Exercises on Elementary Particle Physics II Prof. Dr. H.-P. Nilles

1. The Superpotential

The highest component of a superfield transforms under a SUSY transformation into a total derivative. A space-time integral $\int d^4x$ of such a quantity is thus invariant under supersymmetry transformations. This is the basic observation for the construction of a SUSY invariant action S. By definition, the part of the Lagrange density containing only one type of chiral superfields (e.g. left-chiral) is called the superpotential \mathcal{L}_F . Then, integration over $\int d^2\theta$ gives the highest component (called the F-term) and +h.c. makes the term real:

$$S \supset \int \mathrm{d}^4 x \left[\int \mathrm{d}^2 \theta \ \mathcal{L}_F + \mathrm{h.c.} \right]$$

Evaluate the following superpotential of a left-chiral superfield $(\bar{D}\phi = 0)$:

$$\mathcal{L}_F = m\phi^2 + \lambda\phi^3$$

Hint: use the left-chiral representation:

$$\phi_L(x,\theta) = \varphi(x) + \sqrt{2\theta\psi(x)} + \theta\theta F(x)$$

2. Kinetic terms of chiral superfields

In general, a vector superfield V is defined through $V^{\dagger} = V$. By definition, the part of the Lagrange density containing only vector superfields is called $\mathcal{L}_{\mathcal{D}}$. The highest component (called the D-term) is obtained by a $d^2\theta d^2\bar{\theta}$ integration:

$$S \supset \int \mathrm{d}^4 x \int \mathrm{d}^2 \theta \mathrm{d}^2 \bar{\theta} \, \mathcal{L}_D$$

In this part we will write down a SUSY invariant term for $\mathcal{L}_{\mathcal{D}}$ which will give rise to kinetic terms for both, a left-chiral fermion $\psi(x)$ and its bosonic partner $\varphi(x)$. Therefore, we start with a left-chiral superfield $\phi_L(x, \theta)$.

(a) Show that $[\phi_L(x,\theta)]^{\dagger}$ transforms in the right-chiral representation of the SUSY algebra.

- (b) Using the relations between S, S_L and S_R derived in Ex.3.1(f), what are the relations between ϕ , ϕ_L and ϕ_R ?
- (c) Evaluate $\phi \phi^{\dagger}$. Why does this term belong to $\mathcal{L}_{\mathcal{D}}$? What is the $\theta \theta \overline{\theta} \overline{\theta}$ coefficient?
- 3. The Wess-Zumino Model

Next, we combine the results of the two previous parts and get the model of Wess + Zumino.

(a) Assume the Lagrange density

$$\mathcal{L} = \int d^2\theta d^2\bar{\theta} \,\,\phi\phi^{\dagger} + \left[\int d^2\theta \,\,m\phi^2 + \lambda\phi^3 + \text{h.c.}\right]$$

Solve the equation of motion for the F(x) field. Insert the result into the Lagrangian \mathcal{L} .

(b) Show that the scalar potential $V(\varphi)$ can be obtained from the superpotential

$$V(\varphi) = \left|\frac{\partial W(\varphi)}{\partial \varphi}\right|^2$$

where $W(\varphi)$ denotes the superpotential $\mathcal{L}_F(\phi)$ with the superfield ϕ replaced by its scalar component φ .

(c) Compare the masses of the fermion and the boson. (Take care that the kinetic energies of the fields are normalized appropriately)