Exercises on Elementary Particle Physics II Prof. Dr. H.-P. Nilles

1. Lie groups and Lie algebras - a first example

This excersise is designed to gain an intuitive understanding of Lie groups and algebras by generalizing well-known concepts encountered in explicit considerations.

Consider the <u>special unitary</u> group $SU(2) := \{g \in GL(2, \mathbb{C}) | g^{\dagger} = g^{-1}, \det g = 1\}.$

- (a) Show that $SU(2) \cong S^3$. Hint: Find an equation constraining the parameter space of g to S^3 as a submanifold in \mathbb{R}^4 .
- (b) Introduce spherical coordinates on S^3 to infer

$$g(\omega, \theta, \phi) = \cos(\omega) \cdot e + i \left(\vec{\omega_0} \cdot \vec{\sigma} \right) \sin(\omega), \quad \vec{\omega_0} \in S^2,$$

with $\vec{\omega_0} = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), \sin(\theta))^T$. What is the range of the parameters $x^i := (\omega, \theta, \phi)$? What is the geometrical locus of the $\vec{\omega} := \omega \cdot \vec{\omega_0} \in \mathbb{R}^3$? The σ_i are the Pauli matrices defined by

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

They form a basis of the real vector space of hermitian traceless matrices.

(c) Check that every $g \in SU(2)$ obeys the differential equation

$$\frac{\partial g}{\partial \omega} = i \left(\vec{\omega_0} \cdot \vec{\sigma} \right) g.$$

Integrate this to determine the solution

$$q(\vec{\omega}) = e^{i\omega^i \sigma_i}$$

and calculate $\frac{\partial g}{\partial \omega^i}\Big|_{\omega=\vec{0}}$. Hint: Do not forget to use the initial conditions.

Let us recapitulate our observations. First we showed that SU(2) is, besides its group properties, also a non-trivial geometrical object. Then, we exploided this fact by introducing coordinates on $SU(2) \cong S^3$. Finally, we combined the realization of SU(2) as matrices with well-defined multiplication and a certain differential equation to find a (local) parametrization of any $g \in SU(2)$ in terms of very local data, namely $\frac{\partial}{\partial \omega^i}\Big|_0 g \in T_e(SU(2))$. This is the Lie algebra su(2) of SU(2). The whole program above relied just on the geometric structure of SU(2) and the combination with its algebraic properties as a group.

This is, what lies at the heart of the theory of Lie groups and Lie algebras, in general.

- 2. From Lie groups to representations glimpse with SU(2)
 - A Lie group G is a group endowed with the structure of a differentiable manifold such that the operations

(a)
$$\cdot : G \times G \to G$$
, $(g,h) \mapsto g \cdot h$
(b) $^{-1} : G \to G$, $g \mapsto g^{-1}$

are differential maps of differentiable manifolds.

Using coordinates x^i on G we are able to define the basis $\frac{\partial}{\partial x^i}\Big|_0 g =: T_i$ of the tangent space $\mathfrak{g} := T_e G$ at the identity $e \in G$. The T_i are called **generators of the Lie algebra** \mathfrak{g} that has the following structure.

• A Lie algebra \mathfrak{g} is a vector space (from $T_e G$) together with a binary operation

$$[\cdot, \cdot]$$
 : $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$

satisfying the conditions:

- (a) It is bilinear, i.e. linear in both entries. (-Up to here, \mathfrak{g} is an \mathbb{R} -algebra.-)
- (b) It is skew-symmetric: [a, b] = -[b, a] for $a, b \in \mathfrak{g}$
- (c) It fulfills the Jacoby identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for $a, b, c \in \mathfrak{g}$

It can be shown that $g = e^{ix^iT_i}$, at least locally. Hence, it makes sense to analyse (local) properties of G and its representations in terms of its corresponding Lie algebra \mathfrak{g} , which is a lot easier to deal with.

• A representation ρ of a Lie algebra \mathfrak{g} on a vector space V is a mapping

$$\rho:\mathfrak{g}\to \mathrm{End}(V)$$

which is an algebra homomorphism, i.e. it is a homomorphism of vector spaces and fulfills $\rho([a, b]) = [\rho(a), \rho(b)], \forall a, b \in \mathfrak{g}$.

The dimension of V is called the **dimension of the representation** ρ : dim $(\rho) := \dim(V)$.

If there is a vector space $W \subset V$ so that $\rho(W) \subset W$, then the representation is called **reducible** and V is called the invariant subspace. If there are only $W = \{0\}$, V with this property then the representation ρ is called **irreducible**. In other words: a representation is irreducible, iff the only invariant subspace is V itself ($\{0\}$ is trivial). Let us consider the example of su(2) once again.

(a) Show in a slightly more abstract way that su(2) is the set of all traceless hermitian matrices and prove that it is a Lie algebra.

Hint: $detA = exp \ Tr \ logA \ and \ set \ [A, B] := A \cdot B - B \cdot A.$

(b) Perform a complex basis change from the Pauli matrices σ_i to

$$J_3 = \frac{1}{2}\sigma_3, \qquad J_+ = \frac{1}{2}(\sigma_1 + i\sigma_2), \qquad J_- = \frac{1}{2}(\sigma_1 - i\sigma_2),$$

and verify the commutation relations

$$[J_3, J_+] = J_+, \qquad [J_3, J_-] = -J_-, \qquad [J_+, J_-] = 2J_3.$$

Next, we aim for classifying all irreducible, finite-dimensional representations ρ of su(2) on a vector space V. Thus, it is important to note that $\rho(J_i)$, i = 3, +, -, are $n \times n$ -matrices with $n := \dim(V)$ and $n \neq 0$ in general.

(c) Since J_3 is diagonal, $\rho(J_3)$ can also be chosen to be diagonal. Therefore V can be decomposed into eigenspaces of $\rho(J_3)$,

$$V = \bigoplus V_{\alpha},$$

where α labels the eigenvalue of $\rho(J_3)$, i.e.

$$(\rho(J_3))v = \alpha v, \qquad v \in V_\alpha, \quad \alpha \in \mathbb{C}$$

(shorthand: write J_i for $\rho(J_i)$). Show that $J_+(v) \in V_{\alpha+1}$ and $J_-(v) \in V_{\alpha-1}$.

(d) Prove that all complex eigenvalues α which appear in the above decomposition differ from one another by 1.

Hint: Choose an arbitrary $\alpha_0 \in \mathbb{C}$ *from the decomposition and prove that*

$$\bigoplus_{k\in\mathbb{Z}} V_{\alpha_0+k} \subset V$$

is indeed equal to V using the irreducibility of the representation.

- (e) Argue that there is $k \in \mathbb{N}$ for which $V_{\alpha_0+k} \neq 0$ and $V_{\alpha_0+k+1} = 0$. Define $n := \alpha_0 + k$. Note that up to now, we only know that $n \in \mathbb{C}$. Draw a diagram. Write the vector spaces V_{n-2} , V_{n-1} and V_n in a row and indicate the action of J_3 , J_+ and J_- on these vector spaces by arrows. The eigenvalue n is called highest weight and a vector $v \in V_n$ is called highest weight vector. Is it clear why?
- (f) Choose an arbitrary vector v ∈ V_n (highest weight vector). Prove that the vectors v, J_v, J_v^2, ... span V.
 Hint: Show that the vector space spanned by these vectors is invariant under the action of J₃, J₊ and J₋ and use the irreducibility of the representation.

- (g) Argue that all eigenspaces V_{α} are 1-dimensional.
- (h) Prove that n is a non-negative integer or half-integer and that

$$V = V_{-n} \oplus \ldots \oplus V_n$$
.

Complement your diagram drawn in part (e). What is the dimension of V? Hint: The representation is finite dimensional, so there exists $m \in \mathbb{N}$ for which $J_{-}^{m-1}v \neq 0$ and $J_{-}^{m}v = 0$. Evaluate the product $J_{+}J_{-}^{m}v$.

(i) Decompose the tensor product of a 2-dimensional and a 3-dimensional irreducible representation of su(2),

$$V = V^{(2)} \otimes V^{(3)},$$

into two irreducible representations of dimension two and four: $\mathbf{2} \otimes \mathbf{3} = \mathbf{2} \oplus \mathbf{4}$. *Hint: For the definition of a tensor product of two representations see 3. (b). Note that the eigenvalue of* J_3 *on* V *is the sum of the eigenvalues of* J_3 *on* $V^{(2)}$ and $V^{(3)}$. Draw the diagrams of the eigenvalues (with multiplicities). Then use the fact that the eigenspaces of J_3 on an irreducible representations are all 1-dimensional to show that V *is reducible.*

3. Elementary constructions of representations

Using the fact that the Lie algebra \mathfrak{g} closes under $[\cdot, \cdot]$ we have an expansion

$$[T_i, T_j] = i f_{ijk} T_k, \qquad \forall T_i \in \mathfrak{g}, \tag{1}$$

where the coefficients f_{ijk} are called *structure constants* of \mathfrak{g} .¹

(a) Determine the structure constants of su(2) in the σ_i basis. Compare this with the algebra of the angular momentum operators (or so(3)).

As a representation ρ preserves the entire structure of the Lie algebra the representation matrices have to obey (1). Thus, this is an equivalent way to define a representation. Let us construct new representations out of old ones.

- (b) Let (ρ_1, V_1) , (ρ_2, V_2) be two representations. Prove that $\rho_{\oplus}(T_i) := \rho_1(T_i) \oplus \rho_2(T_i)$, $\rho_{\otimes}(T_i) := \rho_1(T_i) \otimes \mathbb{1} + \mathbb{1} \otimes \rho_2(T_i)$ define representations on $V_1 \oplus V_2$, $V_1 \otimes V_2$, respectively.
- (c) Prove that $ad(T_i)_{kj} := if_{ijk}$ defines a representation (ad, \mathfrak{g}) called the **adjoint** representation of \mathfrak{g} . Abstractly, this is given by $ad : X \mapsto [X, \cdot], \forall X \in \mathfrak{g}$.
- (d) Show using equation (1) that $\bar{\rho}(T_i) := -\rho(T_i)^*$ defines a representation called the **complex conjugate representation of** ρ . ρ is said to be **real** if it is equivalent² to its complex conjugate $\bar{\rho}$.

¹The *i* is necessary to guarantee a consistent expression for hermitian (representations of) generators T_i as needed for unitary representations. Strictly speaking, $[\cdot, \cdot]$ doesn't close anymore in \mathfrak{g} as $[T_i, T_j]$ is antihermitian for hermitian T_i . This is the discrepancy between mathematicians and physicists.

 $^{{}^{2}(\}rho_{1}, V_{1}), (\rho_{2}, V_{2})$ are called equivalent if there is a vector space isomorphism $\alpha : V_{1} \to V_{2}$ obeying $\rho_{1}(X) = \alpha^{-1} \circ \rho_{2}(X) \circ \alpha, \forall X \in \mathfrak{g}.$