Symmetry breaking: Pion as a Nambu-Goldstone boson

Stefan Kölling

Universität Bonn

Seminar zur theoretischen Teilchenphysik, 20.04.06
General theory of spontaneous symmetry breaking

What it is
Spontaneous breaking of a global continuous symmetry (classical)
Spontaneous breaking of a global continuous symmetry (QFT)
Quantum fluctuations

Pion as a Nambu-Goldstone Boson
Weak decays
Pion as a Nambu-Goldstone boson

Summary
A symmetry is said to be **spontaneously broken**, if the Lagrangian exhibits a symmetry but the ground state/vacuum does not have this symmetry.
A symmetry is said to be **spontaneously broken**, if the Lagrangian exhibits a symmetry but the ground state/vacuum does not have this symmetry.

Goldstone-theorem

If the Lagrangian is invariant under a **continuous global** symmetry operation $g \in G$ and the vacuum is invariant under a subgroup $H \subset G$, then there exist $n(G/H) = n(G) - n(H)$ **massless spinless particles**.

With $n(G)$ the number of generators of the group G.
Spontaneous breaking of a global continuous symmetry (classical)

\[\mathcal{L}(\Phi_i, \partial \Phi_i) = \frac{1}{2} (\partial_\mu \Phi_i)^2 - V(\Phi_i) \]

with \(V(\Phi_i) \) invariant under a **global continuous** symmetry group \(G \)

i.e.

\[V(\Phi_i) = V(\rho(g)\Phi_i) \quad \text{with} \quad g \in G \]

\(\Phi_i \mapsto \Phi'_i = \rho(g)\Phi_i \approx \Phi_i + \delta \Phi_i = \Phi_i + i\epsilon_a T^a \Phi_i \)
General theory of spontaneous symmetry breaking

Pion as a Nambu-Goldstone Boson

Summary

Spontaneous breaking of a global continuous symmetry (classical)

\[\mathcal{L}(\Phi_i, \partial \Phi_i) = \frac{1}{2} (\partial_\mu \Phi_i)^2 - V(\Phi_i) \]

with \(V(\Phi_i) \) invariant under a **global continuous** symmetry group \(G \)
i.e.

\[V(\Phi_i) = V(\rho(g)\Phi_i) \quad \text{with} \quad g \in G \]

\[\Phi_i \mapsto \Phi'_i = \rho(g)\Phi_i \approx \Phi_i + \delta \Phi_i = \Phi_i + i\epsilon_a T^a \Phi_i \]

We demand that the vacuum has a **minimal energy**

\[\Rightarrow \text{minimize } V \]

\[\Phi_{i,\text{min}} = \langle 0 | \Phi_i | 0 \rangle = \text{const.} \quad \chi_i := \Phi_i - \Phi_{i,\text{min}} \]

\[V(\Phi_i) = V(\Phi_{i,\text{min}}) + \frac{\partial V}{\partial \Phi_i}(\Phi_{i,\text{min}}) \chi_i + \frac{1}{2} \frac{\partial^2 V}{\partial \Phi_i \partial \Phi_j} \chi_i \chi_j + \ldots \]
Spontaneous breaking of a global continuous symmetry (classical)

\[V(\Phi_{i,\text{min}}) \] is a minimum, therefore

\[
\frac{\partial V}{\partial \Phi_i}(\Phi_{i,\text{min}}) = 0
\]

\[
\frac{\partial^2 V}{\partial \Phi_i \partial \Phi_j} : = M_{ij}^2 \]

is semi-positive definite
Spontaneous breaking of a global continuous symmetry (classical)

\[V(\Phi_{i, \text{min}}) \] is a minimum, therefore

\[\frac{\partial V}{\partial \Phi_i}(\Phi_{i, \text{min}}) = 0 \]

\[\frac{\partial^2 V}{\partial \Phi_i \partial \Phi_j} : = M_{ij}^2 \] is semi-positive definite

Now use the symmetry:

\[V(\Phi_{i, \text{min}}) = V(\rho(g)\Phi_{i, \text{min}}) = V(\Phi_{i, \text{min}}) + \frac{1}{2} M_{ij}^2 (\delta \Phi_{i, \text{min}})(\delta \Phi_{j, \text{min}}) \]

\[\Rightarrow 0 = M_{ij}^2 \delta \Phi_{j, \text{min}} \quad \forall i \]

\[\Rightarrow 0 = M_{ij}^2 T^a \Phi_{j, \text{min}} \quad \forall i \]
Spontaneous breaking of a global continuous symmetry (classical)

Important result

\[0 = M_{ij}^2 T^a \Phi_{j, \text{min}} \quad \forall i \]
Spontaneous breaking of a global continuous symmetry (classical)

important result

\[0 = M_{ij}^2 T^a \Phi_{j,\text{min}} \quad \forall i \]

\[T^a \in H \subset G \quad \text{with} \]
\[T^a \Phi_{j,\text{min}} = 0 \]

Every generator of H leaves the vacuum invariant.
Spontaneous breaking of a global continuous symmetry (classical)

Important result

\[0 = M_{ij}^2 T^a \Phi_{j,\min} \quad \forall i \]

1. \(T^a \in H \subset G \) with \(T^a \Phi_{j,\min} = 0 \)

Every generator of \(H \) leaves the vacuum invariant.

2. \(T^a \notin H \Rightarrow T^a \Phi_{j,\min} \neq 0 \)

\(T^a \Phi_{j,\min} \) is an eigenstate of \(M^2 \) with 0 eigenvalue

\(T^a \Phi_{j,\min} \) is a Nambu-Goldstone boson

The number of Nambu-Goldstone bosons is \(n(G)-n(H)=n(G/H) \).
\[L = \frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} \mu^2 \phi^2 - \frac{\lambda}{4!} \phi^4 \]

with \(\phi_{\text{min}} = \sqrt{\frac{6}{\lambda}} \mu^2 \)

\[\phi = \phi_{\text{min}} + \sigma \]

\[L = \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} (2 \mu^2) \sigma^2 - \sqrt{\frac{\lambda}{6}} \mu \sigma^3 - \frac{\lambda}{4!} \sigma^4 \]
General theory of spontaneous symmetry breaking

Pion as a Nambu-Goldstone Boson

Summary

\[
\mathcal{L} = \frac{1}{2} (\partial_\mu \phi)^2 + \frac{1}{2} \mu^2 \phi^2 - \frac{\lambda}{4!} \phi^4
\]

with \(\phi_{\text{min}} = \sqrt{\frac{6}{\lambda}} \mu^2 \)

\(\phi = \phi_{\text{min}} + \sigma \)

\[
\mathcal{L} = \frac{1}{2} (\partial_\mu \sigma)^2 - \frac{1}{2} (2\mu^2) \sigma^2 - \sqrt{\frac{\lambda}{6}} \mu \sigma^3 - \frac{\lambda}{4!} \sigma^4
\]

Massive modes correspond to fluctuations in **radial** direction.

Massless modes correspond to fluctuations in **angular** direction.
Spontaneous breaking of a global continuous symmetry (QFT)

In QFT every **continuous symmetry** implies the existence of a conserved current $J^{\mu}(x)$:

$$\partial_{\mu}J^{\mu}(x) = 0 \quad \rightarrow \quad Q = \int d^Dx J^0(\vec{x}, t) \quad \text{is conserved, i.e.}$$

$$[H, Q] = 0$$
In QFT every **continuous symmetry** implies the existence of a conserved current $J^\mu(x)$:

$$\partial_\mu J^\mu(x) = 0 \quad \rightarrow \quad Q = \int d^Dx J^0(\vec{x}, t) \quad \text{is conserved, i.e.} \quad [H, Q] = 0$$

- $Q|0> = 0$, for every energy-eigenstate $|\Phi \rangle = \Phi|0>$ define

 $$|\Phi' \rangle := e^{i\Theta Q} \Phi e^{-i\Theta Q}|0>$$

 $$H|\Phi' \rangle = He^{i\Theta Q} \Phi e^{-i\Theta Q}|0> = He^{i\Theta Q} \Phi|0>$$

 $$= e^{i\Theta Q} H\Phi|0> = e^{i\Theta Q} E\Phi|0> = E|\Phi' \rangle$$

Energy spectrum is organized in **multiplets** of degenerate states.
Spontaneous breaking of a global continuous symmetry (QFT)

- \(Q|0 \neq 0 \) Problem, \(Q \) is not defined

\[
<0|Q^2(t)|0> = \int d^D x <0|J^0(\vec{x}, t)Q(t)|0>
\]

\[
= \int d^D x <0|e^{i\vec{P} \cdot \vec{x}} J^0(\vec{0}, 0)e^{-i\vec{P} \cdot \vec{x}} Q(t)|0>
\]

\[
= \int d^D x <0|J^0(\vec{0}, t)Q(t)|0>
\]
Spontaneous breaking of a global continuous symmetry (QFT)

- $Q|0 > \neq 0$ Problem, Q is not defined

$$< 0|Q^2(t)|0 > = \int d^Dx < 0|J^0(\vec{x}, t)Q(t)|0 >$$

$$= \int d^Dx < 0|e^{i\vec{P} \cdot \vec{x}} J^0(\vec{0}, 0)e^{-i\vec{P} \cdot \vec{x}} Q(t)|0 >$$

$$= \int d^Dx < 0|J^0(\vec{0}, t)Q(t)|0 >$$

But the **commutator with Q** may be well defined. Current conservation implies:

$$0 = \int d^Dx [\partial^\mu J_\mu(\vec{x}, t), \Phi(0)] = \partial^0 \int d^D [J^0(\vec{x}, t), \Phi(0)]$$

$$+ \int d\vec{S} \cdot [\vec{J}(\vec{x}, t), \Phi(0)]$$
Spontaneous breaking of a global continuous symmetry (QFT)

\[\Rightarrow \frac{d}{dt} [Q(t), \Phi(0)] = 0 \]

The **symmetry is broken**, if there is an operator \(\Phi \) s.t.:

\[<0|[Q(t), \Phi(0)]|0> = \eta \neq 0 \]
Spontaneous breaking of a global continuous symmetry (QFT)

\[\Rightarrow \frac{d}{dt} [Q(t), \Phi(0)] = 0 \]

The symmetry is broken, if there is an operator \(\Phi \) s.t.:

\[< 0 | [Q(t), \Phi(0)] | 0 >= \eta \neq 0 \]

then:

\[\eta = \sum_n \int d^Dx \{ < 0 | J_0(x) | n > < n | \Phi(0) | 0 > \]

\[- < 0 | \Phi(0) | n > < n | J_0(x) | 0 > \}

\[= \sum_n (2\pi)^D \delta^D(\vec{p}_n) \{ < 0 | J_0(0) | n > < n | \Phi(0) | 0 > e^{-iE_nt} \]

\[- < 0 | \Phi(0) | n > < n | J_0(0) | 0 > e^{iE_nt} \} \]
Since this is time independent, there has to be a state with:

Nambu-Goldstone Boson

\[
E_n = 0 \quad \text{for} \quad \vec{p}_n = 0 \quad \Rightarrow \quad m_n = 0
\]

\[
\langle n | \Phi(0) | 0 \rangle \neq 0
\]

\[
\langle 0 | J_0(0) | n \rangle \neq 0
\]
Since this is time independent, there has to be a state with:

Nambu-Goldstone Boson

\[
E_n = 0 \quad \text{for} \quad \vec{p}_n = 0 \quad \Rightarrow \quad m_n = 0
\]

\[
\langle n | \Phi(0) | 0 \rangle \neq 0
\]

\[
\langle 0 | J_0(0) | n \rangle \neq 0
\]

So the Nambu-Goldstone boson has to carry all the quantum numbers of the conserved current.

In general there will be \(n(G) \) currents \(J^a_\mu \). Of these \(n(H) \) generate the symmetry group of vacuum. So again there are \(n(G/H) = n(G) - n(H) \) Nambu-Goldstone bosons.
Quantum fluctuations

Can the massless fields wander away from their ground state? Calculate mean square fluctuation:

\[\langle b(0)^2 \rangle = \frac{1}{Z} \int Dbe^{iS[b]} b(0)b(0) \]
\[= \lim_{x \to 0} \frac{1}{Z} \int Dse^{iS(b)} b(x)b(0) \]
\[= \lim_{x \to 0} \int \frac{d^d k}{(2\pi)^d} \frac{e^{ik \cdot x}}{k^2} \]

The UV divergencies can be regulated by a cutoff.

But for \(d \leq 2 \) there is an IR divergence.
Quantum fluctuations

Can the massless fields wander away from their ground state? Calculate mean square fluctuation:

\[\langle b(0)^2 \rangle = \frac{1}{Z} \int D\phi e^{iS[b]} b(0)b(0) \]

\[= \lim_{x \to 0} \frac{1}{Z} \int D\phi e^{iS[b]} b(x)b(0) \]

\[= \lim_{x \to 0} \int d^dk \frac{e^{ik \cdot x}}{(2\pi)^d k^2} \]

The UV divergencies can be regulated by a cutoff.

But for \(d \leq 2 \) there is an \textbf{IR divergence}.

Coleman-Mermin-Wagner theorem

Spontaneous symmetry breaking is impossible in \(d \leq 2 \).
How do pions enter the game?

We want to calculate decay rates of semileptonic decays like:

\[n \rightarrow p + e^- + \bar{\nu} \]
\[\pi^- \rightarrow \pi^0 + e^- + \bar{\nu} \]

Use an effective Lagrangian

\[\mathcal{L} = G [\bar{e} \gamma^\mu (1 - \gamma^5) \nu] (J_\mu - J_{\mu 5}) \]

Where \(J_\mu \) and \(J_{\mu 5} \) are hadronic currents which include strong interaction effects.

We have to calculate \(< p | J_\mu(x) - J_{\mu 5}(x) | n > \) or \(< 0 | J_\mu(0) - J_{\mu 5}(0) | \pi^- > \)
Nucleon β-decay

$$< p(k')|J_{\mu 5}(x)|n(k) > = < k'|e^{iP\cdot x}J_{\mu 5}(0)e^{-iP\cdot x}|k >$$

$$= < k'|J_{\mu 5}(0)|k > e^{i(k'-k)\cdot x}$$

Use Lorentz invariance to simplify $< k'|J_{\mu 5}(0)|k >$ with $q := k' - k$

$$< k'|J_{\mu 5}(0)|k > = \bar{u}_p(k')[-i\gamma_\mu\gamma_5 F'(q^2) + q_\mu\gamma_5 G(q^2)$$

$$+ (k'_\mu + k_\mu)\gamma_5 F_2(q^2) + i[\gamma_\mu, \gamma_\nu]\gamma_5 q^\nu F'_3(q^2)]u_n(k)$$
Nucleon β-decay

\[
< p(k')|J_{\mu 5}(x)|n(k) > = < k'|e^{iP\cdot x}J_{\mu 5}(0)e^{-iP\cdot x}|k > = < k'|J_{\mu 5}(0)|k > e^{i(k'-k)\cdot x}
\]

Use Lorentz invariance to simplify $< k'|J_{\mu 5}(0)|k >$ with $q := k' - k$

\[
< k'|J_{\mu 5}(0)|k > = \bar{u}_p(k')[-i\gamma_\mu \gamma_5 F'(q^2) + q_\mu \gamma_5 G(q^2) + (k'_\mu + k_\mu)\gamma_5 F'_2(q^2) + i[\gamma_\mu, \gamma_\nu]\gamma_5 q'\nu F'_3(q^2)]u_n(k)
\]

And use the Gordan-Identity:

\[
\bar{u}_p(k')[i\frac{1}{2}[\gamma_\mu, \gamma_\nu]\gamma_5 q'\nu]u_n(k) = \bar{u}_p(k')[i(k'_\mu + k_\mu)\gamma_5 + (m_p - m_n)\gamma_\mu \gamma_5]u_n(k)
\]
So if we define:

\[F_3(q^2) = F'_3(q^2) + \frac{1}{2i} F'_2(q^2) \]
\[F(q^2) = F'(q^2) - (m_p - m_n) F'_2(q^2) \]
Nucleon β-decay

So if we define:

$$F_3(q^2) = F'_3(q^2) + \frac{1}{2i} F'_2(q^2)$$

$$F(q^2) = F'(q^2) - (m_p - m_n) F'_2(q^2)$$

we obtain:

Decomposition of $< k' | J_{\mu 5}(0) | k >$ into Form factors

$$< k' | J_{\mu 5}(0) | k > = u_p(k') \left[-i \gamma_\mu \gamma_5 F(q^2) + q_\mu \gamma_5 G(q^2)
+ i [\gamma_\mu, \gamma_\nu] \gamma_5 q^\nu F_3(q^2) \right] u_n(k)$$

And similarly we obtain:

$$< 0 | J_{5\mu}^{\mu}(0) | \pi (k) > = i F_\pi k^\mu$$
Problems with strongly interacting particles

In general a perturbation theory is **not well defined.**
Breaking of chiral symmetry

\[M_\pi \approx 139 \text{MeV} \ll 938 \text{MeV} \approx m_N \Rightarrow M_\pi \approx 0 \]

Is it possible that the pion is a Nambu-Goldstone Boson?
Breaking of chiral symmetry

\[M_\pi \approx 139 \text{MeV} \ll 938 \text{MeV} \approx m_N \Rightarrow M_\pi \approx 0 \]

Is it possible that the pion is a Nambu-Goldstone Boson?

Suppose \(\partial_\mu J_5^{\mu}(x) = 0 \) i.e. chiral symmetry holds then:

\[<0|J_5^{\mu}(0)|\pi(k)> = iF_\pi k^\mu \iff <0|J_0(0)|n> \neq 0 \]
\[<\pi|\pi(0)|0> = 1 \iff <n|\Phi(0)|0> \neq 0 \]
Breaking of chiral symmetry

\[M_\pi \approx 139 \text{MeV} \ll 938 \text{MeV} \approx m_N \Rightarrow M_\pi \approx 0 \]

Is it possible that the pion is a Nambu-Goldstone Boson?

Suppose \(\partial_\mu J_5^\mu (x) = 0 \) i.e. chiral symmetry holds then:

\[< 0 | J_5^\mu (0) | \pi (k) >= iF_\pi k^\mu \quad \iff \quad < 0 | J_0 (0) | n > \neq 0 \]

\[< \pi | \pi (0) | 0 >= 1 \quad \iff \quad < n | \Phi (0) | 0 > \neq 0 \]

Pion as a Nambu-Goldstone Boson

The Pion is a Nambu-Goldstone Boson in a world in which chiral symmetry holds.
Is the Pion massless?

If chiral symmetry holds then:

\[-ik_{\mu} < 0|J_{5}^{\mu}(0)|\pi(k) > \exp(-ik \cdot x) = \partial_{\mu} < 0|J_{5}^{\mu}(0)|\pi(k) > \exp(-ik \cdot x) = 0\]
Is the Pion massless?

If chiral symmetry holds then:

\[-i k_\mu < 0 |J_5^{\mu}(0)|\pi(k)\rangle \exp(-i k \cdot x) = \partial_\mu < 0 |J_5^{\mu}(0)|\pi(k)\rangle \exp(-i k \cdot x) \]
\[= \langle 0 |\partial_\mu J_5^{\mu}(x)|\pi(k)\rangle = 0\]

\[k^{\mu} < 0 |J_5^{\mu}(0)|\pi(k)\rangle = iF_\pi k^{\mu} k_\mu = iF_\pi M_\pi^2\]

Thus $\partial_\mu J_5^{\mu}(x) = 0$ implies that $M_\pi^2 = 0$
Goldberger-Treiman relation

\[q^\mu < k' | J_{\mu 5}(0) | k > = -i < k' | \partial^\mu J_{\mu 5}(x) | k > \exp(-iq \cdot x) = 0 \]

\[q^\mu < k' | J_{\mu 5}(0) | k > = q^\mu \bar{u}_\nu(k')[-i\gamma_\mu \gamma_5 F(q^2) + q_\mu \gamma_5 G(q^2) + i[\gamma_\mu, \gamma_\nu] \gamma_5 q^\nu F_3(q^2)]u_n(k) \]

\[= \bar{u}_N(k')(k'^\mu (-i)\gamma_\mu \gamma_5 F(q^2) - k^\mu (-i)\gamma_\mu \gamma_5 F(q^2) + q^2 \gamma_5 G(q^2) + i[\gamma_\mu, \gamma_\nu] \gamma_5 q^\nu q^\mu F_3(q^2)]u_N(k) \]

\[= \gamma_5 [2m_N F(q^2) + q^2 G(q^2)] = 0 \]

by using the Dirac equation:

\[\bar{u}_N(k')(k'_\mu \gamma^\mu - im_N) = (k_\mu \gamma^\mu - im_N)u_N(k) = 0 \]

But if \(q \to 0 \) this implies \(m_N = 0 \) !?!
Goldberger-Treiman relation

\[
\text{this diagram gives a contribution}
- iF_\pi q^\mu \frac{i}{q^2} G_{\pi NN} \bar{u}_N(k') \gamma_5 u_N(k)
\]

Note that there are still \textbf{infinitely many diagrams} which have a pole at \(q^2 = 0 \)

\[
G(q^2) \sim F_\pi \frac{1}{q^2} G_{\pi NN} \quad \text{for} \quad q \to 0
\]

Goldberger-Treiman relation

\[
G_{\pi NN} = \frac{2m_N g_A}{F_\pi} \quad \text{with} \quad g_A = -F(0)
\]
Experimental test of Goldberger-Treiman relation

\[m_N = \frac{(m_p + m_n)}{2} = 939.9\text{MeV} \]
\[g_A = 1.257 \]
\[F_\pi = 93\text{MeV} \]
\[G_{\pi NN}^{GTR} \approx 25.4 \]
\[G_{\pi NN} = 27.0 \]

In good agreement with the experiment.
Experimental test of Goldberger-Treiman relation

\[m_N = \frac{(m_p + m_n)}{2} = 939.9 \text{MeV} \]
\[g_A = 1,257 \]
\[F_\pi = 93 \text{MeV} \]
\[G^{GTR}_{\pi NN} \approx 25.4 \]
\[G_{\pi NN} = 27.0 \]

In good agreement with the experiment.

Please note that this result is quite **general**.
No assumptions about the broken symmetry have been made.
More about chiral symmetry

The Lagrangian of strong interaction:

\[\mathcal{L} = -\bar{u} \gamma^{\mu} D_\mu u - \bar{d} \gamma^{\mu} D_\mu d + m_u (\bar{u}_R u_L + \bar{u}_L u_R) + m_d (\bar{d}_L d_R + \bar{d}_R d_L) + \ldots \]

has a \(SU(2)_V \otimes SU(2)_A \) symmetry in the case \(m_u = m_d = 0 \).

\[q \mapsto q' = \exp(i \vec{\Theta}_V \cdot \vec{\tau} + i \gamma_5 \vec{\Theta}_A \cdot \vec{\tau}) q \]

with \(\vec{\tau} \) the isospin (Pauli) matrices.
More about chiral symmetry

The Lagrangian of strong interaction:

\[\mathcal{L} = -\bar{u} \gamma^\mu D_\mu u - \bar{d} \gamma^\mu D_\mu d + m_u (\bar{u}_R u_L + \bar{u}_L u_R) + m_d (\bar{d}_L d_R + \bar{d}_R d_L) + \ldots \]

has a \(SU(2)_V \otimes SU(2)_A \) symmetry in the case \(m_u = m_d = 0 \).

\[q \mapsto q' = \exp(i\vec{\Theta}_V \cdot \vec{\tau} + i\gamma_5 \vec{\Theta}_A \cdot \vec{\tau})q \]

with \(\vec{\tau} \) the isospin (Pauli) matrices.

And the conserved currents:

\[\vec{J}^\mu = i\bar{q} \gamma^\mu \vec{\tau} q \quad \text{and} \quad \vec{J}_5^\mu = i\bar{q} \gamma_\mu \gamma_5 \vec{\tau} q \]

with charges:

\[\vec{Q}_V = \int d^3x \vec{J}^0(\vec{x}, t) \]
\[\vec{Q}_A = \int d^3x \vec{J}_5^0(\vec{x}, t) \]
More about chiral symmetry

They act in the following way on q:

$$[\tilde{Q}_V, q] = -\tau q$$
$$[\tilde{Q}_A, q] = -\gamma_5 \tau q$$

So if the symmetry is unbroken \tilde{Q}_A transforms a state $|h>\)$ into a state of $\tilde{Q}_A|h>$ of opposite parity.

No such parity doubling is observed in the hadron spectrum. Conclude that $SU(2)_V \otimes SU(2)_A$ is broken to $SU(2)_V$ isospin group.

The three Pions are the three Nambu-Goldstone Bosons of the three currents \tilde{J}_5^μ.
Summary/Remarks

- Breaking of a continuous global symmetry leads to **Nambu-Goldstone Bosons**.
- No information about how the breaking occurs is needed.
- Natural explanation for **smallness** of **Pion mass**.
- Found a technique to relate infinitly many diagramms.
Summary/Remarks

- Breaking of a continuous global symmetry leads to **Nambu-Goldstone Bosons**.
- No information about *how* the breaking occurs is needed.
- Natural explanation for **smallness** of **Pion mass**.
- Found a technique to **relate** infinitly many diagramms.
- From the assumption that Pions and even Kaons and the Eta are Goldstone bosons one can construct **effective field theories** like non-linear sigma model or chiral pertubation theory.
- The QCD Lagrangian for massless Quarks has two other **global symmetries**. One, $U(1)_V$ implies **Baryon-number conservation**. The other one, $U(1)_A$ will be treated **next week**.
Summary/Remarks

- Breaking of a continuous global symmetry leads to **Nambu-Goldstone Bosons**.
- No information about **how** the breaking occurs is needed.
- Natural explanation for **smallness** of **Pion mass**.
- Found a technique to **relate** infinitely many diagrams.
- From the assumption that Pions and even Kaons and the Eta are Goldstone bosons one can construct **effective field theories** like non-linear sigma model or chiral perturbation theory.
- The QCD Lagrangian for massless Quarks has two other **global symmetries**. One, $U(1)_V$ implies **Baryon-number conservation**. The other one, $U(1)_A$ will be treated **next week**.

Thank you
Sources

- A. Zee, Quantum field theory in a nutshell, Princeton University press 2001
- Ta-Pei Cheng and Ling-Fong Li, Gauge theory of elementary particles, Oxford University Press 1984