The Optical Theorem and Partial Wave Unitarity

Michael Ronniger

Seminar on Theoretical Particle Physics
University of Bonn

June 29th 2006
1. Introduction

2. The S-matrix - Definition
 - Particle-States
 - Definition of the S-matrix
 - Definition of the T-matrix
 - Calculation of the Cross-Section σ

3. The Optical Theorem
 - Derivation of the Optical Theorem
 - The Optical Theorem for Feynman Diagrams
 - Cutting Rules
 - Example

4. Partial Wave Unitarity
 - Two-Particle Partial Wave Unitarity
 - Short Outlook

5. Summary
What is the **Optical Theorem**?

Motivation:

The Optical Theorem:

\[
\text{Im } f(\theta = 0) = \frac{|k|}{4\pi} \sigma_{\text{tot}}
\]

(1)

Is there a more general concept behind this?

⇒ Answer: **Yes**!

short: The optical theorem follows directly from the unitarity of the S-matrix.

⇒ How can we define the S-matrix in a physical meaningful way?

Let’s take a look at this...
Definition of one- and many-Particle-States

One-particle-state:

\[|\phi(t)\rangle = \int \frac{d^3k}{(2\pi)^3} \cdot \frac{\phi(k)}{\sqrt{2E(k)}} |k(t)\rangle \]

(2)

Multi-particle-state:

\[|\phi_1\phi_2...\rangle(t) \equiv |\{\phi_f\}\rangle(t) = \prod_f \int \frac{d^3k_f}{(2\pi)^3} \cdot \frac{\phi_f(k_f)}{\sqrt{2E_f}} |\{k_f\}\rangle(t) \]

(3)

with \[|\{k_f\}\rangle \equiv |k_1k_2...\rangle \]
Definition of one-and many-Particle-States

One-particle-state:

\[|\phi\rangle(t) = \int \frac{d^3 k}{(2\pi)^3} \cdot \frac{\phi(k)}{\sqrt{2E(k)}} |k\rangle(t) \] \hspace{1cm} (2)

Multi-particle-state:

\[|\phi_1\phi_2...\rangle(t) \equiv |\{\phi_f\}\rangle(t) = \prod_f \int \frac{d^3 k_f}{(2\pi)^3} \cdot \frac{\phi_f(k_f)}{\sqrt{2E_f}} |\{k_f\}\rangle(t) \] \hspace{1cm} (3)

with \(|\{k_f\}\rangle \equiv |k_1k_2...\rangle\)
The starting point

Question:
What is the transition probability for the scattering of two particles A and B into a many-particle-state $|\{\phi_f(t)\}\rangle$?

transition probability

$$ \Rightarrow \mathcal{P}(t_2, t_1) = \left| \left\langle \{\phi_f\}(t_2) | \phi_A \phi_B(t_1) \right\rangle \right|^2 $$

(4)

\Rightarrow We have to compute $\left\langle \{p_f\}(t_2) | k_A k_B(t_1) \right\rangle$
Definition of the S-matrix

The S-matrix relates the incoming particles (coming from $t_1 \to -\infty$) and the outgoing particles (going to $t_2 \to +\infty$).

Definition: The S-matrix:

$$\langle \{p_f\} | S | k_A k_B \rangle \equiv \lim_{t \to +\infty} \langle \{p_f\}(t) | k_A k_B(-t) \rangle$$

Some properties of the S-matrix:

- S have to be unitary ($S^\dagger S = 1$)
- S is the identity if the particles do not interact between each other
Definition of the T-matrix

Definition: The T-matrix:

\[S \equiv 1 + iT \] (6)

So, T is the interesting part of the interaction process (⇒ shows if something interacts).

Some properties of the T-matrix:

- S unitary ⇔ \(S^\dagger S = 1 \) ⇒ \(T^\dagger T = -i(T - T^\dagger) \)
- \(T = 0 \) if the particles do not interact between each other

Define the invariant matrix-element \(M(k_A k_B \rightarrow \{p_f\}) \) by

\[\langle \{p_f\}|iT|k_A k_B \rangle = iM(k_A k_B \rightarrow \{p_f\}) (2\pi)^4 \delta^{(4)}(k_A + k_B - \sum_f p_f) \] (7)

\(M \) is proportional to the scattering amplitude \(f \).
How does the Cross-Section σ depends on \mathcal{M}?

Transition probability

At first we decide the probability that the initial state $|\phi_A\phi_B\rangle$ becomes scattered into the final momentum-state $|\{p_f\}\rangle$ (that means in a small region $\prod_f d^3 p_f$).

Therefore:

$$P(AB \rightarrow \{p_f\}, b) = \prod_f \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} |\langle \{p_f\}|\phi_A\phi_B\rangle(b)|^2$$

(8)

with b as impact-parameter. Definition of the cross-section

$$\sigma = \frac{N_{sc}}{n_B N_A} = \int d^2 b P(b)$$

(9)

($N_{sc} \triangleq \#$ scattered particles, $n_B \triangleq$ number density, $N_A \triangleq \#$ incoming particles)
How does the Cross-Section σ depends on \mathcal{M}?

\[
\sigma_{\text{tot}} = \left(\prod_f \int \frac{d^3 p_f}{(2\pi)^3} \frac{1}{2E_f} (2\pi)^4 \delta^4(P - \sum_f p_f) \right) \times |\mathcal{M}(p_A p_B \rightarrow \{p_f\})|^2 \frac{2E_A 2E_B |v_A - v_B|}{2E_A 2E_B |v_A - v_B|}
\]

with $P = p_A + p_B$ and $v_i = k_i^2 / E_i$, $i = A, B$. Now, we can follow the optical theorem quite easy...
The Optical Theorem:

We know $S^\dagger S = 1 \Rightarrow T^\dagger T = -i(T - T^\dagger)$ an so we can calculate the scattering amplitude for the process $k_1 k_2 \rightarrow p_1 p_2$.

$$
\langle p_1 p_2 | T^\dagger T | k_1 k_2 \rangle = \sum_n \left(\prod_{f=1}^{n} \int \frac{d^3 q_f}{(2\pi)^3} \frac{1}{2E_f} \right) \langle p_1 p_2 | T^\dagger | \{q_f\} \rangle \langle \{q_f\} | T | k_1 k_2 \rangle
$$

(10)

This gives us

$$
-i(M(k_1 k_2 \rightarrow p_1 p_2) - M^*(p_1 p_2 \rightarrow k_1 k_2))
= \sum_n \left(\prod_{f=1}^{n} \int \frac{d^3 q_f}{(2\pi)^3} \frac{1}{2E_f} \right) M(p_1 p_2 \rightarrow \{q_f\}) M^*(k_1 k_2 \rightarrow \{q_f\})
\cdot (2\pi)^4 \delta^{(4)}(k_1 + k_2 - \sum_f q_f)
$$

(11)
The optical theorem relates the forward scattering amplitude to the cross-section.

\[2 \text{Im} \mathcal{M}(k_1 k_2 \rightarrow k_1 k_2) = \sum_n \left(\prod_{f=1}^{n} \int \frac{d^3 q_f}{(2\pi)^3} \frac{1}{2E_f} (2\pi)^4 \delta^4(k_1 + k_2 - \sum_f q_f) \right) \]

\[\equiv \int d\Pi_n \]

\[\times |\mathcal{M}(k_1 k_2 \rightarrow \{q_f\})|^2 \]
Put in the relation for the total cross-section

\[
2 \text{Im } M(k_1k_2 \rightarrow k_1k_2) = 2E_A 2E_B |v_A - v_B| \sigma_{\text{tot}}
\]

(12)

go into the CM-system

\[
(p_A + p_B = 0 \Rightarrow E_{\text{CM}} = E_A + E_B, \quad P_{\text{CM}} = p_A = -p_B)
\]

Optical Theorem (Standardform)

\[
\text{Im } M(k_1k_2 \rightarrow k_1k_2) = 2E_{\text{CM}} P_{\text{CM}} \sigma_{\text{tot}}
\]

(13)
The Optical Theorem for Feynman Diagrams

We can derive \mathcal{M} by the Feynman rules.

⇒ the virtual particles of the propagator yields an imaginary part $i\varepsilon$ if they go on-shell.

Let’s check

$$-i(\mathcal{M}(k_1 k_2 \rightarrow p_1 p_2) - \mathcal{M}^*(k_1 k_2 \rightarrow p_1 p_2))$$

$$= \sum_f \int d\Pi_f \mathcal{M}(p_1 p_2 \rightarrow \{q_f\}) \mathcal{M}^*(k_1 k_2 \rightarrow \{q_f\})$$

$$\cdot (2\pi)^4 \delta^{(4)}(k_1 + k_2 - \sum_f q_f)$$

for ϕ^4-theory diagrams

threshold energy s_0 is needed for production of the lightest multi-particle state ($s = E_{CM}^2$, Mandelstam-variable).
The Optical Theorem for Feynman Diagrams

Properties of \mathcal{M}

\[
\mathcal{M}(s) = [\mathcal{M}(s^*)]^* \quad s < s_0 \quad (\mathcal{M}(s) \text{ analytic!})
\]

\[\Rightarrow \quad \text{Re } \mathcal{M}(s + i\epsilon) = \text{Re } \mathcal{M}(s - i\epsilon), \quad s > s_0\]

\[\text{Im } \mathcal{M}(s + i\epsilon) = -\text{Im } \mathcal{M}(s - i\epsilon), \quad s > s_0 \Rightarrow \text{discontinuity}\]

Attention!

- ϕ^4-theory
- \Rightarrow the simplest diagram in our case is a one loop diagram
 (order $\propto \lambda^2$, $s_0 = 2m$)
- the generalization of the result for multi-loop diagrams has been proven by Cutkosky
- \Rightarrow Cutting Rules

Michael Ronniger
The Optical Theorem for Feynman Diagrams

Properties of \mathcal{M}

$$\mathcal{M}(s) = [\mathcal{M}(s^*)]^* \quad s < s_0 \quad (\mathcal{M}(s) \text{ analytic!})$$

$$\Rightarrow \text{Re } \mathcal{M}(s + i\epsilon) = \text{Re } \mathcal{M}(s - i\epsilon), \quad s > s_0$$

$$\text{Im } \mathcal{M}(s + i\epsilon) = -\text{Im } \mathcal{M}(s - i\epsilon), \quad s > s_0 \Rightarrow \text{ discontinuity}$$

Attention!

- ϕ^4-theory
- \Rightarrow the simplest diagram in our case is a one loop diagram (order $\propto \lambda^2$, $s_0 = 2m$)
- the generalization of the result for multi-loop diagrams has been proven by Cutkosky
- \Rightarrow Cutting Rules
Consider the one-loop diagram

\[\frac{k}{2} - q \rightarrow \frac{k}{2} + q \quad k = k_1 + k_2 \]
The Optical Theorem for Feynman Diagrams

Loop-correction

\[i\delta M = \frac{\lambda^2}{2} \int \frac{d^4 q}{(2\pi)^4} \frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \cdot \frac{1}{(k/2 + q)^2 - m^2 + i\epsilon} \]

(14)

Some properties of \(\delta M \):

- For \(k_0 < 2m \) the integral can be calculated and then we increasing \(k_0 \) by analytical continuation
- !! We want to verify, that the integral has a discontinuity across the real axis for \(k_0 > 2m \) !!

\[\Rightarrow \text{go into the CM-system } k = (k_0, 0) \]
⇒ we obtain four poles \((E_q^2 = |q|^2 + m^2) \)

\[
q^0 = \frac{1}{2} k^0 \pm (E_q - i\epsilon), \quad q^0 = -\frac{1}{2} k^0 \pm (E_q - i\epsilon)
\]

⇒ only the pole at \(q_0 = -\frac{1}{2} k^0 + E_q - i\epsilon \) will contribute to the discontinuity (close the integration contour in the lower half plane!)

⇒ replace: \[
\frac{1}{(k/2+q)^2-m^2+i\epsilon} \rightarrow -2\pi i\delta((k/2 + q)^2 - m^2)
\]
under the \(dq_0\)-integral
The Optical Theorem for Feynman Diagrams

⇒ we obtain four poles \((E_q^2 = |q|^2 + m^2)\)

\[q^0 = \frac{1}{2} k^0 \pm (E_q - i\epsilon), \quad q^0 = -\frac{1}{2} k^0 \pm (E_q - i\epsilon) \]

\[-\frac{1}{2} k^0 - E_q \quad \frac{1}{2} k^0 - E_q \quad \frac{1}{2} k^0 + E_q \quad -\frac{1}{2} k^0 + E_q\]

⇒ only the pole at \(q_0 = -\frac{1}{2} k^0 + E_q - i\epsilon\) will contribute to the discontinuity (close the integration contour in the lower half plane!)

⇒ replace:

\[
\frac{1}{(k/2+q)^2-m^2+i\epsilon} \rightarrow -2\pi i \delta((k/2+q)^2 - m^2)
\]

under the \(dq_0\)-integral.
The Optical Theorem for Feynman Diagrams

\[i\delta M = -2\pi i \frac{\lambda^2}{2} \int \frac{d^3q}{(2\pi)^4} \frac{1}{2E_q} \frac{1}{(k^0 - E_q)^2 - E_q^2} \]

\[= -2\pi i \frac{\lambda^2}{2} \frac{4\pi}{(2\pi)^4} \int_m^\infty \text{d}E_q E_q |q| \frac{1}{2E_q} \frac{1}{k^0(k^0 - 2E_q)} \]

Properties

- \(E_q = k^0/2 \) is a pole of the integrand
- if \(k^0 < 2m \) the pole doesn’t lie in the integration contour
 \(\Rightarrow \mathcal{M} \) is real
- if \(k^0 > 2m \) the pole does lie in the integration contour
 \(\Rightarrow k^0 \) has a small positive or negative imaginary part
The Optical Theorem for Feynman Diagrams

\[i \delta \mathcal{M} = -2\pi i \lambda^2 \frac{1}{2} \int \frac{d^3 q}{(2\pi)^4} \frac{1}{2E_q} \frac{1}{(k^0 - E_q)^2 - E_q^2} \quad (15) \]

\[= -2\pi i \frac{\lambda^2}{2} \frac{4\pi}{(2\pi)^4} \int_{m}^{\infty} dE_q E_q \frac{1}{|q|} \frac{1}{2E_q} \frac{1}{k^0(k^0 - 2E_q)} \quad (16) \]

properties

- \(E_q = k^0/2 \) is a pole of the integrand
- if \(k^0 < 2m \) the pole doesn’t lie in the integration contour \(\Rightarrow \mathcal{M} \) is real
- if \(k^0 > 2m \) the pole does lie in the integration contour \(\Rightarrow k^0 \) has a small positive or negative imaginary part
The Optical Theorem for Feynman Diagrams

Integration contour:

\[\int \frac{1}{k^0 - 2E_q \pm i\epsilon} = \mathcal{P} \frac{1}{k^0 - 2E_q} \mp i\pi\delta(k^0 - 2E_q) \quad (17) \]

⇒ Thus, the integral has a discontinuity between \(k^2 + i\epsilon \) and \(k^2 - i\epsilon \)!
Thus, the integral has a discontinuity between $k^2 + i\epsilon$ and $k^2 - i\epsilon$!

This is equivalent to replacing the original propagator by a delta-distribution:

$$
\frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \rightarrow -2\pi i\delta((k/2 - q)^2 - m^2)
$$
The Optical Theorem for Feynman Diagrams - Cutting Rules

Cutting Rules:

Look again at

\[i\delta M = \frac{\lambda^2}{2} \int \frac{d^4q}{(2\pi)^4} \frac{1}{(k/2 - q)^2 - m^2 + i\epsilon} \frac{1}{(k/2 + q)^2 - m^2 + i\epsilon} \]

and relabel the momenta at the two propagators with \(p_1 \) and \(p_2 \).

\(\Rightarrow p_1 = k/2 - q, \ p_2 = k/2 + q. \)

1. Replace:

\[\int \frac{d^4q}{(2\pi)^4} = \int \int \frac{d^4p_1}{(2\pi)^4} \frac{d^4p_2}{(2\pi)^4} (2\pi)^4 \delta(4)(p_1 + p_2 - k) \]

\[\Rightarrow i\delta M = \frac{\lambda^2}{2} \int \int \frac{d^4p_1}{(2\pi)^4} \frac{d^4p_2}{(2\pi)^4} (2\pi)^4 \delta(4)(p_1 + p_2 - k) \]

\[\times \frac{1}{p_1^2 - m^2 + i\epsilon} \frac{1}{p_2^2 - m^2 + i\epsilon} \]
The Optical Theorem for Feynman Diagrams

The Optical Theorem for Feynman Diagrams - Cutting Rules

2. Replace:

\[
\frac{1}{p_i^2 - m^2 + i\epsilon} \rightarrow -2\pi i \delta(p_i^2 - m^2)
\]

This gives us in order \(\lambda^2 = |M(k)|^2 \)

\[
2i \text{Im} \delta M(k) = \frac{i}{2} \int \frac{d^3 p_1}{(2\pi)^3} \frac{1}{2E_1} \frac{d^3 p_2}{(2\pi)^3} \frac{1}{2E_2} |M(k)|^2 (2\pi)^4 \delta(p_1 + p_2 - k) \quad (18)
\]

\[
2i \text{Im}
\]

\[
= \frac{i}{2} \int \frac{d^3 p_1}{(2\pi)^3} \frac{1}{2E_1} \frac{d^3 p_2}{(2\pi)^3} \frac{1}{2E_2} \left| \begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\end{array} \right|^2 \delta^{(4)}(p_1 + p_2 - k)
\]

this verifies the optical theorem to order \(\lambda^2 \) in \(\phi^4 \)-theory
The Optical Theorem for Feynman Diagrams - Cutting Rules

Cutting Rules

1. Cut through the diagram in \textit{all possible} ways such that the cut propagator can simultaneously be put \textit{on shell}.

2. For each cut, replace \(\frac{1}{(p^2 - m^2 + i\epsilon)} \rightarrow -2\pi i\delta(p^2 - m^2) \) in each cut propagator, then perform the loop integrals.

3. Sum the contributions of all possible cuts.

\textit{Cutkosky} proved this method in general.

Using these cutting rules, it is possible to check the optical theorem for all orders in perturbation theory.
Cutting Rules

1. Cut through the diagram in all possible ways such that the cut propagator can simultaneously be put on shell.
2. For each cut, replace \(\frac{1}{p^2 - m^2 + i\epsilon} \rightarrow -2\pi i \delta(p^2 - m^2) \) in each cut propagator, then perform the loop integrals.
3. Sum the contributions of all possible cuts.

Cutkosky proved this method in general. Using these cutting rules, it is possible to check the optical theorem for all orders in perturbation theory.
The Optical Theorem for Feynman Diagrams - Example

Bhabha-scattering:

\[(a) \quad 2 \text{Im} \left(\begin{array}{c}
\end{array} \right) = \int d\Pi \left| \begin{array}{c}
\end{array} \right|^2\]

\[(b) \quad 2 \text{Im} \left(\begin{array}{c}
\end{array} \right) = \int d\Pi \left| \begin{array}{c}
\end{array} \right|^2\]

Two contributions to the optical theorem for Bhabha-scattering.
Partial Wave Unitarity

For the M-Matrix we have found

$$-i(M(k_1k_2 \rightarrow p_1p_2) - M^*(p_1p_2 \rightarrow k_1k_2))$$

$$= \sum_n \left(\prod_{f=1}^n \int \frac{d^3 q_f}{(2\pi)^3} \frac{1}{2E_f} \right) M(p_1p_2 \rightarrow \{q_f\})M^*(k_1k_2 \rightarrow \{q_f\})$$

$$\cdot (2\pi)^4 \delta^{(4)}(k_1 + k_2 - \sum_f q_f) \quad (19)$$

Choose particle k_2 at rest
Consider spinless particles $\Rightarrow \phi$-independence
\Rightarrow scattering angle $\theta \Rightarrow M(k_1k_2 \rightarrow p_1p_2) = M_{ij}(s, \theta)$ where
$i = k_1 + k_2$ and $j = p_1 + p_2$ denotes the initial- and final-state.
Partial Wave Unitarity

\[
\begin{align*}
\Rightarrow M_{ij}(s, \theta) & \equiv 8\pi s^{1/2} f_{ij}(s, \theta) \\
& = 8\pi s^{1/2} \sum_{l=0}^{\infty} (2l + 1) M_{ij,l}(s) P_l(\cos \theta)
\end{align*}
\]

(20)

(21)

with \(f_{ij}(s, \theta) \) as the scattering amplitude.

If we put \(f_{ii}(s, 0) \equiv f(0) \)

Prove: Optical Theorem

\[
\text{Im } f(0) = \left| \frac{P_{\text{CM}}}{4\pi} \right| \sigma_{\text{tot}}
\]

(22)
Two-Particle Partial Wave Unitarity:
If we consider only elastic scattering \((i=j)\)

\[
\text{Im } \mathcal{M}_1 = \sum_k p_k |\mathcal{M}_{k,1}|^2 \tag{23}
\]

and that all \(k\)-channels are closed at low energies \((p_k = p)\)

\[
\text{Im } \mathcal{M}_1 = p |\mathcal{M}_1|^2 \tag{24}
\]

\[
\Rightarrow \mathcal{M}_l = \frac{1}{p} e^{i\delta_l} \sin \delta_l
\]

where \(\delta_l\) denotes the scattering-phase for the \(l\)-th partial wave
Partial Wave Unitarity

The differential cross-section is in general given by

$$\frac{d\sigma_{ij}}{d\Omega} = \frac{1}{16\pi^2} \frac{p'}{p} \frac{1}{4s} |M_{ij}(s, \theta)|^2$$ \hspace{1cm} (25)

Using

$$M_{ij}(s, \theta) = 8\pi s^{1/2} \sum_{l=0}^{\infty} (2l + 1)M_{ij,l}(s)P_l(\cos \theta)$$
we get

\[
\sigma_{ij} = 4\pi \frac{p'}{p} \sum_l (2l + 1)|M_{ij,l}|^2 \equiv \sum_l \sigma_{ij,l}
\]

For pure elastic scattering at low energies

Partial total cross-section

\[
\sigma_l = \frac{4\pi}{p^2} (2l + 1) \sin^2 \delta_l
\]
Two-Particle Partial Wave Unitarity

Partial Wave Unitarity

And for the case: A and B carry spin

Partial total cross-section for spin 1/2 particles

\[
\sigma_j = 4\pi \frac{2j + 1}{(2s_1 + 1)(2s_2 + 1)} \sum_{\lambda_1' \lambda_2' \lambda_1 \lambda_2} |M_j(\lambda_1' \lambda_2'; \lambda_1 \lambda_2; s)|^2 \quad (28)
\]

we \(\lambda_i \) are the initial and \(\lambda'_i \) the final helicities
short outlook: $W^+ W^+$-scattering \Rightarrow need higgs-boson!
It is possible to show

\[-i\mathcal{M}_{\gamma Z^0+\pi^0}(s) = -ig^2 \left(\frac{s}{M_W^2} \right) + 2 \right] \propto s \quad (29)\]

but from the optical theorem follows for an large \(s\)

\[|\mathcal{M}(s)| < 16\pi \frac{q^2}{t_0} (\ln s)^2 \text{ (result by [ItZu])} \quad (30)\]

\[\Rightarrow \text{there must be a counter-term in eq. (29) to cancel the } s\]
put in the Higgs-Boson h_0

$$-i\mathcal{M}(s) = -i(\mathcal{M}_{\gamma+Z^0+\times}(s) + \mathcal{M}_{h_0}(s)) = -ig^2 \left[4 + \frac{1}{2} \left(\frac{M_{h_0}}{M_W} \right)^2 \right]$$

⇒ OK!
1. We have proved, that the optical theorem follows directly from the unitarity of the S-matrix.

2. Proving the optical theorem for Feynman diagrams in ϕ^4-theory we had found the cutting rules.

3. We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem.
1. We have proved, that the optical theorem follows directly from the unitarity of the S-matrix.

2. Proving the optical theorem for Feynman diagrams in ϕ^4-theory we had found the cutting rules.

3. We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem.
Summary

1. We have proved, that the optical theorem follows directly from the unitarity of the S-matrix.
2. Proving the optical theorem for Feynman diagrams in ϕ^4-theory we had found the cutting rules.
3. We have derived an equation for the partial total cross-section for bosonic and fermionic particles from the principles of the optical theorem.
[PeSc] M. E. Peskin, D. V. Schroeder
An Introduction to Quantum Field Theory
(Westview Press 1995)

[FaRi] Fayyazuddin, Riazuddin
A modern Introduction to Particle Physics

[ItZu] Itzykson, Zuber
Quantum Field Theory