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1. Lie groups and Lie algebras - a first example

This excersise is designed to gain an intuitive understanding of Lie groups and alge-
bras by generalizing well-known concepts encountered in explicit considerations.

Consider the special unitary group SU(2) := {g ∈ GL(2, C)|g† = g−1, detg = 1}.

(a) Show that SU(2) ∼= S3. Hint: Find an equation constraining the parameter space
of g to S3 as a submanifold in R4.

(b) Introduce spherical coordinates on S3 to infer

g(ω, θ, φ) = cos(ω) · e + i ( ~ω0 · ~σ) sin(ω), ~ω0 ∈ S2,

with ~ω0 = (cos(θ)cos(φ), cos(θ)sin(φ), sin(θ))T . What is the range of the para-
meters xi := (ω, θ, φ)? What is the geometrical locus of the ~ω := ω · ~ω0 ∈ R3?
The σi are the Pauli matrices defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

They form a basis of the real vector space of hermitian traceless matrices.

(c) Check that every g ∈ SU(2) obeys the differential equation

∂g

∂ω
= i ( ~ω0 · ~σ) g.

Integrate this to determine the solution

g(~ω) = eiωiσi

and calculate ∂g
∂ωi

∣∣
ω=~0

.
Hint: Do not forget to use the initial conditions.

Let us recapitulate our observations. First we showed that SU(2) is, besides its group
properties, also a non-trivial geometrical object. Then, we exploided this fact by
introducing coordinates on SU(2) ∼= S3. Finally, we combined the realization of SU(2)
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as matrices with well-defined multiplication and a certain differential equation to
find a (local) parametrization of any g ∈ SU(2) in terms of very local data, namely

∂
∂ωi

∣∣
0
g ∈ Te(SU(2)). This is the Lie algebra su(2) of SU(2). The whole program above

relied just on the geometric structure of SU(2) and the combination with its algebraic
properties as a group.

This is, what lies at the heart of the theory of Lie groups and Lie algebras, in general.

2. From Lie groups to representations - glimpse with SU(2)

• A Lie group G is a group endowed with the structure of a differentiable mani-
fold such that the operations

(a) · : G×G → G , (g, h) 7→ g · h
(b) −1 : G → G , g 7→ g−1

are differential maps of differentiable manifolds.

Using coordinates xi on G we are able to define the basis ∂
∂xi

∣∣
0
g =: Ti of the

tangent space g := TeG at the identity e ∈ G. The Ti are called generators of
the Lie algebra g that has the following structure.

• A Lie algebra g is a vector space (from TeG) together with a binary operation

[·, ·] : g× g → g

satisfying the conditions:

(a) It is bilinear, i.e. linear in both entries. (-Up to here, g is an R-algebra.-)

(b) It is skew-symmetric: [a, b] = −[b, a] for a, b ∈ g

(c) It fulfills the Jacoby identity: [a, [b, c]]+[b, [c, a]]+[c, [a, b]] = 0 for a, b, c ∈ g

It can be shown that g = eixiTi , at least locally. Hence, it makes sense to ananlyse
(local) properties of G and its representations in terms of its corresponding Lie
algebra g, which is a lot easier to deal with.

• A representation ρ of a Lie algebra g on a vector space V is a mapping

ρ : g → End(V )

which is an algebra homomorphism, i.e. it is a homomorphism of vector spaces
and fulfills ρ([a, b]) = [ρ(a), ρ(b)], ∀a, b ∈ g.

The dimension of V is called the dimension of the representation ρ: dim(ρ) :=
dim(V ).

If there is a vector space W ⊂ V so that ρ(W ) ⊂ W , then the representation
is called reducible and V is called the invariant subspace. If there are only
W = {0}, V with this property then the representation ρ is called irreducible.
In other words: a representation is irreducible, iff the only invariant subspace is
V itself ({0} is trivial).
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Let us consider the example of su(2) once again.

(a) Show in a slightly more abstract way that su(2) is the set of all traceless her-
mitian matrices and prove that it is a Lie algebra.

Hint: detA = exp Tr logA and set [A, B] := A ·B −B · A.

(b) Perform a complex basis change from the Pauli matrices σi to

J3 =
1

2
σ3, J+ =

1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2) ,

and verify the commutation relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3 .

Next, we aim for classifying all irreducible, finite-dimensional representations
ρ of su(2) on a vector space V . Thus, it is important to note that ρ(Ji), i = 3, +,−,
are n× n-matrices with n := dim(V ) and n 6= 0 in general.

(c) Since J3 is diagonal, ρ(J3) can also be chosen to be diagonal. Therefore V can
be decomposed into eigenspaces of ρ(J3),

V =
⊕

Vα,

where α labels the eigenvalue of ρ(J3), i.e.

(ρ(J3))v = αv, v ∈ Vα, α ∈ C

(shorthand: write Ji for ρ(Ji)). Show that J+(v) ∈ Vα+1 and J−(v) ∈ Vα−1.

(d) Prove that all complex eigenvalues α which appear in the above decomposition
differ from one another by 1.

Hint: Choose an arbitrary α0 ∈ C from the decomposition and prove that⊕
k∈Z

Vα0+k ⊂ V

is indeed equal to V using the irreducibility of the representation.

(e) Argue that there is k ∈ N for which Vα0+k 6= 0 and Vα0+k+1 = 0. Define n :=
α0 + k. Note that up to now, we only know that n ∈ C.

Draw a diagram. Write the vector spaces Vn−2, Vn−1 and Vn in a row and indicate
the action of J3, J+ and J− on these vector spaces by arrows.

The eigenvalue n is called highest weight and a vector v ∈ Vn is called highest
weight vector. Is it clear why?

(f) Choose an arbitrary vector v ∈ Vn (highest weight vector). Prove that the
vectors v, J−v, J2

−v, . . . span V.

Hint: Show that the vector space spanned by these vectors is invariant under the
action of J3, J+ and J− and use the irreducibility of the representation.
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(g) Argue that all eigenspaces Vα are 1-dimensional.

(h) Prove that n is a non-negative integer or half-integer and that

V = V−n ⊕ . . .⊕ Vn .

Complement your diagram drawn in part (e). What is the dimension of V ?

Hint: The representation is finite dimensional, so there exists m ∈ N for which
Jm−1
− v 6= 0 and Jm

− v = 0. Evaluate the product J+Jm
− v.

(i) Decompose the tensor product of a 2-dimensional and a 3-dimensional irreduci-
ble representation of su(2),

V = V (2) ⊗ V (3),

into two irreducible representations of dimension two and four: 2 ⊗ 3 = 2 ⊕ 4.

Hint: For the definition of a tensor product of two representations see 3. (b).
Note that the eigenvalue of J3 on V is the sum of the eigenvalues of J3 on
V (2) and V (3). Draw the diagrams of the eigenvalues (with multiplicities). Then
use the fact that the eigenspaces of J3 on an irreducible representations are all
1-dimensional to show that V is reducible.

3. Elementary constructions of representations

Using the fact that the Lie algebra g closes under [·, ·] we have an expansion

[Ti, Tj] = ifijkTk, ∀Ti ∈ g, (1)

where the coefficients fijk are called structure constants of g.1

(a) Determine the structure constants of su(2) in the σi basis. Compare this with
the algebra of the angular momentum operators (or so(3)).

As a representation ρ preserves the entire structure of the Lie algebra the repre-
sentation matrices have to obey (1). Thus, this is an equivalent way to define a
representation. Let us construct new representations out of old ones.

(b) Let (ρ1, V1), (ρ2, V2) be two representations. Prove that ρ⊕(Ti) := ρ1(Ti)⊕ρ2(Ti),
ρ⊗(Ti) := ρ1(Ti) ⊗ 11 + 11 ⊗ ρ2(Ti) define represenations on V1 ⊕ V2, V1 ⊗ V2,
respectively.

(c) Prove that ad(Ti)kj := ifijk defines a representation (ad, g) called the adjoint
representation of g. Abstractly, this is given by ad : X 7→ [X, ·], ∀X ∈ g.

(d) Show using equation (1) that ρ̄(Ti) := −ρ(Ti)
∗ defines a representation called

the complex conjugate representation of ρ. ρ is said to be real if it is
equivalent2 to its complex conjugate ρ̄.

1The i is necessary to guarantee a consistent expression for hermitian (representations of) generators
Ti as needed for unitary representations. Strictly speaking, [·, ·] doesn’t close anymore in g as [Ti, Tj ] is
antihermitian for hermitian Ti. This is the discrepancy between mathematicians and physicists.

2(ρ1, V1), (ρ2, V2) are called equivalent if there is a vector space isomorphism α : V1 → V2 obeying
ρ1(X) = α−1 ◦ ρ2(X) ◦ α, ∀X ∈ g.

4


