =~ Ay
3A1 = 2A5~0; A1 =~ Ay, A3~ Ay =0, A5 = Ag
3A1 = 2A5 ~ 245 ~0; A1 = Ay, A3~ Ay =0
TA; ~0; A = Ay = A3 =~ Ay = As = Ag
244 =245 = 0; A1 = Ay =~ A3~ A5 =0
24, ~ 245~ 0; A1 =~ Ay = A3~ 0, Ay =~ Aj
2A4 =~ 2A5 =2 246~ 0; A1 ~ Ay~ A3~ 0
3A1~0; Aj = Ay = Ag =~ Ay = A;, Ag =0

Zi12-1 Ee
F, x SU(3) 3A5 ~0; A1 ~ Ay =~ A3 ~ Ay =0, A5 =~ Ag
Zlg—II F4 X SU(2)2 2A5 ~ 2A6 ~ 0; Al ~ AQ ~ A3 ~ A4 ~ 0

Table D.1: Wilson lines are constrained in orbifold compactifications due to the compacti-
fication lattice I'. The symbol ‘~’ means equivalence up to translations in the gauge lattice
A, thus NyA, ~ 0 means that N,A, € A. Some frequent typos in the current literature

have been corrected here.

115



116 APPENDIX D. ORBIFOLD TABLES
P ‘ 6D Lattice I' Conditions on the Wilson lines
oo X Ty SU(2)¢ 241 = 245 245 ~ 244 ~ 245 ~ 245 ~ 0
SU(3) x SU(2)* ”
SU(3)2SU(2)? ”
SU(4) x SU(2)3 ”
SU(4) x SU(3) x SU(2) ”
SU(4)2 ”
SU(3)3 ”
Do X Ty SU(2)2 x SO(5)? 241 ~ 245 = 244 = 24 =~ 0; A3~ A5 =0
Ty X Tg-1 SU(2)2 x SU(3) x G 241 =24, =~ 0; A3~ Ay =~ As =~ Ag~ 0
Zo x Ze-11 G2 x SU(3) Al m Ay~ Az~ Ay =~ As ~ Ag =~ 0
Zs x T3 SU(3)3 3A1 = 3A3 = 345 = 0; A = Ay, A3 =~ Ay, A5 = Ag
Esg 3A1 ~3A3~0; Ay ~ Ay~ Ay~ A5 = Ag
Zs x Zg SU(3) x G2 3A;1 = 0; Aj = Ay, A= Ay~ As =~ Ag ~ 0
Zy X Dy SO(5)3 240 ~2A, =246~ 0; A] =~ A3~ A5 =0
Ze X g G3 Al m Ay m A3~ Ay~ A5 ~ Ag =~ 0

Table D.2: Constraints on the Wilson lines of Z  x Z, orbifolds. The notation is the same

as in table D.1.

Zn orbifolds

Point group P ‘ Twist vector v
Zs (0,1, 1, -2)
7, 100, 1,1, —2)
Ze-1 1(0,1,1, -2)
Zs-11 £(0,1,2, -3)
Z (0,1, 2, -3)
Zs-1 £(0,1, 2, =3)
Zg-11 (0,1, 3, —4)
Zo-1 +(0,1, 4, —5)
Z19-11 +(0,1, 5, —6)

Zn X 7.y orbifolds

Point group P ‘ Twist vector vy ‘ Twist vector vy
Zo X Ty (0, 1,0, -1) (0,0, 1, -1)
Zo X Ly (0, 1,0, -1) 1(0,0,1, -1)
Z3 x T 2(0,1,0,-1) | 2(0,0,1, 1)
Zo x Ts—1 3(0,1,0,-1) | £(0,0,1, -1)
Zo X Tg—II (0, 1,0, -1) £(0,1,1, —2)
Ty x Ty 1(0, 1,0, -1) 1(0, 0,1, -1)
Z3 x T 2(0,1,0,-1) | 2(0,0,1, -1)
T x T £(0,1,0,-1) | £(0,0,1, 1)

Table D.3: Twist vectors for Zy and Zy X Zjs orbifolds.
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‘ V&) ‘ Shift vector V ‘ 4D gauge group Gap ‘ U sector ‘ T» sector
0 | (0%)(0%) Es x Es 27 x 9(1, 1)
1 (§ 12 06) (08) Es x SU(3) x Es 3(27,3,1) | 27x1(27, 1, 1)
27 x 3(1, 3, 1)

2 (§ L 06) <§ 17 06) Es x SU(3) x Es x SU®3) | 3(27,3,1,1) | 27 x 1(1, 3, 1, 3)
3(1, 1, 27, 3)

3| (207) (4% 0°) SO(14) x Er 3(64, 1)
3(14, 1) 27 x 1(14, 1)
3(1, 56) 27 x 4(1, 1)
3(1, 1)

4

4| (34 2,07) (3, 07) SU(9) x SO(14) 3(84, 1)
3(1, 64) 27 x 1(9, 1)
3(1, 14)

Table D.4: Admissible shift vectors and corresponding matter content for the Zs orbifold of
the Eg x Eg heterotic string.

| V()

Shift vector V|

4D gauge group G4p

© 0 N O Ot oW N

e el
St W N = O

16

3 (12, 2, 0%3)
% (127 237 011)
ae, on)
1 (15, 3, 0%0)
112, 25, 09)
L (16, 22, 0)
112,27, 0)
L (19,21, 0°)
L@, 2, 07)
% (1107 23’ 03)
L@, o)
L0103, 02)
1(1,-1,3)
1 (110, -1, 3%)
118, 1, 99)
1(12,-1, 319)

SO(26) x SU(2) x U(1)a x U(1)
SO(22) x SU(4) x SU(2) x U(1)
SO(20) x SU(6) x U(1) 4
SO(20) x SU(6) x U(1) 4
SO(18) x SO(10) x SU(2) x U(1)a
SO(16) x SU(2)? x SU(6) x U(1) 4
SO(14) x SO(14) x SU(2) x U(1)
SO(12) x SO(8) x SU(6) x U(1) 4
SO(10) x SU(10) x U(1)a x U(1)
SU(4)2 x xSU(10) x U(1)
SU(2)2 x SU(14) x U(1)
SU(2)% x SU(14) x U(1) 4
SU(15) x U(1)a x U(1)
SU(11) x SU(5) x U(1)4 x U(1)
SU(7) x SU(9) x U(1)4 x U(1)
SU(3) x SU(13) x U(1)4 x U(1)

Table D.5: All admissible shift vectors for the Z4 orbifold of the SO(32) heterotic string.
Shift vectors leading to the same four-dimensional gauge group correspond to models with

different matter content. Further details are provided in our website [123].
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Orbifold Torsion ¢ | Shift vector V; Shift vector V4
Ty x Ly 1| (3,0,—%,0,0,0,0,0) | (0,3%,—3%,0,0,0,0,0)
-11(3,-1,-3,1,0,0,0,0) | (1,3,—3%,0,1,0,0,0)
Zo x Zy 1|(0,3,-1,0,0,0,0,0) | (5,0,—%,0,0,0,0,0)
~-11(2,4,-3,0,0,0,0,0) | (3,-1,-%,1,0,0,0,0)
Ty x L1 1| (0,3, — 100000) (3,0,—%,0,0,0,0,0)
-1 (3,%,-%,0,1,0,0,0) | (% —-1,-%,1,0,0,0,0)
Zo x Zg-11 1] (3,0,-3,0,0,0,0,0) | (3 %,-%,0,0,0,0,0)
~-11(3%,3,-%,1,0,0,0,0) | (-2,%2,-1,1,1,0,0,0)
T3 x 73 1| (3,0,-%£,0,0,0,0,0) | (0,3 -%,0,0,0,0,0)
.1
>3 | (L,-1,-1,1,0,0,0,0) | (1,4,-4,0,1,0,0,0)
27Ti3 (%7_ :_37070707070) (27%7_%7070707070)
T3 X T 11 (0,%,-%,0,0,0,0,0) | (3,0,—%,0,0,0,0,0)
.1
27T1§ (2’%7_%70’07()’070) (%a_]—»_%alyovoaoao)
27T13 (47%7_%7070707070) (%7_27_%7070707070)
Z4 X Z4 1 (i707_i7070707070) (07i7_i7070707070)
1 (ia_la_%aLoaovoao) (17i7_i70:1707070)
—-11(4,-2,-%,0,0,0,0,0) | (2,%,—%.0,0,0,0,0)
—i| (4,-3,-1,1,0,0,0,0) | (3,%,-%,0,1,0,0,0)
Z X Zg 1| (§,0,—%,0,0,0,0,0) (0,2,-%,0,0,0,0,0)
M6 | (+,-1,-%,1,0,0,0,0) | (1,4,-4,0,1,0,0,0)
27r13 (%3_23_%30,07()’070) (2’%7_%7070707()’0)
—;- (%3_33_%31,07()’070) (3’%7_%7071707()’0)
27Ti§ (%7_47_%7070707070) (47%7_%7070707070)
27ri€ (%3_53_%31,07()’070) (5’%7_%7071707()’0)

Table D.6: Z x Zj; models with discrete torsion and standard embedding are equivalent to
models without discrete torsion and non-standard embedding. We write the torsion phase
factor as e = e~ 27V2"AVi The components of the shifts within the second Eg all vanish.
This result also applies to orbifold models in SO(32), where the second half of the shift
vector also vanishes.
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‘ Simple roots of SO(32)

‘ ‘ Fundamental weights of SO(32)

a1 = (1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0) of = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
a2 = (0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0) o5 = (1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
as = (0,0,1,—1,0,0,0,0,0,0,0,0,0,0,0,0) o (1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0)
as = (0,0,0,1,—1,0,0,0,0,0,0,0,0,0,0,0) o (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)
as = (0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0) ol (1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)
as = (0,0,0,0,0,1,—1,0,0,0,0,0,0,0,0,0) o (1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0)
ar (0,0,0,0,0,0,1,—1,0,0,0,0,0,0,0,0) o (1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0)
as = (0,0,0,0,0,0,0,1,—1,0,0,0,0,0,0,0) o} (1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0, 0)
as = (0,0,0,0,0,0,0,0,1,—1,0,0,0,0,0,0) o (1,1,1,1,1,1,1,1,1,0,0,0,0,0,0, 0)
a0 = (0,0,0,0,0,0,0,0,0,1,—1,0,0,0,0,0) oo (1,1,1,1,1,1,1,1,1,1,0,0,0, 0,0, 0)
a;n = (0,0,0,0,0,0,0,0,0,0,1,—1,0,0,0,0) ab (1,1,1,1,1,1,1,1,1,1,1,0,0,0,0, 0)
o2 = (0,0,0,0,0,0,0,0,0,0,0,1,—1,0,0,0) of = (1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0)
a1z = (0,0,0,0,0,0,0,0,0,0,0,0,1,—1,0,0) oy = (1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0)
o1s = (0,0,0,0,0,0,0,0,0,0,0,0,0,1,—1,0) oty (1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0)
a5 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,—1) ols (3iii11111 111114 1
a6 = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1, 1) A= (3:3:31315:5:5:3:3:3:31315:5:3 3

)

Table D.7: Simple roots «; and fundamental weights o of SO(32)

Fundamental weights of Eg

Simple roots of Eg

ap = (0,1,-1,0,0,0,0,0)
g = (001 —1,0,0,0,0)
as = (0,0,0,1,—1,0,0,0)
ay = (0,0,0,0,1, 100)
as = (0,0,0,0,0,1,—1,0)
o = (0000001 -1)
a7 = (% 2> 2> %>‘%>
ag = (0,0,0,0,0,0,1, 1)

1

— 1
2

N[

)

(1,1,0,0,0,0,0,0)
(2,1,1,0,0,0,0,0)
(3,1,1,1,0,0,0,0)
(4,1,1,1,1,0,0,0)
f= (5,1,1,1,1,1,0,0)
(
(
(

7111111 _l)
2720212727220 2

2,0,0,0,0,0,0,0)

5L 11111 l)
2021202127222

Table D.8: Simple roots a; and fundamental weights o of Eg
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Appendix F

An Orbifold-MSSM: Details

In this appendix we display in full detail the most important properties of the so-called orbifold-
MSsM introduced in chapter 5. This model has been subject of analysis also in our previous
works, refs. [75,77,78|.

F.1 Model Definitions and Spectrum

The model is defined by its gauge embedding, i.e. shift and Wilson lines [75,77]

VSO(IO)J = (%, _%’ _%a O’ 07 Oa 07 O) (%, _%’ _%a _%’ _%’ _%a _%a %) ) (F]'a‘)
1 1 11 1 11 1)/10 7 _4
A3 = (_57 T 27667 6 6’6 6) (?7 07 _67 T3 T _57 _37 3) ) (Flb)
1 1 1 1 _1 111 5 3 _1 _5 _3 3
A = (1511 1voo1d)L-L -3 -5 -3 -3 -33) Fl)
The unbroken gauge group after compactification is
Gip = [SU(3) x SU(2)] x [SO(8) x SU(2)] x U(1)®. (F.2)
The U(1) generators are chosen to be
t1 = ty = (0,0,0,—%,-3,%,%,3) (0,0,0,0,0,0,0,0) , (F.3a)
te = (1,0,0,0,0,0,0,0)(0,0,0,0,0,0,0,0) , (F.3b)
t3 = (071705 0,0, 0,030) (Oa 0503030707070) ) (F3C)
ty = (0,0,1,0,0,0,0,0)(0,0,0,0,0,0,0,0) , (F.3d)
ts = (0,0,0,1,1,1,1,1)(0,0,0,0,0,0,0,0) , (F.3e)
ts = (0,0,0,0,0,0,0,0)(1,0,0,0,0,0,0,0) , (F.3f)
tr = (0,0,0,0,0,0,0,0)(0,1,0,0,0,0,0,0) , (F.3g)
ts = (0,0,0,0,0,0,0,0)(0,0,0,1,1,0,0,0) . (F.3h)
The anomalous U(1) is generated by
7 512 2 2
tA - ZCiti, Where c; = <0,§,—1,—§7§,§,—§7—§> . (F4)
The sum of anomalous charges is
170
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The model allows us to define a suitable B — L generator,

1000222 L 101 1OOO
333 2’ 2’?2? 2?77 *

with two important properties (cf. table F.1):

tp—r = (F.6)

e the spectrum includes the families of quarks and leptons plus vectorlike exotics with
respect to Ggyr x U(1)pr, , and

e there are SM singlets with B—L charge +2, labeled as x;.

‘ # ‘ Representation ‘ Label ‘ 7 | Representation Label
31 (8:21,1) (/613 9 3| BLiLl) Ly iy | W
31 (LL1,1), €i 41 (1,21,1) ., m;
4 BBy gy | 1| (8,1;1,1) /3,3 di
4| (L,21,1) ) ) g 1 (L,21,1) )5 li
4 1,2:1,1 i s

(1, )(=1/2,0) ¢ 41 (L,21,1) 5 o
3| (3111, 3,2/3 0i
(1/3.2/3) 3| (BLL 1)y am | O
20 | (LB, 1), si
20 | (L,51,1)_yp0. 8
15 | (1,1;1,1) ) ng
- 12 | (L1;1,1),_, n;
3| (1,1;1,2) i ’
2 | (1,111,200, Iy 3 (1,151 2)(0, ni
2| (1,1;1,2) 51 o 2121 2o z
2| (1,151 1)(0 +2) Xi 2 (1,151 2)( 1/2,—1) T
4 (3 1;1 1)( 1/6,%) Ui 18 | (1,1;1,1)0) §l
5 (1,1;8 )(o 0) Wi 2 (1 18, 1)(0 1/2) f

Table F.1: Spectrum summary. The quantum numbers under SU(3) x SU(2) x[SO(8) xSU(2)]
are shown in boldface; hypercharge and B— L charge appear as subscripts. Note that the
states szi, m; and v; have different B-L charges for different i, which we do not explicitly
list. Further details are given in section F.7.

F.2 wmssMm Configuration with R-Parity

Consider a vacuum configuration where the fields

{si} =

00000 0 0 0 0 0 0 0 .0
{X15 X2, 83, 55, 58, 59, S195 515, S16+ 592 5245 535 5415 543 Sa65 P2

F.7
hs3, hs, hg, h13, hia, hoo, o1, hao } (F-7)

develop a nonzero VEV while the expectation values of all other fields vanish. The emerging
effective theory has the following properties:
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1. the unbroken gauge symmetries are

Gsm X Ghidden with  Ghidden = SO(8) . (F.8)

2. since B—L is broken by two units, there is an effective matter parity Zé”.

3. the Higgs mass terms are

4

s 0 0 s
- 5 2 8 5
oi (M<$¢)ij ¢j where Mq3¢ = 0 0 P (F 9)
s 0 0 3
The up-type Higgs h, is a linear combination of ¢, ¢3 and ¢y,
hy ~ $°Gp1+ d3+5" ¢4, (F.10)
while the down-type Higgs is composed out of ¢o and ¢s3,
hg ~ @2+ @3 . (F.11)

The vacuum configuration is such that the y—term, being defined as the smallest eigen-
value of Mg,
0*wW
W = F—F— (F.12)
Ohq Ohy |y, _p, o
vanishes up to order 5%, at which we work.

4. we check that switching on {&s;}—fields allows us to cancel the FI term without inducing
D-terms (cf. section F.3).

5. all exotics decouple (cf. section F.5).
6. neutrino masses are suppressed via the seesaw mechanism (cf. section F.6).

Therefore, we have obtained a supersymmetric vacuum with the precise matter content of
the MssM and R-parity.
The up-Higgs Yukawa couplings decompose into

4
o
Wrikawa D Z(Yu)gj)%‘uj Dk (F.13)
k=1
where
0 0 3° 00 0
vy = [0 o |, v =00 0], (F.14a)
3081 0 0 58
00 0 00 0
v = (o0 0], =100 o0
0 0 56 0 0 55
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Thus, the physical 3 x 3 up—Higgs Yukawa matrix is

0 0 3
Yy ~ 32YW4+y® 45ty@ = | 0 o 3B (F.15)
3 3 2

We find that at order six in SM singlet fields, Y, does not have maximal rank, which means
that the up—quark is massless at this level. However, at order seven in SM singlets Y, takes
the form

55 88
Y, ~ YW 4y® 43ty® = | 57 5 B |, (F.16)
3 32
providing then masses for all up—type quarks.
The down-Higgs Yukawa couplings decompose into
4
B -
Wydawa 2 Y (Ya)is) i dj . (F.17)
k=1
where
g5 S 1 s 00
vy | ##e e, vP =5 1 00|, (F.18a)
5 5 5 500
1 3 00
vW=13 100 |, v =0
s s 00

The physical 3 x 3 down—Higgs Yukawa matrix emerges by integrating out a pair of vec-
torlike d— and d—quarks,

1 3 0
Y, = 1 320 (F.19)
550

We find that at order 6 in SM singlet fields, Y; does not have maximal rank, which means that
the down—quark is massless at this level. However, at order eight in sSM singlets Y, takes the
form

1 3 0
Y, = 1 32 38 (F.20)
5 5 B
providing then masses for all down—type quarks.
The charged lepton Yukawa couplings decompose into
! k
WYukawa D) Z(Ye)gj) 62 éj ¢k ) (F21)

k=1
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where
oo P 1 3 3
A A P 01 3
yao — | 3 § A F.22
e 0o 0 o [ ' 0 o 3 |’ (F.22a)
0 0 0 0o 0 s
1 3 00 3°
e 0o 0 3% | ¢ 0 0 s
0o 0 s 0 0 s

The physical 3 x 3 matrix emerges by integrating out a pair of vectorlike /— and /—leptons,

11 3
Y, = 5 5 32 (F.23)
0 0 39

F.3 D-Flatness

One can write down gauge invariant monomials which carry net negative anomalous charge.
An example for such a monomial involving all s; is
3

0
S5

0 0 0

A 03 | % 58 522 0.)% (s9,)% (s%,)" (s%,)°

I(5) = x1xz (s3) 522 (5(1)5 ) ( s9, ) (s35)" (s21)” (s13)" (s) (F.24)
S16

X h3 hg h2 h% h34 b3, hoo h3; hSy

Here, gauge equivalent expressions are arranged vertically, e.g. s, and s3, carry the same

charges (cf. table F.2). The monomial carries anomalous charge >, ¢! = —52/3.

F.4 F-Flatness

Provided the superpotential at order six

W = s9hs(s2h1 + s99ha) + (s95h1s + sghi3)(s9y + s33)(has + has)
+ (s99h14 + 594h16) (595 + 593) (has + hao)

+ haa(s3hs + s9ha) (91 (95 + s9s) + s (s + sds) + 585 (585 + %) ) ,

(F.25)
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the F—terms of this model are

hihssss + hashs((s36 + s95) st + 32 (st + s03) + 855 (s05 + s%6)) (F.26)
haz(has + has)(siz + s13) ,

h2h5sg2 ,

his(has + has) (s + 593 ,

h1a(has + hao)(s92 + s33)

hi(his + hao)(s9y + 593 ,

hashssy sg

haahssy, s ,

(haohs(shs + s13)s3 + hs(h2sts + hiss))

hazhs (s + s56)s5 ,

hazhs (s + s35)s5 ,

(his + hao)(h1asYy + hi6shy) + hoshssdyst + (has + hos)(huss)s + hissg) ,
(Rig + hoo)(h148% + h1655,) + haoh3s3.52 + (hag + has)(hi5sYs + h13sg),
hashssisss ,

haahssls st ,

h5sg25g ,

h55(1)25g2 )

haa (5596 + $38)591 + $32(5% + 513) + s35(s45 + 516))55 ,

55 (hasls + h1s3)

has + has ) (52 + s43)s3

has + hao)sa (s + sis) .

has + has)sYs(sis + s13)

hig + h2o)s5,(ss + 843) ,

h148%9 + h16s94) (592 + 543)

h1asgy + hi6ss) (s + sis) ,

ha((s56 + s95)s41 + 532(84 + 03) + s35(s55 + 5%6))53 »

(42 + 513) (h15575 + hiasg) ,

(s92 + 3913)(]1155(1)5 + h135g) :

(
(
(
(
(
(

At order six in the sM singlets, the vaccum configuration (F.7) leaves some nonzero F—
terms which can only be cancelled if some singlets have trivial VEvs. However, as discussed
in section 5.2.2, at order eight in the superpotential, one does find nontrivial solutions. We
do not list them here due to their length.

F.5 Mass Matrices

In this section, we show that that all exotics can be made massive. The exotics’ mass terms

are

x ML %5 . (F.27)
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NEUTRINO MASSES

F.6.

In the following, we list the structure of the corresponding mass matrices.
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F.6 Neutrino Masses

We consider vacua where SU(2) is broken. This means that the 7; and 7; give rise to further

sM singlets with ¢p_; = £1,
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The neutrino mass matrix is then given by
The neutrino Yukawa couplings decompose into

F.6. NEUTRINO MASSES
and has full rank.

where

v,

(F.33c)
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0
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ngk>2)



132 APPENDIX F. AN ORBIFOLD-MSSM: DETAILS

03 003 0003 33 3 000000000
03 003 0003 3 3 3 000000000
vy — z F.33d
n 0?005’500000154000000000()
03 003 0000 03 1 000O0O0O0UO0TO0TO0
00 0 0 0 O 0OO0OOTZ S 3 00073 30000
~5 ~5 ~4 ~4
Yfgg):022022000022000120000(F.33e)
0 s s 0 s s 0 0 0 0 s s 0 0 0 s s2 0 0 0 o
0 32 3% 0 2 3 00003 3 0003 3% 0000
03 0 03 0 00003 5 0003 3 0000
Y(S)_ogﬁoogﬁoooooggooogﬁgﬁoooo(Fsgf)
7l o 3 % 03 00003 %000 0 0 0O0O00 '
0 32 % 0 23 oo0o0wo03 3 000 0 00000
0 o003 0 000WO0OT3 5 00023 3 0000
03 0 03 000003 5 0003 3 0000
v _ F.
a 0% ¥ 0 2 00007F #0000 0000 o |F3
0 32 % 0 23 oo0o0wo03 3 000 0 00000
With these couplings, one can calculate the effective ¢ bilinear
eff 1 —1+vT
MM = §YVMI717 sza (F34)
where YV, = (Y,,Ys). By integrating out the heavy ¢, one arrives at the 3 x 3 effective
neutrino mass operator x, which is related to the light neutrino mass matrix via
g
m, = vk (F.35)

with v, being the up-type Higgs VEV. By using the method explained in section 5.5.1, we
find that m, is (very roughly) given by

2 1 s s
Mg ~ ——%|s s2 2], (F.36)
M, 2 2
s s s
and the effective seesaw scale is given by
M, ~ 0.1s° My, , (F.37)

where M, =2 - 107 GeV is the string scale taken as the overall scale of M.

F.7 Detailed Spectrum

In this section, we display the properties of each state in the spectrum. The spectrum listed
here differs only aesthetically with respect to the results presented in ref. [78]. The reason
being that the twist vector we have used in that work and here differ by a minus sign.
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The U(1)

Table F.2: The spectrum of the orbifold-MssM in terms of left-chiral states.

charges refer to the basis of generators, eq. (F.3).

v(9) is

R; denote bosonic R-charges.

the so-called y-phase defined in sec. 2.5. Ty (n, ny,n3,n4,n5,n6) denotes the k-th twisted sector

(9%, naeq).
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untwisted sector, 32
orbifold-Mssm, 75, 83, 86

point group rule, Zg-11, 71
point group rule, Zg-11, trilinear, 72
proton decay

constraints, 91

dim 4 operators, 91

dim 5 operators, 91

scalar potential, 79
seesaw mechanism, 96
selection rules, Zg-11, 70
shift vector, 16, 21
shift vector, ansatz, 58
space group, 16
conjugacy class, 17
constructing elements, 24
twisted sectors, 17
untwisted sector, 17
spinor, SO(10), 63
supersymmetry breaking, 84
SUSY constraints, 79

transformation phase
twisted sectors, 34
untwisted sector, 31

twisted strings, 28

untwisted strings, 28

Wilson line, ansatz, 58
Wilson lines, 16, 21
order of, 21, 115

Yukawa coupling selection rules, 47
conservation of R—charge, 47
~y-rule, 49
gauge invariance, 47
space group selection rule, 48

Z3 geometry, 26

Z3 spectrum, example, 34-42
local spectra, 40
with Wilson lines, 38
without Wilson lines, 34

Zg-11 geometry, 27



