Exercises on Elementary Particle Physics II Prof. Dr. H.-P. Nilles

1. The SUSY Algebra and the Chiral Representation

The SUSY algebra is an extension of the Poincaré algebra that circumvents the restrictions of the **Coleman-Mandula theorem**¹. This is achieved by allowing for **Super-Lie algebras** or **graded Lie algebras** with commutators as well as anticommutators defining its algebra relations as internal symmetries of the theory. Thus, one introduces generators Q_{α} , $\bar{Q}_{\dot{\beta}} = (Q_{\beta})^*$ transforming in the Weyl-representations D_L , D_R , respectively, obeying the (anti-) commutation relations

$$\{Q_{\alpha}, Q_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}}P_{\mu}, \qquad [Q_{\alpha}, P_{\mu}] = 0$$
$$[M_{\mu\nu}, Q_{\alpha}] = i (\sigma_{\mu\nu})_{\alpha}^{\ \beta} Q_{\beta}, \qquad [M_{\mu\nu}, \bar{Q}^{\dot{\alpha}}] = i (\bar{\sigma}_{\mu\nu})_{\dot{\beta}}^{\dot{\alpha}} \bar{Q}^{\dot{\beta}}. \tag{1}$$

Additionally, one introduces the Grassmann variables θ_{α} , $\bar{\theta}_{\dot{\alpha}}$ as free parameters.

(a) Check that

$$[(\theta Q), (\bar{Q}\bar{\theta})] = 2(\theta \sigma^{\mu}\bar{\theta})P_{\mu}$$

(b) Considering the SUSY algebra (1) as a Lie algebra of an group with coordinates $(x^{\mu}, \theta, \bar{\theta})$, defining flat **superspace**, we can express a group element by

$$S(a^{\mu}, \alpha, \bar{\alpha}) := \exp[\alpha Q + Q\bar{\alpha} - ia^{\mu}P_{\mu}].$$

Show that $S(a^{\mu}, \alpha, \bar{\alpha})S(b^{\mu}, \beta, \bar{\beta})$ is again a group element.

(c) Thus, an element S induces a translation in superspace. This is used to define a representation of the SUSY group on superfields $\Phi(x^{\mu}, \theta, \bar{\theta})$ that transform as

$$S(a^{\mu},\alpha,\bar{\alpha})[\Phi(x^{\mu},\theta,\bar{\theta})] = \Phi(x^{\mu} + a^{\mu} - i\alpha\sigma^{\mu}\bar{\theta} + i\theta\sigma^{\mu}\bar{\alpha},\theta + \alpha,\bar{\theta} + \bar{\alpha}).$$
(2)

Note that this is analogous to the transformation of a scalar field under Poincaré transformations.

Use an infinitesimal transformation to show that the SUSY algebra on superfields $\Phi(x^{\mu}, \theta, \bar{\theta})$ is realised by

$$P_{\mu} = i\partial_{\mu}, \qquad Q_{\alpha} = \partial_{\alpha} - i(\sigma^{\mu})_{\alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}\partial_{\mu}, \qquad \bar{Q}_{\dot{\beta}} = -\bar{\partial}_{\dot{\beta}} + i\theta^{\alpha}(\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}. \tag{3}$$

¹The assumptions of the theorem are a local, relativistic quantum field theory in four dimensions with a finite number of different particles and an energy gap between the vacuum and the one-particle states. Then it states that the most general Lie algebra of symmetries of the S-matrix contains P^{μ} , $M^{\mu\nu}$ as well as a finite number of generators T_i of a compact Lie group, that are Lorentz scalars.

- (d) Check that (2) is fulfilled for linear combinations as well as products of superfields. Additionally, check that these operators form a representation of the SUSY algebra by explicitly verifying the algebra relations. Hence, (2) defines a linear representation of (1), i.e. on a vectorspace.
- (e) Define a (SUSY) covariant derivative D_{α} by

$$D_{\alpha}(\delta_{(\epsilon,\bar{\epsilon})}\Phi) = \delta_{(\epsilon,\bar{\epsilon})}(D_{\alpha}\Phi), \qquad (4)$$

where $\delta_{(\epsilon,\bar{\epsilon})} = \epsilon Q + \bar{Q}\bar{\epsilon}$. Consequently, $D\Phi$ transforms as a superfield, too. Show that the following derivatives obey (4) and are therefore covariant:

$$D_{\alpha} = \partial_{\alpha} + i(\sigma^{\mu})_{\alpha\dot{\beta}}\theta^{\beta}\partial_{\mu}$$
$$\bar{D}_{\dot{\beta}} = -\bar{\partial}_{\dot{\beta}} - i\theta^{\alpha}(\sigma^{\mu})_{\alpha\dot{\beta}}\partial_{\mu}$$

(f) Next define the **left** and **right chiral representations** by

$$S_L(a^{\mu}, \alpha, \bar{\alpha}) := \exp[\alpha Q - ia^{\mu} P_{\mu}] \exp[Q\bar{\alpha}],$$

$$S_R(a^{\mu}, \alpha, \bar{\alpha}) := \exp[\bar{\alpha}\bar{Q} - ia^{\mu} P_{\mu}] \exp[\alpha Q].$$
(5)

Concentrate on the left chiral representation and work out its relation to the representation S of (b). Check that $S_L(a^{\mu}, \alpha, \bar{\alpha})S_L(b^{\mu}, \beta, \bar{\beta})$ is a group element.

(g) A superfield in the left chiral representation is defined by

$$S_L(a^{\mu}, \alpha, \bar{\alpha})[\phi_L(x^{\mu}, \theta, \bar{\theta})] = \phi_L(x^{\mu} + a^{\mu} + 2i\theta\sigma^{\mu}\bar{\alpha}, \theta + \alpha, \bar{\theta} + \bar{\alpha}).$$

Determine the representations of the SUSY generators Q_L and \bar{Q}_L .

(h) Check that the following operators define covariant derivatives

$$D_{L\alpha} = \partial_{\alpha} + 2i(\sigma^{\mu})_{\alpha\dot{\beta}}\bar{\theta}^{\beta}\partial_{\mu}$$
$$\bar{D}_{L\dot{\beta}} = -\bar{\partial}_{\dot{\beta}}.$$

by evaluating the commutator with the SUSY transformation S_L .

(i) Next, define **chiral superfields** by the constraints

$\bar{D}\Phi(x,\theta,\theta) = 0,$	for left chiral sf
$D\Phi(x,\theta,\bar{\theta}) = 0.$	for right chiral sf

This definition is independent of the representation. Work with the representation S of (2) to check that the component fields are not constraint by differential equations in x. Choose the left chiral representation, i.e. $\bar{D}\Phi = \bar{D}_L\phi_L$, to deduce the general form of a left chiral superfield.

Hint: Make a Taylor expansion in θ , what defines the component fields of Φ .

(j) Consider the infinitesimal SUSY transformation $\delta_{(\epsilon,\bar{\epsilon})}$ of a left chiral superfield ϕ_L . How do the component fields of ϕ_L transform? *Hint: Use the left chiral representation of the SUSY generators* Q_L and \bar{Q}_L and assume that the transformation is small: $\delta\theta\sigma^{\mu}\delta\bar{\theta}\approx 0$.