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1. Lie groups and Lie algebras - a first example

This excersise is designed to gain an intuitive understanding of Lie groups and alge-
bras by generalizing well-known concepts encountered in explicit considerations.

Consider the special unitary group SU(2) := {g € GL(2,C)|g" = g~!, detg = 1}.
(a) Show that SU(2) = S3. Hint: Find an equation constraining the parameter space
of g to S3 as a submanifold in R*.

(b) Introduce spherical coordinates on S* to infer
g(w,0,¢) = cos(w) - e +i(wp - &) sin(w), Wy € 52,

with & = (cos()cos(¢), cos(A)sin(¢),sin(6))”. What is the range of the para-
meters 7' := (w, 0, ¢)? What is the geometrical locus of the & = w - W € R3?
The o; are the Pauli matrices defined by

0 1 0 —i 10
re(o) e (E0) ()

They form a basis of the real vector space of hermitian traceless matrices.

(¢) Check that every g € SU(2) obeys the differential equation

% _ (- 3)
CRE o} g.

Integrate this to determine the solution

9(@) = e
and calculate ;ﬁi il
Hint: Do not forget to use the initial conditions.

Let us recapitulate our observations. First we showed that SU(2) is, besides its group
properties, also a non-trivial geometrical object. Then, we exploided this fact by
introducing coordinates on SU(2) 2 S3. Finally, we combined the realization of SU(2)
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as matrices with well-defined multiplication and a certain differential equation to
find a (local) parametrization of any g € SU(2) in terms of very local data, namely
2 09 € Te(SU(2)). This is the Lie algebra su(2) of SU(2). The whole program above
relied just on the geometric structure of SU(2) and the combination with its algebraic
properties as a group.

This is, what lies at the heart of the theory of Lie groups and Lie algebras, in general.

2. From Lie groups to representations - glimpse with SU(2)

e A Lie group G is a group endowed with the structure of a differentiable mani-
fold such that the operations

(a) -: GxG — G, (g9,h) — g-h
b) 1': G —- G, g—g!

are differential maps of differentiable manifolds.

Using coordinates ' on G we are able to define the basis a?ai 0d = T, of the
tangent space g := T.G at the identity e € G. The T; are called generators of
the Lie algebra g that has the following structure.

e A Lie algebra g is a vector space (from T,.G) together with a binary operation
[ s axg—g

satisfying the conditions:

(a) It is bilinear, i.e. linear in both entries. (-Up to here, g is an R-algebra.-)
(b) It is skew-symmetric: [a,b] = —[b, a| for a,b € g

(c) It fulfills the Jacoby identity: [a, [b, c]]+[b, [c, a]] + ¢, [a,b]] = 0 for a,b,c € g
It can be shown that g = €7, at least locally. Hence, it makes sense to ananlyse
(local) properties of G and its representations in terms of its corresponding Lie
algebra g, which is a lot easier to deal with.

e A representation p of a Lie algebra g on a vector space V is a mapping
p:g— End(V)

which is an algebra homomorphism, i.e. it is a homomorphism of vector spaces

and fulfills p([a,b]) = [p(a), p(b)], Va,b € g.

The dimension of V is called the dimension of the representation p: dim(p) :=
dim(V).

If there is a vector space W C V so that p(W) C W, then the representation

is called reducible and V is called the invariant subspace. If there are only

W = {0}, V with this property then the representation p is called irreducible.

In other words: a representation is irreducible, iff the only invariant subspace is
V itself ({0} is trivial).



Let us consider the example of su(2) once again.

(a)

(b)

Show in a slightly more abstract way that su(2) is the set of all traceless her-
mitian matrices and prove that it is a Lie algebra.

Hint: detA = exp Tr logA and set [A,B] := A-B — B - A.

Perform a complex basis change from the Pauli matrices o; to

1 1 _ 1 .
J3:§O'3, J+:§(0'1+ZO'2), J,:§(O'1—ZO'2),
and verify the commutation relations
[Js, Jy] = Jy, [Js, J_] =—J_, [, J] =2J5 .

Next, we aim for classifying all irreducible, finite-dimensional representations
p of su(2) on a vector space V. Thus, it is important to note that p(J;), i = 3,+, —,
are n X n-matrices with n := dim(V’) and n # 0 in general.

()

Since J3 is diagonal, p(J3) can also be chosen to be diagonal. Therefore V' can
be decomposed into eigenspaces of p(.J3),

V=@V,

where « labels the eigenvalue of p(J3), i.e.
(p(J5))v = av, veV,, aeC

(shorthand: write J; for p(.J;)). Show that J, (v) € V41 and J_(v) € V,,_;.
Prove that all complex eigenvalues o which appear in the above decomposition
differ from one another by 1.

Hint: Choose an arbitrary ag € C from the decomposition and prove that

P Vaysr CV

keZ
18 indeed equal to V' using the irreducibility of the representation.
Argue that there is k € N for which V,,4x # 0 and V,,4x+1 = 0. Define n :=
o + k. Note that up to now, we only know that n € C.

Draw a diagram. Write the vector spaces V,,_5, V,,_1 and V,, in a row and indicate
the action of Js3, J, and J_ on these vector spaces by arrows.

The eigenvalue n is called highest weight and a vector v € V,, is called highest
weight vector. Is it clear why?
Choose an arbitrary vector v € V,, (highest weight vector). Prove that the
vectors v, J_v, J%v,... span V.

Hint: Show that the vector space spanned by these vectors is invariant under the
action of Js, J. and J_ and use the irreducibility of the representation.
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(g) Argue that all eigenspaces V,, are 1-dimensional.

(h) Prove that n is a non-negative integer or half-integer and that
V=V_,®...8V,.

Complement your diagram drawn in part (e). What is the dimension of V7
Hint: The representation is finite dimensional, so there exists m € N for which
J™ Y #£0 and J™v = 0. Evaluate the product J,J™v.

(i) Decompose the tensor product of a 2-dimensional and a 3-dimensional irreduci-
ble representation of su(2),

V=v@gv®,

into two irreducible representations of dimension two and four: 2 ® 3 = 2 @ 4.
Hint: For the definition of a tensor product of two representations see 3. (b).
Note that the eigenvalue of J3 on V is the sum of the eigenvalues of Js on
V® and VO, Draw the diagrams of the eigenvalues (with multiplicities). Then
use the fact that the eigenspaces of J3 on an irreducible representations are all
1-dimensional to show that V' is reducible.

3. Elementary constructions of representations

Using the fact that the Lie algebra g closes under [, -] we have an expansion
15, T;) = i fijiTh, VT; € g, (1)
where the coefficients f;;;, are called structure constants of g.!

(a) Determine the structure constants of su(2) in the o; basis. Compare this with
the algebra of the angular momentum operators (or so(3)).

As a representation p preserves the entire structure of the Lie algebra the repre-
sentation matrices have to obey (1). Thus, this is an equivalent way to define a
representation. Let us construct new representations out of old ones.

(b) Let (p1, V1), (p2, V) be two representations. Prove that pe(T;) := p1(T;)®p2(T5),
pe(T3) == pi(T;) @ 1 + 1 ® po(T;) define represenations on Vi & Vo, Vi ® Vi,
respectively.

(c) Prove that ad(T;)x; := ifijx defines a representation (ad, g) called the adjoint
representation of g. Abstractly, this is given by ad: X — [X,], VX € g.

(d) Show using equation (1) that p(T;) := —p(T;)* defines a representation called
the complex conjugate representation of p. p is said to be real if it is
equivalent? to its complex conjugate p.

IThe i is necessary to guarantee a consistent expression for hermitian (representations of) generators
T; as needed for unitary representations. Strictly speaking, [-, ] doesn’t close anymore in g as [T}, T;] is
antihermitian for hermitian 7;. This is the discrepancy between mathematicians and physicists.

2(p1,V1), (p2, Vi) are called equivalent if there is a vector space isomorphism a : Vi — V; obeying
pi(X)=alopm(X)oa, VX €g.



