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1. The Higgs of SU(5)

It is necessary to generalize the Higgs mechanism of the SM to understand the symme-
try breaking of any GUT theory to the SM. Thus, we describe the Higgs mechanism
for a field H in an arbitrary representation ρ of a semi-simple Lie algebra g.

(a) Consider a complex scalar H in the representation ρ of a gauge group G. Assume
further that H acquires a vev 〈H〉 due to some potential. Deduce from the kinetic
term1

(DµH)∗ (DµH)|1 =
(
∂µH + igρ(T a)Aa

µH
)∗ (

∂µH + igρ(T b)AbµH
)∣∣

1
,

that a gauge boson Aa
µ is massless, if ρ(T a) 〈H〉 = 0. Then, T a belongs to the

unbroken gauge group G′.
Specialize to H in the adjoint representation with the kinetic term Tr(DµH)†(DµH).
Follow the discussion of part (a) to deduce

T a ∈ G′ if [T a, 〈H〉] = 0, T a /∈ G′ if [T a, 〈H〉] 6= 0.

Discuss also the case, where some linear combination of generators commutes
with the Higgs vev!

Let us apply this for the desired symmetry breaking of Ex. 3.2, (a), by introducing a
Higgs field in the adjoint of SU(5), i.e a 5× 5 hermitian traceless matrix.2 We work
with a scalar potential invariant under H → −H of the form

V (H) = −m2Tr
(
H2

)
+ λ1

(
Tr

(
H2

))2
+ λ2Tr

(
H4

)
.

(b) First, use the results of Ex. 3.2 to argue that a Higgs H precisely in the adjoint
24 is an appropriate choice to break SU(5) to the SM. Which component of 24

1The only restriction on ρ is that ρ̄⊗ρ should contain 1 in order to give rise to a gauge invariant kinetic
term for H. The subscript |1 denotes this singlet component. For the adjoint, it is obtained by the trace.

2Note that this is not the SM-Higgs field, which is contained in the 5.
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should develope the vev, cf. Ex. 3.2, (d)? Use the gauge symmetry H → H ′ =
UHU † to obtain

H = diag(h1, h2, h3, h4, h5)

and check that the minimum of the scalar potential is determined by the same
equation for all hi:

4λ2h
3
i + 4λ1ahi − 2m2hi − µ = 0 with a =

∑
j

h2
j , ∀i = 1, . . . , 5. (1)

Here µ is a Lagrange multiplier necessary to impose the constraint
∑

i hi = 0.

The cubic equation (1) has at most three roots denoted by φ1, φ2, φ3. Thus, there are
at most three different eigenvalues hi ∈ {φ1, φ2, φ3}. Let ni be the multiplicity of the
eigenvalue φi, i = 1, 2, 3, in 〈H〉:

〈H〉 := diag(φ1, .., φ2, .., φ3) with n1φ1 + n2φ2 + n3φ3 = 0.

(c) Following part (a), what is the most general symmetry breaking of SU(5)? What
happens to the rank of the gauge group? Consider also possible U(1) factors.

Depending on the relative magnitude of the parameters λ1 and λ2, the combinations
(3, 2, 0) or (4, 1, 0) for (n1, n2, n3) minimize the potential. Thus,

SU(5) → SU(3)× SU(2)× U(1) (2)

or

SU(5) → SU(4)× U(1),

which gives restrictions on phenomenologically reasonable values of λ1, λ2.

(d) Focus on the first case and determine what is the most general form of 〈H〉.
Then, the breaking (2) should be obvious. What is the generator of the U(1)?
Compare this to your result for Q in Ex. 3.2, (a).

2. Higgs mass corrections

In this exercise we present one of the many motivations for the introduction of super-
symmetry. We will see how supersymmetry enables us to solve one crucial problem
of the standard model, namely the problem of the Higgs mass correction, without
fine tuning!
As supersymmetry introduces superpartners for each SM-particle, we will calculate
the corrections to mH due to fermion- as well as scalar-loops to present the magic of
supersymmetry at work. First, the relevant part of the SM Lagrangian reads

LHiggs-Top = −
(
fQ̄LHcuR + h.c.

)
,
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where f denotes the Yukawa coupling and QL and uR the quarks for which we consider
the heaviest quark only, the top quark. After electro-weak symmetry breaking (due

to H = (φ0, 0)
T

for φ0 = 1√
2
(v + h(x)), i.e. 〈H〉 = v), the Lagrangian reads,

LHiggs-Top = −
(

f√
2
t̄LtR(v + h) + h.c.

)
,

and the top-mass is defined as mt = fv√
2
. Next, we will present the problem itself.

(a) Draw the Feynman diagram for the one-loop correction of the Higgs mass due
to a top-loop. Show that the amplitude for this process is given by

Πhh
t (0) = −6f 2

∫
d4k

(2π)4

(
1

k2 −m2
t

+
2m2

t

(k2 −m2
t )

2

)
.

Hint: A factor 3 occurs due to three color d.o.f. of the top quark and the minus-
sign due to the fermion loop.

This integral diverges quadratically. Hence, the Higgs mass mH receives a quadrati-
cally divergent correction, too. In order to keep the physical Higgs mass at the electro-
weak scale (≈ 100GeV ) an unnatural cancellation between the cut-off Λ ≈ MPlanck

and the bare Higgs mass mH has to occur. This problem is solved by the introduction
of color-triplets of complex scalars that couple to the Higgs, such that their contri-
butions to mH cancel the top contribution. Let us denote these scalars by t̃L and t̃R
and call them s-tops.3 The s indicates supersymmetry or superpartner.

(b) Compare the degrees of freedom for both the top and the s-tops. Consider

LHiggs-s-top = λ̃t|φ0|2
(
|t̃L|2 + |t̃R|2

)
+

(
fAtφ

0t̃Lt̃∗R + h.c.
)
.

to determine the vertex factors for the following couplings: hh t̃L t̃L, hh t̃R t̃R,
h t̃L t̃L, h t̃R t̃R and h t̃R t̃L? Draw all Feynman diagrams that contribute to mH .
Hint: You should find three different types of diagrams. Note that the diagram
that involves a hh t̃L t̃L vertex gets an additional factor of 2.

(c) Compute the amplitude Πhh
t̃

(0) for these diagrams.

(d) Next, assume that the s-top Yukawa coupling λ̃t depends on the top Yukawa
coupling f as λ̃t = −f 2. How divergent is the sum of both contributions (b) and
(f) to the Higgs mass?

(e) Show that in the case that the s-top masses mt̃ are equal to the top mass (and
additionally At = 0) the sum of the one-loop correction vanishes.

Precisely the assumptions of (e) and (f) are predicted by supersymmetry. Therefore,
supersymmetry solves the hierarchy problem. Even for broken supersymmetry with
mt̃ 6= mt the quadratical divergences are traded for logarithmical ones.

3Note that for the s-tops the subscripts L and R do not denote left- and right-chiral fields as there are
no chiral bosons (ignoring the notion of chiral bosons in 2-dimensional SCFTs).
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