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1. The Lorentz group, SL(2,C) and Weyl spinors

Let us recall some basic facts about the Lorentz group SO(1,3) and its represen-
tations. The Lie algebra so(1,3) is defined by AT = —nAn for A € so(1,3) and a
convenient basis is given by (M*)? = i (0% — n*?6*). Considering so(1,3) ® C
allows the complex basis change

. 1, .. , . 1 .. . . )
byr = (1 KT for JUi= SV EME, KT = MY (1)
such that the algebra decouples into su(2) & su(2),
(T T | = i€ Tl T3, T3] =0, (2)

Moreover, this is precisely the algbra of sl(2,C) and we obtain the result so(1,3) =
sl(2,C) ® C. Thus, every representation of so(1,3) can be characterized by the spins
of the two su(2)’s, namely a pair (jy, j2) with j; € Ny/2.

However, the Lorentz group SO(1,3) is not equal to SL(2,C) as there are topologi-
cal differences that go beyond the equivalence of the algebras. Let us establish this
connection from the viewpoint of SL(2, C).

(a) Consider the map from R? to the hermitian 2 x 2-matrices defined by z* — X =
zto, with o = (1, 0;). Show that det(X) = 2"z, and argue that y* = Ala” for
A € SO(1,3) induces a map AXA' for A € SL(2,C), i.e. det(A) = 1. Reverse
the argument: Each A € SL(2,C) gives rise to a Lorentz transformation A(A).

(b) Check that A(-) defines a representation of SL(2,C) and determine its kernel,
i.e. Ker := {A € SL(2,C) | A(A) = 1}. Use this to show that A(—A) = A(A).

Hint: Specialize to x* = (1,0). Then, use Schur’s Lemma, i.e the fact that for
a hermitian A with [A, X]| = 0 VX hermitian 2 x 2-matrices follows A = cl.

Thus SO(1,3) is isomorphic to SL(2,C)/Zs, i.e. SL(2,C) is its simply connected
double cover.! Furthermore, a four-vector is a representation of SL(2,C) as well
as SO(1,3). However, a representation of SL(2,C) lifts only to a representation of

1Strictly speaking, SL(2, C)/Zs is only isomorphic to one of the four connected components of SO(1, 3).
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SO(1, 3) if £id € SL(2, C) is represented by 1. The group SL(2, C) exhibits so-called
spinors for that this is not fulfilled. These are just its fundamental representations
(1/2,0) and (0,1/2) defined by

Yoo U = Mg, o Oy =ML, M eSL(2,C) (3)

The undotted and dotted spinors are the left- and right-chiral Weyl spinors. Two-
dimensional representation matrices obeying eqn. (2) are just the Pauli matrices (and
unitarily equivalent matrices), thus one can use the exponential map to write

Dy = M = exp ((a; + ib;)0;) , Dpr = M* = exp ((a; —ib;)o}) . (4)
(c) Prove using o} = —090;09 the identities
D} = 0,D3loy,  DIoyDy = oy (5)

V-

and argue that o9 is a spinor metric. How transforms (¢,)*? Set (¢,)*
Use (a) to determine the spinor indices of o

(d) One can use oy to raise and lower spinor indices. Introduce ¢ = €% = jg,.
What are the inverse tensors denoted by €n3 = €,47 Determine the transforma-

tion behavior of 1 1= e*?¢)5 and Y% := edﬁ%.
(e) Show that ¥ := Gy, 16 := P56 as well as ()" s = ilo29, (1) €™ g
are Lorentz scalars. How does ¢ot¢ := wo‘ag ﬁ-gz_ﬁﬁ transform?

(f) Introduce o* := (1, —0;) and check 6/ = ioy(0*)*(—ioy), thus () = (o)
Check also (6#)" = ioyot(—ioy) and (o)™ = (%)%, Finally, determine the
index structure of the spin generators

ot = ;l (cta” —ova"), o = i (oo —a"at). (6)

The spin generators furnish a representation of the Lorentz algebra such that
i i -
Dy = exp — Wm0 , Dpr = exp — Wm0 (7)

for eqn. (4) with w"” = —w"* and A = exp(—iw,, M") € SO(1,3).

. Weyl Spinors are Grassmann valued
In Ex. 5.1 we have defined an inner product for Weyl spinors. In the following we

consider left-chiral Weyl spinors ¢, ¢, and 6,,.

(a) Consider the pairing 7). Which relation do the 1, have to fulfill in order for
this to be non-vanishing? Assume this for all Weyl spinors to show that ¥ ¢, =

—Pat®, Pad® = —0*Pa and Y = ¢ as well as Yo = o).
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(b) Prove the relations

6°0% = —Legg, Ol = Leastlt,
Go99 = 1eipg, 0305 = — e, ;00

(00)(00) = —3(e0)(09),  (00)(00) = —5(d2)(09).
(c¢) Check also

(670) = ~(Wod),  (9oD)" = (30,
Yoy = 5(0")as(boud),  (60"0)(00"0) = 5o (66)(00)

In summary, the components of spinors are Grassmann variables, i.e. anti-commuting.
It is also possible to introduce differentiation w.r.t. a Grassmann variable 6, by
differential operators

0 = 0
0o = 2 and &%= -2
o6o " 005
obeying 0,0° = 67 and 90, = 5;‘ However, the Leibniz rule includes a minus sign
for consistency,
0.(6%07) = 5967 — 6757,

(d) Show that 0% = —e* 9.
(e) Check that

0%0,(00) = 0,0%(00) = 4.
Identical to differentiation one introduces integration by

/ o =0, / df*0, =1 (no summation) (8)

that is linear and automatically defined on arbitrary functions f(6). The volume
elements are defined by

B0 = —1d0°dbPens, AP0 = —1d0,df;et”,

d*0 = 20424 9)
This implies
/fmm:/fﬂsz (10)

which can be checked analogously to differentiation. Note that integration just pro-
jects on the highest 6 or § component in the finite Taylor expansion of a function
f(@, 0) = C(070) + ...+ 6(270)02 + 6(0,2)02 + ...+ 0(272)0202, C(i,j) e C.



