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1. Cartan matrix of SU(n)

Let us work investigate the Lie algebra of SU(n) in detail. There, we will encounter
many important concepts necessary for the understanding of any semisimple Lie
algebra.1 First, define the canonical basis (eab)ij = δai δbj of the n× n-matrices.

(a) Determine the Lie algebra su(n), its dimension and find a basis, that generalizes
the Pauli matrices. Perform a complex basis change analogous to Ex. 1.2,(b) for
all non-diagonal matrices. Hint: You should find eab as a basis after all.

(b) Define the set of commuting matrices H := {
∑

i λieii |
∑

i λi = 0} and check
that H is a subalgebra of su(n), i.e. [g, h] = 0 for g, h ∈ H.
Check that

ad(h)(eab) = [h, eab] = (λa − λb) eab h ∈ H. (1)

Thus, the eab form an eigenbasis for the representation matrices ad(h) with
eigenvalue (λa − λb), respectively.

Abstractly, H can be defined as the maximal set of commuting elements in g with
ad(h) diagonalizable. It is called the Cartan subalgebra of g and its dimension the
rank r of g. The rank of su(n) is n− 1 and it is also called the algebra An−1.

Formalizing further, we can interpret (1) as a function αeab
on H defined by

αeab
(h) := (λa − λb) ∈ R for su(n) .

More abstract, α• is a mapping

α• : g/H → H∗ , t 7→ (αt : h 7→ αt(h)) , (2)

where H∗ denotes the dual space to H. H∗ is called the root space in this context.
The mapping αt ∈ H∗ is called a root2 and the r-dimensional vector (αeab

(eii-ei+1i+1))i,
i = 1, · · · , r, the root vector of eab.

1A Lie algebra is called semisimple if it is a sum of abelian and simple Lie algebras. An abelian Lie
algebra obeys [g, h] = 0 ∀g, h ∈ g and a simple one contains no proper ideal, i.e. invariant subspace.

2Not every α̃ ∈ H∗ is a root of g, i.e. there may be no x ∈ g with [h, x] = αx(h)x such that α̃ = αx.
But every root of g is in H∗.
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Expand a root β ∈ H∗ into a basis α1, . . . , αr of roots as β =
∑

i c
iαi, β is called

• positive (negative), β > 0, if the first non-zero ci > 0 (ci < 0). Accordingly,
we write β > γ for β − γ > 0.

• simple root if it is positive and cannot be written as β =
∑

i d
iα̃i with i > 1,

di > 0 ∀i and α̃i all positive.

Operators t associated to a root α by α = αt are also denoted by Eα. For α > 0
(α < 0) they are called raising operators (lowering operators).

(c) Show that the roots

αi(h) = λi − λi+1 i = 1, 2, ..., n− 1.

are a basis of the root space for su(n) and that they are positive with α1 >
α2 · · · > αn−1. Are these roots also simple roots?

Furthermore, we can define an inner product on g. Let x, y ∈ g be arbitrary, then
define the Killing form κ by

κ(x, y) := tr (ad(x) · ad(y)) .

Obviously it is bilinear and symmetric but not positive definite in general.

(d) Prove that the Killing form on the basis ti of g is given by

κij = κ(ad(ti) · ad(tj)) = −fimlfjlm

and the invariance κ([x, y], z) = κ(x, [y, z]). Hint: Use the Jacobi identity.
Why is κ equivalently definied by firstly determining the basis expansion of

[x, [y, ti]] =
∑

j

Kijtj

and secondly setting κ(x, y) := Tr(K). Use your favorite method to calculate
κ(h, h′), where h =

∑
i λi eii, h′ =

∑
j λ′j ejj of su(n).

The Killing form κ of any finite dimensional semisimple g is non-degenerate on g

(proven by Cartan) as well as on H. Hence, there is a natural isomorphism

h• : H∗ → H, α 7→ hα defined by α(h)
!
= κ(hα, h), ∀h ∈ H . (3)

(e) Calculate κ(hαi
, h) using (3) and find hαi

by comparing to your result from (d).

Finally, we use the isomorphism (3) to define an inner product on H∗:

〈α, β〉 := κ(hα, hβ), α, β ∈ H∗.
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(f) Calculate the Cartan matrix of su(n), defined in general by

Aij :=
2 〈αi, αj〉
〈αj, αj〉

,

where the αi are simple roots. Note that Aii = 2 and Aij ∈ Z≤0, i 6= j, as a fact.

The information about the Lie algebra g encoded in the Cartan matrix is equivalent
to knowing all structure constants of g. It is convenient to represent the Cartan
matrix in a pictorial way by drawing a Dynkin diagram: To every simple root αi,
associate a small circle and join the circles i and j with AijAji (no

∑
ij, i 6= j) lines.

(g) Draw the Dynkin diagram for An (i.e. SU(n + 1)).

(h) Consider the non-trivial example of su(3). We use the standard basis for the
hermitian 3× 3 matrices, the so called Gell-Mann matrices defined by

λ1 = e12 + e21, λ2 = i(e21 − e12), λ3 = e11 − e22,
λ4 = e13 + e31, λ5 = i(e31 − e13),
λ6 = e23 + e32, λ7 = i(e32 − e23), λ8 = 1√

3
(e11 + e22 − 2e33).

(4)

This is in complete accordance with the basis you should have found in Ex. 2.1,
(a), except for the form of λ8.

Proceed with the recipe described above. Perform the complex basis change to
find the raising/lowering operators, show that H1 = 1

2
λ3, H2 = 1

2
λ8 are a basis

of H and express them in terms of the eab. Determine the αeab
and draw them

as 2-dimensional vectors with x-axis (y-axis) corresponding to H1 (H2). Define
the simple basis α1 := αe12 and α2 := αe23 and determine the Hαi

∈ H. Finally,
calculate the Cartan matrix and draw the Dynkin diagram of su(3).

2. Representations of SU(N)

The whole analysis of Ex. 2.1 is nothing more than investigating the adjoint repre-
sentation (ad, g) of g. For a general representation ρ we also use the maximal set of
commuting matrices ρ(h), h ∈ H. Thus, all ρ(h) can be diagonalized simultaneously
if every individual ρ(h) can be diagonalized, what we assume.3 Hence, there is a basis
of eigenvectors vi such that

ρ(h)vi = M i(h)vi ∀h ∈ H, vi ∈ V . (5)

Again, the M i are functions on H, thus, M i ∈ H∗. They are the weights of the
representation (ρ, V ). Comparison with (1) shows that the roots α are just the weights
of the adjoint representation ρ = ad. As the simple roots αi span H∗ we can expand

M i =
∑

j

cijαj .

3As in quantum mechanics we expect the eigenvalues w.r.t. to these operators to specify an element in
any representation ρ of g uniquely. However, it may happen that the eigenspace of 0 is degenerated (as for
the adjoint itself) and that additional quantum numbers like Casimir eigenvalues are needed.
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Hence, positivity of weights can be defined as for roots, compare Ex. 2.1 above. A
weight is called highest weight, denoted by Λ, if Λ > M i for all M i 6= Λ.

(a) Let vi be a vector with weight M i. Show that ρ(Eα)vi has weight M i + αi if
ρ(Eα)vi 6= 0. Make contact to the definition of raising/lowering operators.

(b) What are the weights of the complex conjugate representation ρ̄ of ρ?
Hint: The Cartan generators are hermitan, hence, have real eigenvalues.

Consider the defining representation 3 of su(3) in terms of the Gell-Mann ma-
trices, cf. Ex. 2.1, (h). Choose the canonical basis (vi)j = δi

j, i, j = 1, 2, 3, of the
3-dimensional representation space.

(c) Find the weights M i by applying H1, H2 to the vi and expand them in terms
of the roots α1, α2, cf. Ex. 2.1, (h). Which weight is Λ? Draw the M i in a
2-dimensional picture. Note that the difference between two weights is a root!

(d) Consider the action of the raising/lowering operators on the vi and compare
to (a). Indicate the action of these operators on the weights by arrows in your
2-dimensional picture in (c).

Without any prove: A highest weight Λ of a representation ρ can be specified by
a set of non-negative integers, called the Dynkin coefficients:

Λi = 2
〈Λ, αi〉
〈αi, αi〉

Using the Λi it is possible to determine the corresponding highest weight and, fur-
thermore, even all other weights of the representation ρ by the following recipe:

• To start, we need the Dynkin coefficients and the Cartan matrix.

• For each non-negative Dynkin coefficient Λi of the weight substract Λi-times
the i-th row of the Cartan matrix, successively. For each step you will get the
Dynkin coefficients of another weight.

• Repeat the last step for all weights, until all Dynkin coefficients are non-positive.

At the end, the number of Dynkin coefficients gives the number of different weights
and therefore the number of linear independent weight vectors. Hence, this gives the
dimension of the representation.4

SU(3) example

(e) Compute the Dynkin coefficients of the three weights and check that the highest
weight construction is correct.

(f) Perform the highest weight construction for the Dynkin coefficients (1, 1) of
SU(3).

4This is not always true, consider e.g. (0...0) for the adjoint representation that is prescisely H.
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