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1. The Lorentz group, SL(2,C) and Weyl spinors

Let us recall some basic facts about the Lorentz group SO(1, 3) and its represen-
tations. The Lie algebra so(1, 3) is defined by λT = −ηλη for λ ∈ so(1, 3) and a
convenient basis is given by (Mµν)ρ

σ = i (ηµρδν
σ − ηνρδµ

σ). Considering so(1, 3) ⊗ C
allows the complex basis change

T i
L/R :=

1

2
(J i ± iKi) for J i :=

1

2
εijkM jk, Ki := M0i (1)

such that the algebra decouples into su(2)⊕ su(2),[
T i

L/R, T
j
L/R

]
= iεijkT k

L/R,
[
T i

L, T
j
R

]
= 0. (2)

Moreover, this is precisely the algbra of sl(2,C) and we obtain the result so(1, 3) ∼=
sl(2,C)⊗C. Thus, every representation of so(1, 3) can be characterized by the spins
of the two su(2)’s, namely a pair (j1, j2) with ji ∈ N0/2.

However, the Lorentz group SO(1, 3) is not equal to SL(2,C) as there are topologi-
cal differences that go beyond the equivalence of the algebras. Let us establish this
connection from the viewpoint of SL(2,C).

(a) Consider the map from R4 to the hermitian 2×2-matrices defined by xµ 7→ X =
xµσµ with σµ = (1, σi). Show that det(X) = xµxµ and argue that yµ = Λµ

νx
ν for

Λ ∈ SO(1, 3) induces a map AXA† for A ∈ SL(2,C), i.e. det(A) = 1. Reverse
the argument: Each A ∈ SL(2,C) gives rise to a Lorentz transformation Λ(A).

(b) Check that Λ(·) defines a representation of SL(2,C) and determine its kernel,
i.e. Ker := {A ∈ SL(2,C) | Λ(A) = 1}. Use this to show that Λ(−A) = Λ(A).
Hint: Specialize to xµ = (1,~0). Then, use Schur’s Lemma, i.e the fact that for
a hermitian A with [A,X] = 0 ∀X hermitian 2× 2-matrices follows A = c1.

Thus SO(1, 3) is isomorphic to SL(2,C)/Z2, i.e. SL(2,C) is its simply connected
double cover.1 Furthermore, a four-vector is a representation of SL(2,C) as well
as SO(1, 3). However, a representation of SL(2,C) lifts only to a representation of

1Strictly speaking, SL(2, C)/Z2 is only isomorphic to one of the four connected components of SO(1, 3).
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SO(1, 3) if ±id ∈ SL(2,C) is represented by 1. The group SL(2,C) exhibits so-called
spinors for that this is not fulfilled. These are just its fundamental representations
(1/2, 0) and (0, 1/2) defined by

ψα 7→ ψ′
α = M β

α ψβ, ψ̄α̇ 7→ ψ̄′
β̇

= M∗ β̇
α̇ ψ̄β̇, M ∈ SL(2,C) (3)

The undotted and dotted spinors are the left- and right-chiral Weyl spinors. Two-
dimensional representation matrices obeying eqn. (2) are just the Pauli matrices (and
unitarily equivalent matrices), thus one can use the exponential map to write

DL := M = exp ((ai + ibi)σi) , DR := M∗ = exp ((ai − ibi)σ
∗
i ) . (4)

(c) Prove using σ∗i = −σ2σiσ2 the identities

D†
L = σ2D

−1
R σ2, DT

Lσ2DL = σ2 (5)

and argue that σ2 is a spinor metric. How transforms (ψα)∗? Set (ψα)∗ ≡ ψ̄α̇.
Use (a) to determine the spinor indices of σµ.

(d) One can use σ2 to raise and lower spinor indices. Introduce εαβ = εα̇β̇ = iσ2.
What are the inverse tensors denoted by εαβ = εα̇β̇? Determine the transforma-

tion behavior of ψα := εαβψβ and ψ̄α̇ := εα̇β̇ψ̄β̇.

(e) Show that ψφ := ψαφα, ψ̄φ̄ := ψ̄α̇φ̄
α̇ as well as (ψβ)∗ εβ̇α̇φ̄α̇ = iψ†σ2φ̄,

(
ψ̄β̇

)∗
εβαφα

are Lorentz scalars. How does ψσµφ̄ := ψασµ

αβ̇
φ̄β̇ transform?

(f) Introduce σ̄µ := (1,−σi) and check σ̄µ = iσ2(σ
µ)∗(−iσ2), thus (σ̄µ)α̇β = (σµ)α̇β.

Check also (σ̄µ)T = iσ2σ
µ(−iσ2) and (σµ)αβ̇ = (σ̄µ)β̇α. Finally, determine the

index structure of the spin generators

σµν :=
i

4
(σµσ̄ν − σν σ̄µ) , σ̄µν :=

i

4
(σ̄µσν − σ̄νσµ) . (6)

The spin generators furnish a representation of the Lorentz algebra such that

DL = exp

(
− i

2
ωµνσ

µν

)
, DR = exp

(
− i

2
ωµν σ̄

µν

)
(7)

for eqn. (4) with ωµν = −ωνµ and Λ = exp(− i
2
ωµνM

µν) ∈ SO(1, 3).

2. Weyl Spinors are Grassmann valued

In Ex. 5.1 we have defined an inner product for Weyl spinors. In the following we
consider left-chiral Weyl spinors ψα, φα and θα.

(a) Consider the pairing ψψ. Which relation do the ψα have to fulfill in order for
this to be non-vanishing? Assume this for all Weyl spinors to show that ψαφα =
−φαψ

α, ψ̄α̇φ̄
α̇ = −φ̄α̇ψ̄α̇ and ψφ = φψ as well as ψ̄φ̄ = φ̄ψ̄.
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(b) Prove the relations

θαθβ = −1
2
εαβθθ, θαθβ = 1

2
εαβθθ,

θ̄α̇θ̄β̇ = 1
2
εα̇β̇ θ̄θ̄, θ̄α̇θ̄β̇ = −1

2
εα̇β̇ θ̄θ̄,

(θφ)(θψ) = −1
2
(φψ)(θθ), (θ̄φ̄)(θ̄ψ̄) = −1

2
(φ̄ψ̄)(θ̄θ̄).

(c) Check also

(φ̄σ̄µψ) = −(ψσµφ̄), (φσµψ̄)∗ = (φ̄σ̄µψ),

ψαφ̄β̇ =
1

2
(σµ)αβ̇(ψσµφ̄), (θσµθ̄)(θσν θ̄) =

1

2
ηµν(θθ)(θ̄θ̄).

In summary, the components of spinors are Grassmann variables, i.e. anti-commuting.
It is also possible to introduce differentiation w.r.t. a Grassmann variable θα by
differential operators

∂α =
∂

∂θα
and ∂̄α̇ =

∂

∂θ̄α̇

obeying ∂αθ
β = δβ

α and ∂̄α̇θ̄β̇ = δα̇
β̇
. However, the Leibniz rule includes a minus sign

for consistency,
∂α(θβθγ) = δβ

αθ
γ − θβδγ

α.

(d) Show that ∂α = −εαβ∂β.

(e) Check that
∂α∂α(θθ) = ∂̄α̇∂̄

α̇(θ̄θ̄) = 4.

Identical to differentiation one introduces integration by∫
dθα = 0,

∫
dθαθα = 1 (no summation) (8)

that is linear and automatically defined on arbitrary functions f(θ). The volume
elements are defined by

d2θ := −1
4
dθαdθβεαβ, d2θ̄ := −1

4
dθ̄α̇dθ̄β̇ε

α̇β̇,

d4θ := d2θd2θ̄. (9)

This implies ∫
d2θ (θθ) =

∫
d2θ̄

(
θ̄θ̄

)
= 1, (10)

which can be checked analogously to differentiation. Note that integration just pro-
jects on the highest θ or θ̄ component in the finite Taylor expansion of a function
f(θ, θ̄) = c(0,0) + . . .+ c(2,0)θ

2 + c(0,2)θ̄
2 + . . .+ c(2,2)θ

2θ̄2, c(i,j) ∈ C.
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