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1. The SUSY Algebra and the Chiral Representation

The SUSY algebra is an extension of the Poincaré algebra that circumvents the re-
strictions of the Coleman-Mandula theorem!. This is achieved by allowing for
Super-Lie algebras or graded Lie algebras with commutators as well as anti-
commutators defining its algebra relations as internal symmetries of the theory. Thus,
one introduces generators Qq, Q 5= (Qp)" transforming in the Weyl-representations
Dy, Dg, respectively, obeying the (anti-) commutation relations

{Qou Qﬁ} = 2(0M)aﬁpm [Qav P;L] =0
[M;wa Qa] =1 (Uuu)aﬁ Qﬁa [M;wa Qd] =1 (5';w)aﬁ' QB' (1)
Additionally, one introduces the Grassmann variables 6,, 0, as free parameters.

(a) Check that o .
[(60Q), (QO)] = 2(60"0) P,

(b) Considering the SUSY algebra (1) as a Lie algebra of an group with coordinates
(x#,0,0), defining flat superspace, we can express a group element by

S(a", a, @) == expla@ + Qa — ia"P,].

Show that S(a*, o, @)S(b", 3, 3) is again a group element.
(c) Thus, an element S induces a translation in superspace. This is used to define a
representation of the SUSY group on superfields ®(z#, 0, 6) that transform as
S(a*, o, @)[®(z*,0,0)] = ®(2" + a* — iac”d + ifo*a, 0 + a,0 + a). (2
Note that this is analogous to the transformation of a scalar field under Poincaré

transformations.

Use an infinitesimal transformation to show that the SUSY algebra on super-
fields ®(x*,0,0) is realised by

PH = ial“ Qa = 601 - Z.(O-'u)aﬁ'e_gallﬂ Q,@ = _55 + iea(au)aﬂ.aﬂ' (3)

!The assumptions of the theorem are a local, relativistic quantum field theory in four dimensions with
a finite number of different particles and an energy gap between the vacuum and the one-particle states.
Then it states that the most general Lie algebra of symmetries of the S-matrix contains P*, M* as well
as a finite number of generators T; of a compact Lie group, that are Lorentz scalars.



(d) Check that (2) is fulfilled for linear combinations as well as products of su-
perfields. Additionally, check that these operators form a representation of the
SUSY algebra by explicitly verifying the algebra relations. Hence, (2) defines a
linear representation of (1), i.e. on a vectorspace.

(e) Define a (SUSY) covariant derivative D, by
Da((s(e,g)q)) - 5(6,6)(Daq)>a (4)

where (¢ = €Q + Qe. Consequently, D® transforms as a superfield, too.
Show that the following derivatives obey (4) and are therefore covariant:

D, = 8a+i(a“)a5§5@

Dy = —5/3 —10%(0") . 504
(f) Next define the left and right chiral representations by
Sp(a*, a,a) = explaQ —ia"P,lexp|Qa],
Sg(a",a,@) = expla@ — ia"P,Jexp[aq)]. (5)

Concentrate on the left chiral representation and work out its relation to the
representation S of (b). Check that Sy (a*, o, @)Sp (0", 3, ) is a group element.

(g) A superfield in the left chiral representation is defined by
Sp(a", o, @)[gr(z",0,0)] = ¢r(z" + a* + 2ifo"a, 0 + o, 0 + a).
Determine the representations of the SUSY generators Q;, and Q.
(h) Check that the following operators define covariant derivatives
Dia = n+2i(0"), 0%,
by, = -0
by evaluating the commutator with the SUSY transformation Sp.
(i) Next, define chiral superfields by the constraints
D®(x,0,0) =0, for left chiral sf
D®(z,0,0) =0. for right chiral sf
This definition is independent of the representation. Work with the representa-
tion S of (2) to check that the component fields are not constraint by differential
equations in x. Choose the left chiral representation, i.e. D® = D¢y, to deduce

the general form of a left chiral superfield.

Hint: Make a Taylor expansion in 0, what defines the component fields of ®.
(j) Consider the infinitesimal SUSY transformation d ¢ of a left chiral superfield

¢r,. How do the component fields of ¢, transform?

Hint: Use the left chiral representation of the SUSY generators Qp, and Q, and

assume that the transformation is small: 66056 ~ 0.



